Towards a Paradigm for Robust Distributed Algorithms
and Data Structures

Christian Scheideler
Institut fur Informatik
Technische Universitat Minchen
Boltzmannstr. 3
85748 Garching, Germany

April 3, 2006

Abstract

There is a wealth of literature on distributed algorithmd data structures. Standard models used
in the research community are synchronous or asynchroiausd memory or network models. The
shared memory model is basically a generalization of the Neamann model from one processing
unit to multiple processing units or processes acting omglaj linear addressable memory. In the
network model, there is no shared memory. Every processiiidnas its own, private memory, and the
processing units are connected by a network of (usuallyijdziional communication links that allow
the processing units to exchange messages. The set of gpragasits is usually considered to be fixed
though processing units may fail and recover accordingteesstochastic or adversarial model.

With the rise of very large distributed systems such as peeeer systems, these models are not
appropriate any more. For example, the set of processirtg aan be highly dynamic and there may
not be any mutual trust relationships between the unitss Theates fundamental problems, such as
keeping the (honest) units in a single connected compotieitthe previous models cannot address in
their basic form. We show how to extend the network model abe have a model that is powerful
enough to design algorithms and data structures that avalpisorobust even against massive adversarial
attacks. This model even allows to design strategies capdllddressing modern threats such as denial-
of-service attacks and phishing that appear to lie outsidesocalgorithms domain.

1 Introduction

Large distributed systems are dynamic by nature because may fail and new units may have to be
added to include new resources or users. Once distribustdrsyg become large enough, they will attract
attacks and therefore need appropriate defense mechatuigratect them against these attacks. Classical
research on distributed algorithms and data structuresnbatly ignored these issues and only focused on
isolated distributed systems of a fixed size in which allsiaite honest (but may potentially fail). One of
the motivations for this is that the problem of developingrect and efficient distributed algorithms and
data structures for a static, honest system should be uoddrrst before moving to dynamic systems. In
fact, even developing correct and efficient distributedgprns under ideal circumstances has turned out
to be quite challenging. Once the problem is well-undetfmr a static system, extensions to dynamic
systems may then be possible by migrating code and data ippao@iate way. Robustness against faults
may be achieved by adding a certain level of redundancy, @mastness against adversarial behavior may
be achieved with the help of techniques for secure mulipaotnputation.

However, not all attacks on a system can be handled withiglgac techniques. Prominent examples
here are denial-of-service attacks and phishing, i.eacladt that either try to shut down certain parts of
a system or to take over the identity of certain parts of aesgsin order to disrupt certain services or
destroy the entire system. None of the models proposed $orhiited computing in the theory community
can address these attacks. Standard models are synchmmasygnchronous shared memory or network
models. The shared memory model is basically a generalizatf the von Neumann model from one
processing unit to multiple processing units or process#sgaon a single, linear addressable memory. In
the network model, there is no shared memory. Every praugssiit has its own, private memory, and the
processing units are connected by a network of (usuallyijdsitional communication links that allow the
processing units to exchange messages.

In the (basic) shared memory model, every processing ugith@right to access any memory cell, and
in the (basic) network model, a processing unit just has & hbout another processing unit in order to be
able to send information to it. Both approaches introdugg Isiecurity risks that makes them inappropri-
ate for large distributed systems in an open environmerth) si8 peer-to-peer systems. Therefore, a new
approach is needed. In this paper, we first discuss the &issues such a new approach has to satisfy in
order to allow the development of truly robust distributedgrams, and then we propose a new paradigm
that can address these issues in a satisfactory way. The gragewith a conclusion.

2 Towards a paradigm for robust distributed computing

Any paradigm that claims to be useful for distributed conmmutnust be acceptable to all groups involved:
users, developers, and scientists. This means that it Isagisdy three central demands:

e It must beeasyto apply,
¢ it must allow the development effficientdistributed programs, and

¢ it must besimple and precisé allow a verification and formal analysis of these programs

Though in the academic world, ease of use may not be the mestriamt issue, it should be clear that no
matter how good a paradigm is, if it requires an expert toyapplill not gain wide-spread acceptance.
Also, a paradigm that does not allow the development of efitcdistributed programs will most likely not
be used for anything else than prototyping, and will theefoot make the transition from academia to
industrial applications.

