
Towards a Paradigm for Robust Distributed Algorithms
and Data Structures

Christian Scheideler
Institut für Informatik

Technische Universität München
Boltzmannstr. 3

85748 Garching, Germany

April 3, 2006

Abstract

There is a wealth of literature on distributed algorithms and data structures. Standard models used
in the research community are synchronous or asynchronous shared memory or network models. The
shared memory model is basically a generalization of the vonNeumann model from one processing
unit to multiple processing units or processes acting on a single, linear addressable memory. In the
network model, there is no shared memory. Every processing unit has its own, private memory, and the
processing units are connected by a network of (usually) bidirectional communication links that allow
the processing units to exchange messages. The set of processing units is usually considered to be fixed
though processing units may fail and recover according to some stochastic or adversarial model.

With the rise of very large distributed systems such as peer-to-peer systems, these models are not
appropriate any more. For example, the set of processing units can be highly dynamic and there may
not be any mutual trust relationships between the units. This creates fundamental problems, such as
keeping the (honest) units in a single connected component,that the previous models cannot address in
their basic form. We show how to extend the network model so that we have a model that is powerful
enough to design algorithms and data structures that are provably robust even against massive adversarial
attacks. This model even allows to design strategies capable of addressing modern threats such as denial-
of-service attacks and phishing that appear to lie outside of the algorithms domain.

1 Introduction

Large distributed systems are dynamic by nature because units may fail and new units may have to be
added to include new resources or users. Once distributed systems become large enough, they will attract
attacks and therefore need appropriate defense mechanismsto protect them against these attacks. Classical
research on distributed algorithms and data structures hasmostly ignored these issues and only focused on
isolated distributed systems of a fixed size in which all units are honest (but may potentially fail). One of
the motivations for this is that the problem of developing correct and efficient distributed algorithms and
data structures for a static, honest system should be understood first before moving to dynamic systems. In
fact, even developing correct and efficient distributed programs under ideal circumstances has turned out
to be quite challenging. Once the problem is well-understood for a static system, extensions to dynamic
systems may then be possible by migrating code and data in an appropriate way. Robustness against faults
may be achieved by adding a certain level of redundancy, and robustness against adversarial behavior may
be achieved with the help of techniques for secure multiparty computation.

However, not all attacks on a system can be handled with algorithmic techniques. Prominent examples
here are denial-of-service attacks and phishing, i.e., attacks that either try to shut down certain parts of
a system or to take over the identity of certain parts of a system in order to disrupt certain services or
destroy the entire system. None of the models proposed for distributed computing in the theory community
can address these attacks. Standard models are synchronousor asynchronous shared memory or network
models. The shared memory model is basically a generalization of the von Neumann model from one
processing unit to multiple processing units or processes acting on a single, linear addressable memory. In
the network model, there is no shared memory. Every processing unit has its own, private memory, and the
processing units are connected by a network of (usually) bidirectional communication links that allow the
processing units to exchange messages.

In the (basic) shared memory model, every processing unit has the right to access any memory cell, and
in the (basic) network model, a processing unit just has to hear about another processing unit in order to be
able to send information to it. Both approaches introduce high security risks that makes them inappropri-
ate for large distributed systems in an open environment, such as peer-to-peer systems. Therefore, a new
approach is needed. In this paper, we first discuss the various issues such a new approach has to satisfy in
order to allow the development of truly robust distributed programs, and then we propose a new paradigm
that can address these issues in a satisfactory way. The paper ends with a conclusion.

2 Towards a paradigm for robust distributed computing

Any paradigm that claims to be useful for distributed computing must be acceptable to all groups involved:
users, developers, and scientists. This means that it has tosatisfy three central demands:

• It must beeasyto apply,

• it must allow the development ofefficientdistributed programs, and

• it must besimple and preciseto allow a verification and formal analysis of these programs.

Though in the academic world, ease of use may not be the most important issue, it should be clear that no
matter how good a paradigm is, if it requires an expert to apply, it will not gain wide-spread acceptance.
Also, a paradigm that does not allow the development of efficient distributed programs will most likely not
be used for anything else than prototyping, and will therefore not make the transition from academia to
industrial applications.

