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Abstract

Denial of service (DoS) attacks are arguably one of the mastbersome problems in the
Internet. This paper presents a distributed informatiaiesy calledChameleorwhich is robust
to DoS attacks on the nodes as well as the operations of ttensys particular, it allows nodes
to efficiently look up and insert data items at any time, desppowerful “past-insider adversary”
which has complete knowledge of the system up to some tinre faoind can use that knowledge
in order to block a constant fraction of the nodes and inaklp and insert requests to selected
data. This is achieved with a smart replication policy reggia polylogarithmic overhead only.
All requests in Chameleon can be processed in polylogaigttime and work at every node.

1 Introduction

It is widely believed that distributed denial of service @attacks are one of the biggest problems
in today’s open distributed systems, such as the InterngticRers use the fact that Internet servers
are typically accessible to anyone in order to overload tiagtim bogus requests from so-callbedt
nets which are large groups of machines that are under theiraofjw BKS05, WVB*"06]. Ex-
amples of such attacks include downloading large files [Ratfausing computationally expensive
operations [KKJBO05], or just overloading servers with juome popular information services like
Google and Akamai are under constant DoS attacks, and theaibodame System has been hit
several times by major DoS attacks during the last years Qzgw

The predominant approach to deal with the threat of DoSledtis the introduction of redundancy.
Information which is replicated on multiple machines is mlkely to remain accessible during a DoS
attack. However, storing and maintaining multiple copiesach data item can entail a large overhead
in storage and update costs. In order to preserve scajaltiila therefore vital that the burden on the
servers be minimized.

This paper presents a distributed information systemd&leameleorwhich is provably robust
against large-scale DoS attacks. This is even true if tlaeleat is a past insider with full knowledge

*Research supported by the DFG project “Algorithms for Saébilizing Overlay Networks”.
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of the system’s internals up to a certain time painfwhich may be unknown to the system). As has
been pointed out in [AS05], robustness to such attacks is@adifeature, as many security breaches
in corporate systems are caused by human error and neghigethach may temporarily expose the
system to the outside world) as well as past insiders (su¢braporary or fired employees). The
Chameleon system can process put and get requests effi@eatly time despite a massive ongoing
DoS attack, and even though the put and get requests werdeskley the adversary. The trick of
our system is that it employs a smart replication strateggsehappearance cannot be predicted by
the attacker (hence the system’s name) though the data ildvesefficiently located. In fact, in
Chameleon, it is sufficient to employ a logarithmic redur@jareven if we allow the adversary to
block a constant fraction of all servers.

1.1 Mode

In a distributed information system, data is distributecbagimultiple servers, simply callatbdes
in the following. We assume that we are given a name spa@nd each data itewhis identified by
its name in that space. All data items are of unit size (e.g.ame dealing with a block-level storage
system). To provide a basic lookup service, the followingragions have to be implemented:

e Put(): this inserts data iterdinto the system (if nothing has been stored under its nanwedjef
or updates it (if its name has already been used).

e Get(hamg: this returns the data itemhwith Name(/)=name or L if no such data item exists.

We assume that the set of nodes in the system is fixed and thaidds are honest and reliable
(since we are dealing with a server-based system). Howineeg is an adversary that has the power
to shut down (or block) up ten nodes at any time, for some constant- 0 that we would like

to be as large as possible without harming the functionalitthe system. In order to keep the
description of our problem at a reasonable level, we asshatdhe time proceeds in time steps that
are synchronized among the nodes. Note however that usiadgnchronizers, our algorithms also
work in asynchronous settings. All we need is a bounded tn&gssson time between two nodes. In
each time step, every node is able to send and receive a gafytfamic amount of information, and
as long as this bound is satisfied, any message sent out byrsmtee to some nodev will arrive at

w within the next time step (or be droppedifis blocked). In this way, a node can easily determine
whether another node is blocked by not receiving an ackrdiyelment of its message within two time
steps.

We allow the adversary to block any set of nodes and issuew@rgngl get requests, but the rate at
which it can do this is limited. For simplicity, we will ass@na batch-like mode in which the time is
partitioned into so-calleghasegthat should be as short as possible; in our €@deg” n) time steps
suffice). At the beginning of each phase, the adversarytsed@carbitrary, fixed set e, nodes that
will be blocked throughout that phase. It also selects attrarip set of put and get requests (including
multiple requests to the same data item or get requests t@xisting data items) with at most one
request per non-blocked node. The goal of the system isve s#irof these requests within the given
phase without overloading any node with data over time. Aggtiest for some data itediis served
correctly if a most recenversion ofd is returned and this most recent versiomrgque That is, a
version ofd is delivered that belongs to a put request in a most recergepfiacluding the current
phase), and between two phases with updatés alf get requests faf return the same version df
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This implies that if multiple put requests are issued forgame name in the same phase, then only
one of them will win, i.e., will determine the unique versithrat will be stored under that name.