On the other hand, any programming paradigm that claimsléavahe development of efficient dis-
tributed programs must take the following issues into antou

Sites operate in an asynchronous environment,

sites may join and leave the system, or may simply fail,

sites have different resources (processing cycles, mernangwidth), and

messages have varying delays, or may simply get lost.

Thus, distributed programs should be given a high degreeeetibm to manage their resources, which
seems to forbid a paradigm which is easy to apply and pre€sethe other hand, the freedom given to
the developer should not be so high that it is tempting to peednefficient code rather than efficient code.
Thus, besides the paradox of achieving ease of use andgmessstogether with a high degree of freedom
at the same time, we also have to fight with the paradox ofiaffex high degree of freedom and restricting
the development of inefficient code at the same time. Carthessibly be a paradigm that resolves these
paradoxes?

2.1 Why we should not view the network as a von Neumann machine

We all know how to write programs for a single computer. Inndpgo, we are usually following the von
Neumann paradigm without being explicitly aware of it: Caoel data are separate entities. Or more pre-
cisely, our programs usually consistaxtive (the processes) ammhssivethe data) entities. Data structures
are mostly processed in axterior way i.e., by adjusting pointers into the data structure, nathan pro-
cessing them in amterior way, i.e., let the objects in the data structure do the work. H@mnehaving
active and passive entities creates access and sharingmothat have to be handled with great care to
avoid inefficiencies and inconsistencies. This is furth@mplicated by the fact that in many platforms and
models, the passive entities are not under the control chc¢lige entities. That is, some underlying layer
may decide where passive entities may be placed and in whddr cequests may arrive at the passive
entities. Although the approach of hiding the managememastive entities from the active entities was
originally meant tasimplifythe design of distributed programs, it actualymplicatest and produces ineffi-
cient programs. The inefficiency may be handled by devetppmograms with a course-grained parallelism
(by following models such as BSP, logP, QSM, HMM, and manyert)y but doing it right often requires
an expert. Finally, managing passive entities by someglatfputs the burden of handling security and
authorization issues on that platform. Active entities maybe able to adjust the security to their needs,
unless the platform provides a suitable interface for that.

Hence, our basic approach will betto distinguish between passive and active entities but fipaltow
active entities which we will calbubjects

2.2 Why distributed systems are hard to protect

Though a subject-based approach may help to simplify thiges distributed programs, would it also

be able to address our efficiency concerns? Also, robusis&sss need to be addressed because in recent
years, robustness against adversarial behavior has beroimereasingly pressing issue. Designing efficient
and robust distributed systems is very challenging becalute following fundamental dilemma:

¢ Efficiencyasks forminimizingthe resources needed for the operations whereas
e robustnesssks formaximizingthe resources needed for an attack.

In cryptography, these seemingly contradicting requimrgisielo not pose a problem because efficient cryp-
tographic codes are known that are (believed to be) hardeakbrsuch as RSA. However, in serverless
systems like peer-to-peer systems, we cannot create suaslyarmetric situation. For example, if a data

2

item is only replicated among a few peers, then it does natambow well it is protected by cryptographic
techniques. A simple denial-of-service attack on all peesponsible for the data item will make it inacces-
sible. Even worse, with a relatively small investment of awsources, hackers can control a large pool of
compromised resources over the Internet and use it to adtaark powerful servers via so-called distributed
denial-of-service attacks. Hence, in reality, the asynmynistrather in favor of the attackers than in favor
of the distributed system that needs to be protected. Theseka are certainly outside of the algorithmic
domain and therefore need a new paradigm to protect against.

2.3 Central demands

In order to investigate possible solutions, we need to s&ira@ur thoughts above and make them a bit more
formal. What we are searching for isiniversalparadigm that can address the following three central sssue
simplicity, efficiencyandrobustnessinterestingly, these issues are highly dependent. M&jallenges are

to make the paradigm simple without losing universalitficefnt without losing simplicity, robust without
losing efficiency, and finally, universal without losing tmness. We discuss one by one the consequences
of these requirements.