On the other hand, any programming paradigm that claims to allow the development of efficient dis-
tributed programs must take the following issues into account:

1

• Sites operate in an asynchronous environment,

• sites may join and leave the system, or may simply fail,

• sites have different resources (processing cycles, memory, bandwidth), and

• messages have varying delays, or may simply get lost.

Thus, distributed programs should be given a high degree of freedom to manage their resources, which
seems to forbid a paradigm which is easy to apply and precise.On the other hand, the freedom given to
the developer should not be so high that it is tempting to produce inefficient code rather than efficient code.
Thus, besides the paradox of achieving ease of use and preciseness together with a high degree of freedom
at the same time, we also have to fight with the paradox of offering a high degree of freedom and restricting
the development of inefficient code at the same time. Can there possibly be a paradigm that resolves these
paradoxes?

2.1 Why we should not view the network as a von Neumann machine

We all know how to write programs for a single computer. In doing so, we are usually following the von
Neumann paradigm without being explicitly aware of it: Codeand data are separate entities. Or more pre-
cisely, our programs usually consist ofactive(the processes) andpassive(the data) entities. Data structures
are mostly processed in anexterior way, i.e., by adjusting pointers into the data structure, rather than pro-
cessing them in aninterior way, i.e., let the objects in the data structure do the work. However, having
active and passive entities creates access and sharing problems that have to be handled with great care to
avoid inefficiencies and inconsistencies. This is further complicated by the fact that in many platforms and
models, the passive entities are not under the control of theactive entities. That is, some underlying layer
may decide where passive entities may be placed and in which order requests may arrive at the passive
entities. Although the approach of hiding the management ofpassive entities from the active entities was
originally meant tosimplifythe design of distributed programs, it actuallycomplicatesit and produces ineffi-
cient programs. The inefficiency may be handled by developing programs with a course-grained parallelism
(by following models such as BSP, logP, QSM, HMM, and many others), but doing it right often requires
an expert. Finally, managing passive entities by some platform puts the burden of handling security and
authorization issues on that platform. Active entities maynot be able to adjust the security to their needs,
unless the platform provides a suitable interface for that.

Hence, our basic approach will benot to distinguish between passive and active entities but to only allow
active entities which we will callsubjects.

2.2 Why distributed systems are hard to protect

Though a subject-based approach may help to simplify the design of distributed programs, would it also
be able to address our efficiency concerns? Also, robustnessissues need to be addressed because in recent
years, robustness against adversarial behavior has becomean increasingly pressing issue. Designing efficient
and robust distributed systems is very challenging becauseof the following fundamental dilemma:

• Efficiencyasks forminimizingthe resources needed for the operations whereas

• robustnessasks formaximizingthe resources needed for an attack.

In cryptography, these seemingly contradicting requirements do not pose a problem because efficient cryp-
tographic codes are known that are (believed to be) hard to break, such as RSA. However, in serverless
systems like peer-to-peer systems, we cannot create such anasymmetric situation. For example, if a data

2

item is only replicated among a few peers, then it does not matter how well it is protected by cryptographic
techniques. A simple denial-of-service attack on all peersresponsible for the data item will make it inacces-
sible. Even worse, with a relatively small investment of ownresources, hackers can control a large pool of
compromised resources over the Internet and use it to attackeven powerful servers via so-called distributed
denial-of-service attacks. Hence, in reality, the asymmetry is rather in favor of the attackers than in favor
of the distributed system that needs to be protected. These attacks are certainly outside of the algorithmic
domain and therefore need a new paradigm to protect against.

2.3 Central demands

In order to investigate possible solutions, we need to structure our thoughts above and make them a bit more
formal. What we are searching for is auniversalparadigm that can address the following three central issues:
simplicity, efficiencyandrobustness. Interestingly, these issues are highly dependent. Major challenges are
to make the paradigm simple without losing universality, efficient without losing simplicity, robust without
losing efficiency, and finally, universal without losing robustness. We discuss one by one the consequences
of these requirements.