A data itemd is said to have aedundancyof r if r times more storage (including any control
storage forl) is used ford than is needed when just storing the plainitem. A node iedalerloaded
if its storage load is by more than a constant factor largen the average load in the system.

Of course, if the adversary knows everything about the aysted the data items have a small
redundancy, then it is impossible for the system to serveegllests in a correct way. Hence, we
assume that the adversary ipast insider i.e., it only knows everything about the system up to
some phaseg, that may not be known to the system. Aftgrthe adversary cannot inspect nodes or
communication between the nodes anymore—it can only blodies and issue requests. The goal of
the system will be to ensure the following properties in ahgige (before or afteg, withoutknowing

to):

1) Scalability Every node spends at most polylogarithmic time (numbeoofmmunication rounds)
and work (number of messages) in order to serve all requestphase, and no node will get
overloaded over time.

2) RobustnessAll get requests for data that was inserted or last updatet ¢, are served cor-
rectly under any adversarial attack within our model.

Achieving these conditions is not an easy task as the systanot afford to continuously replace
all the data in it (recall that the system daest know ¢, and we have no bound on the number of
data items in the system). Also, no long-term informatiodirg techniques can be used (as the
adversary hatull knowledge of the system up to phagg Yet, there is a solution. The Chameleon
system we propose in this paper is the first system that caevachll of these goals. In fact, it
just needs a logarithmic redundancy (when using Reed-Smiarading, for example) and phases of
polylogarithmic length.

1.2 Related Work

Due to their importance, DoS attacks are a well-studied Iprole.g., [DMDRO05, MRO04] for an
overview). Unfortunately, it is often difficult to distinggh DoS traffic from legitimate traffic, which
renders many network-layer and transport-layer DoS ptemetools such as installing a box to fil-
ter out anomalies [Maz08], blacklisting particular IP agkles, using TCP SYN cookies [Ber08],
pushback [IB02], etc., problematic [WBKS05]. This obseima has led some researchers to pro-
pose means how legitimate clients can “speak up” and thudéssified [WBKS05, WVB 06], for
example.

In this paper, we do not seek to prevent DoS attacks, butrédhes on how to maintain a good
availability and performance during the attack. Our sysierbased on the distributed hash table
(DHT) paradigm (e.g., [BKR04, DR01, HJS03, RFH 01, SML"02]). In particular, we follow a
consistent hashingpproach [KLL"97] in order to store the data and employ tomtinuous-discrete
techniquegpresented in [NWO03] for communication between the servers.

DoS-resistant systems based on DHTs have already beeadgtun@@MWO01, KMR02, MSC 03].
For instance, the Secure Overlay Services approach [KMRE2§proxieson Chord to defend
against flooding DoS attacks. A Chord overlay is also usedhbyirtternet Indirection Infrastruc-
turei3 [SAZ"02] to achieve resilience to DoS attacks. Other DoS limianchitectures have been
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proposed in [OMRRO06, YWAOQ5]. Many of these systems are baseiaffic analysis or some indi-
rection approach.

Replication strategies have already been investigatedartontext offlash crowdproblems in
DHTSs. Important literature in the systems community inelsiCoopNet [PS02], Backslash [SMB02]
or PROOFS [SRSO02], and there is also theoretical work [NW®Rjwever, these works only con-
sider scenarios where many requests are targeted to thedstenéem, but not to many different
itemsat the same locatianTechniques originally proposed for CRCW PRAMs [MV84] allone
to overcome these limitations [AS06], although only for lqgdion layer attacks (i.e., the adversary
selects the put and get requests but does not block nodegpabbS attacks.

This paper builds upon the archival system by Awerbuch arteifleler [ASO5]. The authors
consider the same past-insider DoS attack as we do in thisrplpt the strategies there can only
handle get requests, which limits their approach to arttaiad information retrieval systems like
Google or Akamai. Instead, our system can also handle puests while an attack is going on.
Being able to handle arbitrary combinations of put and gguiests requires a significant extension
of [AS05] which consists of a complex mix of topology and datanagement techniques as well as
proper routing strategies, as can be seen from the quitéhigigscription of our system in the rest
of this paper.

1.3 Our Contributions

To the best of our knowledge, this is the first work to presatistibuted information system that can
process any set of put and get requests in a correct and kcalabner even when the system is under
a past-insider attack. This is achieved with a novel putrélgm and the interplay of two distributed
hash tables, a temporary and a permanent one. In partithikapaper shows the following result.

Theorem 1.1. Chameleon requires only a logarithmic redundancy so that set of put and get
requests with at most one per non-blocked node can be pedt@ssa scalable and robust manner,
w.h.p., for any past-insider adversary within our model.