Simplicity

For a paradigm to be simple, it should be easygttie realizeandapply. The Turing machine, for example,
does not satisfy these properties because although itysteasate and realize, it is not easy to apply. A
possible candidate for distributed computing could be &ibiged version of the von Neumann machine.
However, although it is easy to state, it is hard to realize tanapply in a distributed environment, as we
have seen above. A more natural candidate is a subject-lzggedach: there are subjects with private,
non-overlapping resources that exchange information.

For a predictable execution of tasks within a subject, asailghould be aatomicentity residing at a
single, fixedsite. In order for the subject-based approach to be easyty @me has to take into account that
concurrencyis a difficult matter. Hence, concurrency should only happdamwéen subjects but not within
a subject. As a consequence, tasks should be executed byeatsola strictly sequential manner, which
implies that every execution of a task must be guaranteegrtainate in a finite amount of time. Since no
finite time bound can be given for the interaction betweerjemtb without losing the universality of the
paradigm, this means that the execution of a task shouldepmradi on the interaction with other subjects.
Hence, no primitives should be allowed that require infdramafrom another subject for the execution of a
task to proceed.

Another aspect for the subject-based approach to be eagplpia that subjects should be immutable
once created. That is, subjects cannot modify, add or dedeiables or methods, though they can certainly
modify the contents of their variables. This tremendoustypéifies correctness proofs. Thus, if new vari-
ables or methods are needed, new subjects have to be spailiiaeslibjectA spawns a subjedB, A is
called the parent oB andB is called the child ofd. For simplicity and transparency reasons, a child should
be bound to the same site as its parent. Like in real life, angahould be responsible for its child. In par-
ticular, a parent should be responsible for controllingrismources used by its child. In this way, resource
responsibilities are well defined. As a consequence, thenpaelationship should not change because if it
could, a parent may obtain the right to decide on the use ofiress of a child at a remote site, which is not
acceptable as it would introduce severe security and roesstrisks.

Efficiency

For a paradigm to be efficient, no primitive should involveuak hidden overhead. Moreover, for simplicity
and efficiency reasons, primitives should be selected gdtieasubjects are decoupled in space, time, and

3

flow. Space decouplingneans that the interacting subjects do not need to know phgisical locations,

time decouplingneans that the interacting subjects do not need to be acpeglicipating in an interaction

at the same time, anffiow decouplingmeans that the code execution inside subjects is not blobked
outside interactions. Notice that previous distributehpating approaches such as message passing, remote
procedure calls, and shared spaces can only provide déwgupl a subset of these issues [8], which
underlines the fact that a new approach is needed. Our agpob&andling space and time decoupling is to
use a light-weight intermediate layer for the interacti@tween the subjects that can run concurrently with
the subjects (in fact, we may treat it as another subject)wilVapecify this layer (which we will call relay
layer) more precisely below.

Robustness

In order to allow the development of robust distributed &thms, three central demands have to be met
(see also [5, 7]), which we also prefer to call the laws of stbhess:

1. User consent and control: All resources of a site should be under its control. This redhat also
all resources granted to a subject (such as time, space addigth) should be under its control. For
simplicity, it is best if subjects can only grant resourceshieir children. In this way, a subject only
needs to control the resources of its children. Notice thede resources always belong to the same
site since we do not allow subjects to migrate. Since, intamdi subjects cannot access anything
directly outside of their realm, user consent and contraksured.

2. Minimal exposure: The secure platform should only provide the subjects wighnttinimal informa-
tion necessary to perform their tasks and to maintain usaliy (i.e., so that all possible tasks can
be implemented). This implies that subjects should not bpdntable from outside and therefore,
only information that has been explicitly sent by the subgrould be obtainable from that subject.
If possible, no information should be obtainable by a sulijeat can be used to take over its identity,
even if the subject would want this. To minimize exposure ipagent-child relationship, initially
there should only be a connection from the child to its par@mil not vice versa. This makes sure that
subjects can, in principle, act independent of their emvitent so that subjects may just be verified
once and then run anywhere with the same guaranteed outcome.