Simplicity

For a paradigm to be simple, it should be easy tostate, realizeandapply. The Turing machine, for example,
does not satisfy these properties because although it is easy to state and realize, it is not easy to apply. A
possible candidate for distributed computing could be a distributed version of the von Neumann machine.
However, although it is easy to state, it is hard to realize and to apply in a distributed environment, as we
have seen above. A more natural candidate is a subject-basedapproach: there are subjects with private,
non-overlapping resources that exchange information.

For a predictable execution of tasks within a subject, a subject should be anatomicentity residing at a
single, fixedsite. In order for the subject-based approach to be easy to apply, one has to take into account that
concurrencyis a difficult matter. Hence, concurrency should only happen between subjects but not within
a subject. As a consequence, tasks should be executed by a subject in a strictly sequential manner, which
implies that every execution of a task must be guaranteed to terminate in a finite amount of time. Since no
finite time bound can be given for the interaction between subjects without losing the universality of the
paradigm, this means that the execution of a task should not depend on the interaction with other subjects.
Hence, no primitives should be allowed that require information from another subject for the execution of a
task to proceed.

Another aspect for the subject-based approach to be easy to apply is that subjects should be immutable
once created. That is, subjects cannot modify, add or deletevariables or methods, though they can certainly
modify the contents of their variables. This tremendously simplifies correctness proofs. Thus, if new vari-
ables or methods are needed, new subjects have to be spawned.If a subjectA spawns a subjectB, A is
called the parent ofB andB is called the child ofA. For simplicity and transparency reasons, a child should
be bound to the same site as its parent. Like in real life, a parent should be responsible for its child. In par-
ticular, a parent should be responsible for controlling theresources used by its child. In this way, resource
responsibilities are well defined. As a consequence, the parent relationship should not change because if it
could, a parent may obtain the right to decide on the use of resources of a child at a remote site, which is not
acceptable as it would introduce severe security and robustness risks.

Efficiency

For a paradigm to be efficient, no primitive should involve a large hidden overhead. Moreover, for simplicity
and efficiency reasons, primitives should be selected so that the subjects are decoupled in space, time, and

3

flow. Space decouplingmeans that the interacting subjects do not need to know theirphysical locations,
time decouplingmeans that the interacting subjects do not need to be actively participating in an interaction
at the same time, andflow decouplingmeans that the code execution inside subjects is not blockedby
outside interactions. Notice that previous distributed computing approaches such as message passing, remote
procedure calls, and shared spaces can only provide decoupling for a subset of these issues [8], which
underlines the fact that a new approach is needed. Our approach of handling space and time decoupling is to
use a light-weight intermediate layer for the interaction between the subjects that can run concurrently with
the subjects (in fact, we may treat it as another subject). Wewill specify this layer (which we will call relay
layer) more precisely below.

Robustness

In order to allow the development of robust distributed algorithms, three central demands have to be met
(see also [5, 7]), which we also prefer to call the laws of robustness:

1. User consent and control:All resources of a site should be under its control. This means that also
all resources granted to a subject (such as time, space and bandwidth) should be under its control. For
simplicity, it is best if subjects can only grant resources to their children. In this way, a subject only
needs to control the resources of its children. Notice that these resources always belong to the same
site since we do not allow subjects to migrate. Since, in addition, subjects cannot access anything
directly outside of their realm, user consent and control isassured.

2. Minimal exposure: The secure platform should only provide the subjects with the minimal informa-
tion necessary to perform their tasks and to maintain universality (i.e., so that all possible tasks can
be implemented). This implies that subjects should not be inspectable from outside and therefore,
only information that has been explicitly sent by the subject should be obtainable from that subject.
If possible, no information should be obtainable by a subject that can be used to take over its identity,
even if the subject would want this. To minimize exposure in aparent-child relationship, initially
there should only be a connection from the child to its parent, and not vice versa. This makes sure that
subjects can, in principle, act independent of their environment so that subjects may just be verified
once and then run anywhere with the same guaranteed outcome.

3. Minimal authority: A subject should be given the minimum possible authority to execute any task.
This can be ensured if a subject can only have direct access toits own data and a subjectA can only
connect to a subjectB if B permits this. Hence, a subjectA should not be able to introduce a subject
B to a subjectC withoutC ’s consent. The minimal authority condition is also known astheprinciple
of least privilege[6, 11] orprinciple of least authority[10].

Simplicity is also important for robustness because it is a universal fact that every additional primitive
increases the vulnerability of a paradigm. With respect to robustness, less is therefore more, though the
universality and efficiency may suffer if this principle is exaggerated.

3 Formal framework

In order to establish a formal framework satisfying all of our demands above, we need to address two
critical issues: primitives for a robust communication environment and primitives for a robust computational
environment. The latter issue includes the problem of robust code migration and resource management.

4

3.1 Communication

We need the following ingredients to establish a robust communication infrastructure.

• subjects

• identities

• relay points

• secure links

Let S denote the set of all subjects,I denote the set of all identities,R denote the set of all relay points, and
E ⊆ R × R denote the set of all secure links. Given a subjects, p(s) ∈ S denotes the parent ofs (i.e., the
subject that createds). For an identityi, s(i) ∈ R denotes the source ofi (i.e., the relay point associated
with i), d(i) ∈ R ∪ {∞} denotes the destination ofi (i.e., the relay pointi is meant for) andb(i) ∈ R

denotes the base ofi (which we will explain later in more detail). Ifd(i) = ∞, we calli a public identity
and otherwise aprivate identity. Given a relay pointr, h(r) ∈ S denotes the home ofr (i.e., the subject that
createdr) andb(r) ∈ R denotes the base ofr (to be explained later).

Subjects, identities and relay points can be created or deleted. In the following, bys.op(o1 | o2, o3, . . .)
we mean that subjects applies methodop to objecto1 using as parameters objectso2, o3, . . . First, we
consider the case that a subject is created or deleted.

• s.create(s′): S = S ∪ {s′}, p(s′) = s, R = R ∪ {∗
s
′ , ↓

s
′}, h(∗

s
′) = s′, b(∗

s
′) = ∗

s
′ , h(↓

s
′) = s′,

b(↓
s
′) = ∗s andE = E ∪ {(↓

s
′ , ∗s)}.

• s.delete(s′): if s = p(s′) thenS = S \ {s′}, R = R \ {r | h(r) = s′}, E = E \ {(r, r′) | h(r) =
s′ ∨ h(r′) = s′}, and execute delete(s′′) for all s′′ ∈ S with p(s′′) = s′.

Next, we consider the case that a relay point is created or deleted.

• s.create(r): R = R ∪ {r}, h(r) = s, b(r) = r, andE = E ∪ {(r, ∗s)}.

• s.create(r | i): if h(d(i)) = s thenR = R ∪ {r}, h(r) = s, b(r) = b(i), d(i) = ∞ andE =
E ∪ {(r, s(i))}.

• s.delete(r): R = R \ {r} andE = E \ {(r′, r′′) | r′ = r ∨ r′′ = r}.

Finally, we consider the case that an identity is created or deleted.

• s.create(i): I = I ∪ {i}, s(i) = ∗s, d(i) =∞ andb(i) = ∗s.

• s.create(i | r): if h(r) = s andr 6= ∗s thenI = I ∪ {i}, s(i) = r, d(i) = b(↓s) andb(i) = b(r).

• s.create(i | r, i′): if h(r) = s andr 6= ∗s thenI = I ∪ {i}, s(i) = r, d(i) = b(i′) andb(i) = b(r).

• s.delete(i): I = I \ {i}.

When looking carefully at these rules, the following important properties can be extracted:

• If a new subject is created, then initially there is only a link from that subject to its parent but not vice
versa. In this way, the create operation can be implemented in a non-blocking way. Also, the user
consent and control requirement is satisfied because if a subject creates a new child, itwantsa return
value from that child since otherwise the child has no effect, but the child itself may not want to grant
its parent permission to send it anything.

5

• A subject can only be deleted by the subject that created it. It cannot delete itself. In this way, parents
have full control over their children.

• Whenever a subject is deleted, also all of its descendants are deleted. This is important to satisfy the
user consent and control requirement since otherwise a parent may not be able to control the resources
of its descendants.