3. Minimal authority: A subject should be given the minimum possible authorityxiecate any task.
This can be ensured if a subject can only have direct accatssdwn data and a subjegt can only
connect to a subjed? if B permits this. Hence, a subjedtshould not be able to introduce a subject
B to a subjectC without C's consent. The minimal authority condition is also knowrresprinciple
of least privilegg[6, 11] orprinciple of least authority10].

Simplicity is also important for robustness because it isn&arsal fact that every additional primitive
increases the vulnerability of a paradigm. With respectotoustness, less is therefore more, though the
universality and efficiency may suffer if this principle isaggerated.

3 Formal framework

In order to establish a formal framework satisfying all ofr @lemands above, we need to address two
critical issues: primitives for a robust communicationieswment and primitives for a robust computational
environment. The latter issue includes the problem of robode migration and resource management.

3.1 Communication

We need the following ingredients to establish a robust camication infrastructure.

e subjects

¢ identities

e relay points

e secure links
Let S denote the set of all subjectsdenote the set of all identitie®, denote the set of all relay points, and
E C R x R denote the set of all secure links. Given a subjegt(s) € S denotes the parent of(i.e., the
subject that creates)). For an identityi, s(i) € R denotes the source of(i.e., the relay point associated
with 7), d(i) € R U {oco} denotes the destination of(i.e., the relay point is meant for) and (i) € R
denotes the base ofiwhich we will explain later in more detail). H(i) = oo, we call: a public identity
and otherwise arivateidentity. Given a relay point, h(r) € S denotes the home of(i.e., the subject that
createdr) andb(r) € R denotes the base of(to be explained later).

Subjects, identities and relay points can be created otadklén the following, bys.op(o1 | 02,03, .. .)

we mean that subject applies methodp to objecto; using as parameters objeets, o3, . .. First, we
consider the case that a subject is created or deleted.

e s.createf’): S = SU{s'},p(s') =8, R = RU {x¢, s}, h(xg) = &, b(xg) = x¢, h(lg) = &,
b(ls’) =sx*s;andFE = E U {(J,s/, *5)}

o s.delete): if s = p(s’)thenS = S\ {s'}, R=R\{r | h(r) =5}, E=E\{(r,7) | h(r) =
s Vv h(r') = s'}, and execute delet€() for all s” € .S with p(s”) = s'.

Next, we consider the case that a relay point is created etetgl
e s.create(): R=RU{r}, h(r) =s,b(r) =r,andE = EU {(r, *s)}.

e s.createf | 7): if h(d(i)) = sthenR = RU {r}, h(r) = s, b(r) = b(i), d(i) = co andE =
EU{(r,s(i))}.

e s.deletef): R=R\{r}andE = E\{(,7") |7 =r VvV " =r}.

Finally, we consider the case that an identity is createcetated.
e s.create): I =T Ui}, s(i) = *s, d(i) = oo andb(i) = .
e s.create{ | r): if h(r) = sandr # x5 thenl = I U {i}, s(i) = r,d(i) = b(|s) andb(i) = b(r).
e s.create{| r,i'): if h(r) = sandr # xs thenl = T U {i}, s(i) = r,d(i) = b(i") andb(i) = b(r).
o s.delete): 7 =1\ {i}.
When looking carefully at these rules, the following immrt properties can be extracted:

¢ If a new subject is created, then initially there is only & lirom that subject to its parent but not vice
versa. In this way, the create operation can be implementednion-blocking way. Also, the user
consent and control requirement is satisfied because ifjadulyeates a new child, wiantsa return
value from that child since otherwise the child has no effieat the child itself may not want to grant
its parent permission to send it anything.

¢ A subject can only be deleted by the subject that createtldaninot delete itself. In this way, parents
have full control over their children.

e Whenever a subject is deleted, also all of its descendaatdedeted. This is important to satisfy the
user consent and control requirement since otherwise atga@y not be able to control the resources
of its descendants.

e Only relay points are associated with identities, and ayrptant can only have exactly one outgoing
connection that is established when it is created. This @omant to realize anonymity because
different subjects must be accessed via different relagtpdiaving different identities, and therefore
immediate associations with a single subject are not plesdturthermore, a public identity does not
need to contain any physical location information. In thdse;, even the relay layer of a subject does
not know the physical location of a relay point when creatingrivate identity for it, so anonymity
can be ensured in a very strong sense. Only the private fidsntiave to store location information
because otherwise connections cannot be established.