• Only relay points are associated with identities, and a relay point can only have exactly one outgoing
connection that is established when it is created. This is important to realize anonymity because
different subjects must be accessed via different relay points having different identities, and therefore
immediate associations with a single subject are not possible. Furthermore, a public identity does not
need to contain any physical location information. In this case, even the relay layer of a subject does
not know the physical location of a relay point when creatinga private identity for it, so anonymity
can be ensured in a very strong sense. Only the private identities have to store location information
because otherwise connections cannot be established.

• Public identities can only be used to create private identities but not to create links between relay
points. This ensures that an explicit permission must be given by a subject before another subject
can connect to it. The reason why public identities are nevertheless necessary is to solve the initial
contact problem because initially, subjects may not be connected, and so an offline process with public
identities is necessary to connect them.

• Private identities can be used to establish links between relay points but only from a relay point of the
subject it was meant for to the relay point representing its source. Since this source subject originally
created the identity, this means that links can only be created by permission of the destination of the
link. A private identity can only be used once to create a link.

• A private identity cannot be created for a∗s point. This makes sure that a subject can kill any connec-
tion to it at any time (by deleting either one of its relay points or a child subject).

• Relay points can establish linked lists. The destination ofany such list is the base of all of its relay
points. An identity created for any of the relay points in such a list is meant for the base of this list. In
this way, lists can be shortcut. This is important to allow direct connections between any two subjects
that may initially just be in the same connected component.

Due to the last two properties, we also call our approachintroduction by proxy, connection by base.
We notice that for a robustand secure communication environment, the communication links should

be cryptographically secured so that they cannot be forged by anyone. Also, space decoupling has to be
enforced, i.e., the subjects should not know the physical location of the other subjects they are communi-
cating with but only some cryptographically secured identities (whose physical location information is only
accessible to a protected relay layer) and handles to their own relay points.

3.2 Code migration

In order to allow the safe migration of subjects from one siteto another, we use the concept of clones. LetC

be the set of clones. For any clonec, let s(c) ∈ R be the source of the clone andd(c) ∈ R be the destination
of the clone. A clone is created and deleted by the following operations:

• s.create(c): C = C ∪ {c}, c = s, s(c) = ∗s andd(c) = b(↓s).

• s.create(c | i): C = C ∪ {c}, s(c) = ∗s andd(c) = b(i)

6

• s.create(s′ | c): if c ∈ C andh(d(c)) = s then executes.create(s′), sets′ = c andC = C \ {c}.

A clone c only containss itself, which means thatc only contains the current state of the variables and
methods ins as well as the requests that are currently queued ins, but none of the relay points or connections
established bys. Note that a clone can only be unwrapped once and only by the sphere it is meant for.

For safe cloning, clones should be cryptographically secured so that they cannot be altered on a user
level. It should only be possible to unwrap a clone by a protected relay layer within the site so that its code
and data cannot be inspected or altered by the user. This is important for digital rights management and
secure grid computing.

3.3 Resource management

Recall that the resources used by a subject should be under the control of its parent. We realize this with the
help of the following operations:

• s.freeze(s′): if s = p(s′) thens′ is frozen bys, which means that no requests will be executed fors′

and its descendants.

• s.wakeup(s′): if s = p(s′) thens′ is woken up bys, which means that now requests will again be
executed bys′ (given that no ancestor ofs gets frozen)

By default, a new subject is awake. The freeze and wakeup commands are very useful to help the platform
decide when to move a subject to a storage device and when to move it back to local memory for execution.

A subject may also control which of its relay points is currently active. This is realized by the following
operations:

• s.freeze(r): if s = h(r) thenr is frozen bys, which means that no requests will be processed (i.e.,
received and sent) byr.

• s.wakeup(r): if s = h(r) then r is woken up bys, which means that now requests will again be
processed byr.

By default, a new relay point is awake.

3.4 Further enhancements

Further enhancements of the subject-based paradigm are possible to widen the spectrum of applications it
can be used for. For example, whenever a new relay pointr is created withs.create(r), it is sometimes
desirable to specify a policy forr. Possible policies are thatr may only accept information up to a certain
rate,r may only allow relay paths to it of some bounded length, or only specific methods ins can be called
via r.

3.5 Message passing

Finally, we specify how to actually exchange information between the subjects. Messages can only be
passed along links inE and the message passing is done with the help of the “←” operator. Two variants of
this operator are possible:

• s.← m: this sends messagem to relay point∗s so that it will be executed bys. (This is useful fors to
stay alive or to produce a clone of itself that can wake up by itself when spawned by another subject.)

7

• s.r ← m for some relay pointr with h(r) = s: this sends a messagem to the local relay pointr
which will then move it forward until the message arrives at some relay point∗

s
′ where it will be

processed.

The← operator is anon-blocking, eventualsend operator that guarantees the following properties:

• FIFO ordering: all←-calls to the same relay point are executed in FIFO order, andmessages sent by
a relay pointr to some relay pointr′ arrive atr′ in the same order they were sent out byr (if they
arrive).

• At-most-once delivery: messages are delivered in an at mostonce fashion. (Notice that exactly-once
delivery cannot be guaranteed in a potentially unreliable network.)

Similar concepts have also been used in the E language (www.erights.org).

4 The subject-oriented programming framework

Now we are ready to describe our subject-oriented programming environment which is already available
as a simulation environment and used in the Network Algorithms course currently given at the Technical
University of Munich [13]. The basic ideas behind this framework date back to the actors model developed
by Carl Hewitt at the MIT in the area of artificial intelligence [9], at a time when distributed computing
was still in its infancy. Unfortunately, software and hardware issues at that time prevented his ideas from
becoming wide-spread in the distributed computing community. However, researchers in the programming
language area have continued working on and extending Hewitt’s ideas [1, 2, 3] which led, among other
results, to the E language (see www.erights.org or [10]). The E language is probably the most advanced
among these with respect to security as it uses a subject-based approach with cryptographically protected
links, but it violates the laws of robustness that we formulated in Section 2.3.

4.1 Layers of the framework

The subjects framework consists of three layers:

• Network layer: this is the lowest layer. It handles the exchange of messages between the sites.

• Relay layer: this handles the identity and relay management and the exchange of messages between
the subjects.

• Subjects layer: this is the layer for subject-oriented programs.

In the network layer, any given communication mechanism maybe used, such as TCP/IP, Ethernet, or
802.11. Its management is entirely an internal matter of therelay layer. Hence, the relay layer allows to hide
networking issues from the subjects so that subject-oriented programs can be written in a clean way. Thus,
it remains to specify the subjects layer, the relay layer, and the interface between them.

4.2 The subject layer

All computation and storage in the subjects layer is organized into subjects. A subject is an atomic thread
with its own, private resources that are only accessible to the subject itself. “Atomic thread” means that a
subject must be completely stored within a single site and that operations within a subject are executed in
a strictly sequential, non-preemptive way. A prerequisitefor this approach to work is that all elementary
operations must be strictly non-blocking so that a subject will never freeze in the middle of a computation.

8

A subject cannot access any of the resources outside of its private resources. The only way a subject can
interact with the outside world is by sending messages to other subjects. A subject is bound to the site and
the subject that created it.

4.3 The relay layer

All communication between the spheres is handled by the relay layer. The relay layer manages the relay
points as well as the identities of the relay points and the connections to other relay points. It also keeps
track of the parent-child relationships between the subjects and unwraps clones. A relay point is an atomic
object that is bound to the subject that created it. It has allproperties of a subject except that it is not
freely programmable but only supports the← operation. On the other hand, identities and clones are just
cryptographically protected objects, i.e., they do not actthemselves but are only used in certain actions.

4.4 Formal specification

There are four basic classes of objects:

• Identity : class for public and private identities

• Relay: class for relay points, which are needed to interconnect the subjects.

• Clone: class for clones, which are needed to migrate subjects safely from one site to another.

• Subject: base class for subjects.

Each of these basic classes offers a set of operations. If a subjects is executing operationop, we denote it
ass.op, and if we want to specify the type of a certain parameter, we give the type in italic.

The identity class offers the following operations:

• s.new Identity: creates a public identity of subjects.

• s.new Identity(Relayr): creates a private identity ofr for the parent ofs.

• s.new Identity(Relayr, Identity i): creates a private identity ofr for the base of identityi.