¢ Public identities can only be used to create private idestibut not to create links between relay
points. This ensures that an explicit permission must berglwy a subject before another subject
can connect to it. The reason why public identities are ribebrss necessary is to solve the initial
contact problem because initially, subjects may not be eciaual, and so an offline process with public
identities is necessary to connect them.

¢ Private identities can be used to establish links betwdag points but only from a relay point of the
subject it was meant for to the relay point representingatsee. Since this source subject originally
created the identity, this means that links can only be ety permission of the destination of the
link. A private identity can only be used once to create a.link

e A private identity cannot be created fokapoint. This makes sure that a subject can kill any connec-
tion to it at any time (by deleting either one of its relay @sior a child subject).

e Relay points can establish linked lists. The destinatioaryf such list is the base of all of its relay
points. An identity created for any of the relay points intsadist is meant for the base of this list. In
this way, lists can be shortcut. This is important to allovedi connections between any two subjects
that may initially just be in the same connected component.

Due to the last two properties, we also call our appraatioduction by proxy, connection by base

We notice that for a robusind secure communication environment, the communicatiorslstkould
be cryptographically secured so that they cannot be forgeangone. Also, space decoupling has to be
enforced, i.e., the subjects should not know the physiaation of the other subjects they are communi-
cating with but only some cryptographically secured id@gi(whose physical location information is only
accessible to a protected relay layer) and handles to theirelay points.

3.2 Code migration

In order to allow the safe migration of subjects from one &itanother, we use the concept of clones. Cet
be the set of clones. For any cloadet s(c) € R be the source of the clone adf-) € R be the destination
of the clone. A clone is created and deleted by the followipgrations:

e s.createf): C = C U {c}, c =s, s(c) = x5 andd(c) = b(|s).
e s.createf | i): C = C U{c}, s(c) = *, andd(c) = b(i)

e s.createf | ¢): if c € C andh(d(c)) = s then executa.createf’), sets’ = candC = C'\ {c}.

A clone ¢ only containss itself, which means that only contains the current state of the variables and
methods ins as well as the requests that are currently queuadbat none of the relay points or connections
established by. Note that a clone can only be unwrapped once and only by thersjit is meant for.

For safe cloning, clones should be cryptographically sst@o that they cannot be altered on a user
level. 1t should only be possible to unwrap a clone by a ptetkcelay layer within the site so that its code
and data cannot be inspected or altered by the user. Thispisriamt for digital rights management and
secure grid computing.

3.3 Resource management

Recall that the resources used by a subject should be uredeottitrol of its parent. We realize this with the
help of the following operations:

o s.freeze§’): if s = p(s’) thens' is frozen bys, which means that no requests will be executedsfor
and its descendants.

e s.wakeupf’): if s = p(s’) thens’ is woken up bys, which means that now requests will again be
executed by’ (given that no ancestor afgets frozen)

By default, a new subject is awake. The freeze and wakeup emrdsnare very useful to help the platform
decide when to move a subject to a storage device and whenvie itrizack to local memory for execution.

A subject may also control which of its relay points is cuthgactive. This is realized by the following
operations:

o s.freezef): if s = h(r) thenr is frozen bys, which means that no requests will be processed (i.e.,
received and sent) by

e s.wakeupf): if s = h(r) thenr is woken up bys, which means that now requests will again be
processed by.

By default, a new relay point is awake.

3.4 Further enhancements

Further enhancements of the subject-based paradigm asibleo® widen the spectrum of applications it
can be used for. For example, whenever a new relay poistcreated withs.createf), it is sometimes
desirable to specify a policy for. Possible policies are thatmay only accept information up to a certain
rate,r may only allow relay paths to it of some bounded length, oy @plecific methods ir can be called
viar.