• s.deletei: this deletes Identityi

The relay class offers the following operations:

• s.new Relay: this creates a new relay point with a connection to s

• s.new Relay(i): this creates a new relay pointr with a connection to the relay point identified byi, if
i was meant fors.

• s.r← verb(args): ifr has been created bys, a request to call verb(args) is sent tor.

• s.wakeup(r): s wakes upr if r is a relay point ofs.

• s.freeze(r): s freezesr if r is a relay point ofs.

• s.idle(r): returns true ifr is idle (has no requests to process) and otherwise false.

• s.deleter: this deletes relay pointr.

The clone class offers the following operations:

9

• s.new Clone: this creates a clone ofs for the parent ofs.

• s.new Clone(Identity i): this creates a clone ofs for the base ofi.

• s.delete Clone: this deletes a clone.

The subject class offers the following variables and operations:

• s.root: a handle to relay point↓s which allowss to send requests to its parent.

• s.source: a positive number tellings the identity of the relay point that generated the request currently
executed bys.

• s.sink: a positive number tellings the identity of the relay point ins that forwarded the request
currently executed bys to s.

• s.new(UserSubject): spawns a new subjects′ of type UserSubject. A subject pointer is returned to
s allowing s to wake up, freeze, or kills′ but not to send requests tos′. By default, a new subject
is awake. If a subject is frozen, no more requests are processed by it, and if a subject is killed, the
subject and all of its descendants are removed instantly.

• s.new(Subject(Clonec)): spawns a new subject containing the clone inc if c is meant fors.

• s.delete(s′): this kills s′ if s′ is a child ofs.

• s. ← verb(args): a request to call verb(args) is created fors itself. This should be used whens is
created so thats can become active, and it is useful for periodic control purposes.

• s.wakeup(s′): s wakes ups′ if s′ is a child ofs.

• s.freeze(s′): s freezess′ if s′ is a child ofs.

• s.idle(): checks if there are still messages fors.

4.5 A simple example

In order to demonstrate our subjects framework, let us look at a simple example: We want to set up two
nodes, Ping and Pong, that send messages back and forth. Thiscan be done as shown in Figure 1. The
main() function starts the ping-pong process by creating the Pong object.

5 Robustness properties

At this point, the question may certainly arise whether the subjects framework can really protect a sys-
tem against denial-of-service attacks and identity theft.In this section, we will discuss how the subjects
framework might be implemented so that a protection can indeed be achieved.

5.1 Denial-of-service attacks

The problem with denial-of-service attacks is that it is difficult to defend against them at the destination
of the attack. Hence, it would be desirable to prevent them atthe source. Our subjects framework can
achieve this without changing the core of the Internet. Onlythe edge of the Internet, i.e., the place where
the Internet service providers (ISPs) interact with their clients, needs to be changed, which is possible since

10

Subject Ping{
num: integer
ponglink: Relay

Ping(){
num := 0
← Init()

}

Init() {
i: Identity

ponglink := new Relay
i := new Identity(ponglink)
root← Setup(i)
PingPong()

}

PingPong(){
if (num < 5) then

num := num + 1

root← PingPong()
}

}

Subject Pong{
pinglink: Relay

Pong(){
← Init()

}

Init() {
new(Ping)

}

Setup(i: Identity){
pinglink := new Relay(i)
deletei

}

PingPong(){
pinglink ← PingPong()

}
}

main(){
Subjectpong := new(Pong);
run(pong,40)

}

Figure 1: The Ping Pong example.

no standards are needed for this. Suppose that the relay points are managed by the ISP whereas all other
aspects are managed by the clients. Given that the ISPs are honest, a client would not be able to create relay
points at will and therefore would not be able to connect to any other client as it likes. An authorization
process through identities could be enforced by the ISPs so that a user A can only connect to a user B if
B explicitly allows that. Hence, unauthorized transmissions of messages can be prevented at the source.
Suppose, instead, that client A has a correctly authorized connection to client B and wants to use it now
for a denial-of-service attack. Then B can defend itself against it by simply killing the local relay point
through which A is connected to B. In this way, A’s authorization will be revoked and A will not be able
any more to send messages to B. Hence, as long as the honest users form a single connected component,
denial-of-service attacks can, in principle, be preventedwithout losing any of the honest users. Of course,
one still has to solve the problem of how to keep the honest users in a single connected component under
adversarial attacks, but fortunately, very simple strategies have just recently been proposed that can solve
this problem with a low overhead [4, 12].