3.5 Message passing

Finally, we specify how to actually exchange informatiortviieen the subjects. Messages can only be
passed along links i’ and the message passing is done with the help of¢h&dperator. Two variants of
this operator are possible:

e s. — m: this sends messageto relay point«, so that it will be executed by. (This is useful fors to
stay alive or to produce a clone of itself that can wake up $sffitvhen spawned by another subject.)

e s.r — m for some relay point with h(r) = s: this sends a message to the local relay point
which will then move it forward until the message arrives @ng relay point«,, where it will be
processed.

The < operator is anon-blocking, eventualend operator that guarantees the following properties:

e FIFO ordering: alk—-calls to the same relay point are executed in FIFO ordernaesbages sent by
a relay pointr to some relay point’ arrive atr’ in the same order they were sent outsbif they
arrive).

e At-most-once delivery: messages are delivered in an at orast fashion. (Notice that exactly-once
delivery cannot be guaranteed in a potentially unreliakesvork.)

Similar concepts have also been used in the E language (wightsorg).

4 The subject-oriented programming framework

Now we are ready to describe our subject-oriented programpranvironment which is already available
as a simulation environment and used in the Network Algoritcourse currently given at the Technical
University of Munich [13]. The basic ideas behind this framoek date back to the actors model developed
by Carl Hewitt at the MIT in the area of artificial intelligemd9], at a time when distributed computing
was still in its infancy. Unfortunately, software and haate issues at that time prevented his ideas from
becoming wide-spread in the distributed computing comtgurlowever, researchers in the programming
language area have continued working on and extending Beevdieas [1, 2, 3] which led, among other
results, to the E language (see www.erights.org or [10])e EHanguage is probably the most advanced
among these with respect to security as it uses a subjeetttzgsproach with cryptographically protected
links, but it violates the laws of robustness that we forrtadan Section 2.3.

4.1 Layers of the framework

The subjects framework consists of three layers:
e Network layer: this is the lowest layer. It handles the exchange of mesdagveen the sites.

e Relay layer. this handles the identity and relay management and theaegehof messages between
the subjects.

e Subijects layer this is the layer for subject-oriented programs.

In the network layer, any given communication mechanism tmeysed, such as TCP/IP, Ethernet, or
802.11. Its management is entirely an internal matter ofalagy layer. Hence, the relay layer allows to hide
networking issues from the subjects so that subject-aikptograms can be written in a clean way. Thus,
it remains to specify the subjects layer, the relay layed, the interface between them.

4.2 The subject layer

All computation and storage in the subjects layer is orgahinto subjects. A subject is an atomic thread
with its own, private resources that are only accessibléd¢ostubject itself. “Atomic thread” means that a
subject must be completely stored within a single site aatlaperations within a subject are executed in
a strictly sequential, non-preemptive way. A prerequifitethis approach to work is that all elementary
operations must be strictly non-blocking so that a subjeltinever freeze in the middle of a computation.

8

A subject cannot access any of the resources outside ofivetgresources. The only way a subject can
interact with the outside world is by sending messages terattibjects. A subject is bound to the site and
the subject that created it.

4.3 The relay layer

All communication between the spheres is handled by they taejger. The relay layer manages the relay
points as well as the identities of the relay points and thrneotions to other relay points. It also keeps
track of the parent-child relationships between the subjand unwraps clones. A relay point is an atomic
object that is bound to the subject that created it. It haprperties of a subject except that it is not
freely programmable but only supports the operation. On the other hand, identities and clones are just
cryptographically protected objects, i.e., they do nottaemselves but are only used in certain actions.
4.4 Formal specification
There are four basic classes of objects:

e Identity: class for public and private identities

¢ Relay. class for relay points, which are needed to interconnexstiijects.

e Clone: class for clones, which are needed to migrate subjecttydaden one site to another.

e Subject base class for subjects.

Each of these basic classes offers a set of operations. Hjacty is executing operationp, we denote it
ass.op, and if we want to specify the type of a certain parameter, e tpe type in italic.
The identity class offers the following operations:

e s.new ldentity: creates a public identity of subject

e s.new ldentityRelayr): creates a private identity effor the parent ok.

e s.new ldentityRelayr, Identity¢): creates a private identity effor the base of identity.
e s.deletei: this deletes Identity

The relay class offers the following operations:

s.new Relay: this creates a new relay point with a connectien t

s.new Relay{): this creates a new relay pointvith a connection to the relay point identified Hyif
i was meant foe.

s.r < verb(args): ifr has been created 3y a request to call verb(args) is sentto

s.wakeupt): s wakes upr if r is a relay point ofs.

s.freezef): s freezesr if r is a relay point ok.

s.idle(r): returns true i~ is idle (has no requests to process) and otherwise false.
e s.deleter: this deletes relay point.