5.2 Identity theft

Also identity theft can be prevented to a certain degree. Suppose that all the relay layer lets the subjects
know about their relay points are local handles, and whenever a request is processed by a subject, it only
learns about a one-way hash value of the identity of the source and sink of the request. Furthermore, given
a critical connection from A to B that needs to be protected, Bonly accepts a change of this connection in
an offline mode. Then we want to show that identity theft via online attacks are not possible.

For this, consider the situation that subject A has a connection to subject B, and this connection starts at

11

relay pointr in A and ends at relay pointr′ in B. Suppose there is another subject C that wants to take over
the identity of A, i.e., that wants to transmit messages to B so that B thinks they are from A (which it only
does if the source of the message indicatesr and the sink of the message indicatesr′). Further, suppose that
A and B are naive and deliver any information that C requests.Since A and B do not have access to the true
identities ofr andr′ but only their one-way hash values, C would not be able to recover the true identities.
C could still ask A to establish a connection tor or ask B to establish a connection tor′, but that would not
allow C to give B the impression that A is talking to B. Also, C cannot ask A to bend its connection fromr
to r′ over to a relay point in C because once the outgoing connection of a relay point has been set, it cannot
be changed any more. The only way A could establish a connection to C is to use a new relay point, but this
relay point has an identity that is different fromr, and therefore B would not accept messages from A via
that new relay point as coming from A. Thus, no online strategy is available for C to take over A’s identity.

6 Conclusions

In this paper we demonstrated that it is possible to design a paradigm for distributed computing that can
address all major demands for simplicity, efficiency and robustness. We hope that this paradigm will create
some interesting discussion that will ultimately lead to a new, much safer version of the Internet as it is today.
Also, we hope that our paradigm, or an appropriate enhancement of it, will serve as a base for fundamental
research on provably efficient and robust distributed algorithms and data structures in the future. The author
certainly welcomes any comments and suggestions.

7 Acknowledgements

I would like to thank Mark Miller for many helpful discussions and for introducing me to his E language.

References

[1] G. Agha.Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
Massachusetts, 1986.

[2] G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation.Journal of Functional
Programming, 7(1):1–69, 1997.

[3] G. Agha and T. Prasanna.Formal Methods for Distributed Processing - An Object Oriented Approach,
chapter 8, Actors: A model for reasoning about open distributed systems. Cambridge University Press,
2001.

[4] B. Awerbuch and C. Scheideler. How to spread peers in virtual space. Unpublished manuscript,
available on request, November 2005.

[5] K. Cameron. The laws of identity. http://www.identityblog.com/stories/2004/12/09/thelaws.html,
2004.

[6] P.J. Denning. Fault tolerant operating systems.ACM Computing Surveys, 8(4):359–389, 1976.

[7] D. Epp. The eight rules of security. http://silverstr.ufies.org/blog/archives/000468.html, 2003.

[8] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/subscribe. To
appear in ACM Computing Surveys, Microsoft Research, 2003.

12

[9] C. Hewitt, P. Bishop, and R. Stieger. A universal modularactor formalism for artificial intelligence. In
Proc. of the 1973 International Joint Conference on Artificial Intelligence, pages 235–246, 1973.

[10] M.S. Miller, C. Morningstar, and B. Frantz. Capability-based financial instruments.Financial Cryp-
tography 2000, 2000. See also http://www.erights.org/elib/capability/ode/.

[11] J.H. Saltzer and M.D. Schroeder. The protection of information in computer systems.Proceedings of
the IEEE, 63(9):1278–1308, 1975.

[12] C. Scheideler. How to spread adversarial nodes? Rotate! In Proc. of the 37th ACM Symp. on Theory
of Computing (STOC), pages 704–713, 2005.

[13] C. Scheideler. Network algorithms. See http://www14.in.tum.de/lehre/2005WS/na/index.html.en,
2005.

13