The clone class offers the following operations:

e s.new Clone: this creates a clonesfor the parent of.
¢ s.new Cloneldentityi): this creates a clone affor the base of.
¢ s.delete Clone: this deletes a clone.
The subject class offers the following variables and opmmnat
e s.root: a handle to relay poirjt; which allowss to send requests to its parent.

e s.source: a positive number tellinghe identity of the relay point that generated the requeseatly
executed by.

e s.sink: a positive number telling the identity of the relay point ix that forwarded the request
currently executed by to s.

e s.newUserSubjedt spawns a new subjest of type UserSubject A subject pointer is returned to
s allowing s to wake up, freeze, or kill’ but not to send requests . By default, a new subject
is awake. If a subject is frozen, no more requests are preddsgit, and if a subject is killed, the
subject and all of its descendants are removed instantly.

¢ s.new(SubjectClonec)): spawns a hew subject containing the clone ihc is meant fors.
e s.delete§’): this kills s’ if s’ is a child ofs.

e 5. «— verb(args): a request to call verb(args) is createdsfivself. This should be used whenis
created so that can become active, and it is useful for periodic control pags.

e s.wakeup§’): s wakes ups’ if s’ is a child ofs.
e s.freeze§’): s freezess' if s’ is a child ofs.

e s.idle(): checks if there are still messages for

4.5 A simple example

In order to demonstrate our subjects framework, let us ldak simple example: We want to set up two
nodes, Ping and Pong, that send messages back and forthcarhise done as shown in Figure 1. The
main() function starts the ping-pong process by creatiegbng object.

5 Robustness properties

At this point, the question may certainly arise whether thiejexts framework can really protect a sys-
tem against denial-of-service attacks and identity thiftthis section, we will discuss how the subjects
framework might be implemented so that a protection canedde achieved.

5.1 Denial-of-service attacks

The problem with denial-of-service attacks is that it ididiflt to defend against them at the destination
of the attack. Hence, it would be desirable to prevent therteatsource. Our subjects framework can
achieve this without changing the core of the Internet. Qhé/edge of the Internet, i.e., the place where
the Internet service providers (ISPs) interact with thiéémnts, needs to be changed, which is possible since

10

_ _ Subject Pond
Subject P}ng{ pinglink: Relay
num: integer
ponglink: Relay Pong(){
«— Init|
Ping() { } !
num:=0
— Init() Init() {
} new(Ping)
Init() { J
i: ldentity Setup(: Identity) {
ponglink := new Relay pinglink := new Relay()
i := new ldentityponglink) deletes
root +— Setupg) }
PingPon
} gPong() PingPong(X
pinglink — PingPong()
PingPong(X }
if (num < 5) then }
num = num + 1 .
root «— PingPong() main() {
} Subjectpong := new(Pong);
} run(pong,40)
}

Figure 1. The Ping Pong example.

no standards are needed for this. Suppose that the relats @ managed by the ISP whereas all other
aspects are managed by the clients. Given that the ISPs @estha client would not be able to create relay
points at will and therefore would not be able to connect tp ather client as it likes. An authorization
process through identities could be enforced by the ISPhatoatuser A can only connect to a user B if
B explicitly allows that. Hence, unauthorized transmissi@f messages can be prevented at the source.
Suppose, instead, that client A has a correctly authoripemhection to client B and wants to use it now
for a denial-of-service attack. Then B can defend itselfirsgiat by simply killing the local relay point
through which A is connected to B. In this way, A's authoraatwill be revoked and A will not be able
any more to send messages to B. Hence, as long as the honssfansea single connected component,
denial-of-service attacks can, in principle, be preventétiout losing any of the honest users. Of course,
one still has to solve the problem of how to keep the honessuse single connected component under
adversarial attacks, but fortunately, very simple stiete@pave just recently been proposed that can solve
this problem with a low overhead [4, 12].

5.2 ldentity theft

Also identity theft can be prevented to a certain degree.p8sm that all the relay layer lets the subjects
know about their relay points are local handles, and whangvequest is processed by a subject, it only
learns about a one-way hash value of the identity of the soaind sink of the request. Furthermore, given
a critical connection from A to B that needs to be protectedn accepts a change of this connection in
an offline mode. Then we want to show that identity theft vilrenattacks are not possible.

For this, consider the situation that subject A has a cometd subject B, and this connection starts at

11

relay pointr in A and ends at relay pointf in B. Suppose there is another subject C that wants to take ove
the identity of A, i.e., that wants to transmit messages to Bhat B thinks they are from A (which it only
does if the source of the message indicataad the sink of the message indicat&s Further, suppose that

A and B are naive and deliver any information that C requ&itsce A and B do not have access to the true
identities ofr andr’ but only their one-way hash values, C would not be able tovercthe true identities.

C could still ask A to establish a connectiornrtor ask B to establish a connection/to but that would not
allow C to give B the impression that A is talking to B. Also, @mot ask A to bend its connection from

to 7’ over to a relay point in C because once the outgoing conmeofia relay point has been set, it cannot
be changed any more. The only way A could establish a cormmetiC is to use a new relay point, but this
relay point has an identity that is different fromand therefore B would not accept messages from A via
that new relay point as coming from A. Thus, no online straisgvailable for C to take over A's identity.

6 Conclusions

In this paper we demonstrated that it is possible to desigaradogm for distributed computing that can
address all major demands for simplicity, efficiency andusbbess. We hope that this paradigm will create
some interesting discussion that will ultimately lead t@amuch safer version of the Internet as it is today.
Also, we hope that our paradigm, or an appropriate enhanueofd, will serve as a base for fundamental
research on provably efficient and robust distributed @lgms and data structures in the future. The author
certainly welcomes any comments and suggestions.

7 Acknowledgements

I would like to thank Mark Miller for many helpful discussisrand for introducing me to his E language.

References

[1] G. Agha.Actors: A Model of Concurrent Computation in Distributeds&mns MIT Press, Cambridge,
Massachusetts, 1986.

[2] G.Agha, |. Mason, S. Smith, and C. Talcott. A foundationdctor computationlournal of Functional
Programming 7(1):1-69, 1997.

[3] G. Agha and T. Prasann&ormal Methods for Distributed Processing - An Object OtahApproach
chapter 8, Actors: A model for reasoning about open disteitbsystems. Cambridge University Press,
2001.

[4] B. Awerbuch and C. Scheideler. How to spread peers inuairspace. Unpublished manuscript,
available on request, November 2005.

[5] K. Cameron. The laws of identity. http://www.identitgly.com/stories/2004/12/09/thelaws.html,
2004.

[6] P.J. Denning. Fault tolerant operating syste®€M Computing Survey8(4):359—389, 1976.
[7] D. Epp. The eight rules of security. http://silversties.org/blog/archives/000468.html, 2003.

[8] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarr€oe many faces of publish/subscribe. To
appear in ACM Computing Surveys, Microsoft Research, 2003.

12

[9] C. Hewitt, P. Bishop, and R. Stieger. A universal modwaetor formalism for artificial intelligence. In
Proc. of the 1973 International Joint Conference on Art#fidntelligence pages 235-246, 1973.

[10] M.S. Miller, C. Morningstar, and B. Frantz. Capabilinased financial instrumentginancial Cryp-
tography 20002000. See also http://www.erights.org/elib/capabiititie/.

[11] J.H. Saltzer and M.D. Schroeder. The protection ofrimfation in computer system&roceedings of
the IEEE 63(9):1278-1308, 1975.

[12] C. Scheideler. How to spread adversarial nodes? Rotateroc. of the 37th ACM Symp. on Theory
of Computing (STOCpages 704-713, 2005.

[13] C. Scheideler. Network algorithms. See http://wwvirt4um.de/lehre/2005WS/na/index.html.en,
2005.

13