Throughout the papewith high probability or w.h.p, means with probability at leagt— 1/n°
for a constant that can be made arbitrarily large. A logarithmic redungamegjuires Reed-Solomon
codes. If coding strategies are not allowed, the redundahoyr system i€ (log” n). The runtime
needed to process all put and get requests in a phasgds’ n).

Notice that we ar@otproposing a peer-to-peer system for robust storage mareagem is fixed
and the servers are assumed to be honest and reliable. Thesyvafford to assume in Chameleon
that all the servers know each other as these days even sagaoasily store millions of IP addresses
in their main memory. Our main concern is to store the datasten a scalable way. Designing
scalable and dynamic topologies of potentially untrustes shat can withstand massive DoS attacks
appears to be very challenging (if not impossible) and isfteffuture research.

2 TheChameleon System

For simplicity, we will assume that the total number of nqdesis a power of two, and that the
nodes are numbered frofnto n — 1. The size of the name univergeis defined asn, wherem is
polynomially bounded im. The data management of the Chameleon system relies osttwes the
permanenp-store and the temporaristore The two stores can be regarded as extensions of DHTSs.
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While the t-store is a dynamic DHT that constantly refrestepology as well as the positions of
its data items, the p-store is a static DHT, in which the pms# of the data items are fixed unless they
are updated. The t-store can afford to replace all of its itiaas in each phase as it only hold$n)
many, while the p-store may hold an arbitrary number of dat@s. On a high level, a phase of the
Chameleon system proceeds as follows:

1. Build a new t-store from scratch and transfer all data ftbenold t-store to the new t-store (if
possible). As we will see, the t-store is based on a logardfdagree network, and there will
never be too much data in the t-store, w.h.p., so that thgsisteot too expensive.

2. Process all put requests in the t-store.

3. Process all get requests in the t-store, and if a get reqaasot be served there (because no
information is available for the given name), process itia p-store.

4. Try to transfer all data items in the t-store to the p-stémey data item that cannot be stored in
the p-store (due to blocked, congested or overloaded nadies) in the t-store.

In the following, we start with a description of the p-stordahe t-store, which is followed by a
detailed description of each of the stages above. Whenexyaaw “for a fixed and sufficiently large
constantr > y”, we mean a constantthat can be any number at legstand the larger the constant,
the better is the exponentin our high probability bounds of the forrh — 1/n7. Sometimesy
may be large because we did not try to optimize constantsudraoalysis, we will assume that our
hash functions are like truly random functions, Biflog »)-universal hash functions suffice for our
temporary hash functions so that they can be efficientlyedissated.

2.1 Thep-store

The p-store is similar to the archival system by Awerbuch Sctieideler [AS05], with some ex-
tensions to be able to handle put requests. In the p-storedties are completely interconnected.
Like in consistent hashing, nodes and data items are magppditts in the[0, 1)-interval. For
eachi € {0,...,n — 1}, node: is associated with the poirifn andresponsiblefor the interval
[i/n, (i + 1)/n), i.e., it stores all data items that are mapped to a poinsiinterval. Since: is a
power of two, for any point: € [0, 1) with binary representation = >_,., ;/2‘, we only need the
firstlogn bitszy, . .., 21,4, in Order to determine the responsible node. Hence, w..ogassume
that all pointsr considered below only udeg n bits.

The mapping of the data items|@ 1) is based o = ©(logm) hash functiong,, ..., h. : U —
[0,1). This set of hash functions is fixed and hence also known bgdkeinsider. To be useful for our
system, the hash functions have to fulfill certain expangroperties. In order to select suitable points
for the data items, the p-store organizes the nodes inttslétleat are consecutively numbered from O
to log n. For each data itend, the lowest level = 0 gives fixed storage locatiors (d), ..., h.(d) for
d of which O(logn) are picked at random to store copiesiofThese locations are called thots of
d. For larger levels, the same number of copies is stored,rbitcaeasing randomness is introduced
in the storage locations. Thus, for larger levels, seagchgcomes more expensive as the entropy of
the location increases. However, the probability that theeesary manages to block all copies of a
data item in some level declines.

Concretely, we seek to store replicas along so-cgilkedix pathsin the p-store Let pre(z,y)
denote thdongestcommon prefix ofz andy, that is,pre(z,y) = i if and only if z; = y;, 20 =
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Yo, ..., 1 = y; andx, g # y; 1. We definely(z) = {z € {0,1}°¢™ | pre(x,z) > logn — (} to be
the set of all points € [0,1) (using the encoding = >_ .., z;/2") such that at most of the least
significant bits ofr andz are different. A sequenc® = (y,, ye—1, - . ., yo) Of points such thag, = =
and for each > 0, y; € Ty(x), is called gprefix pathto = of length/¢. The set of all possible prefix
paths toz of length ¢ is denoted byR,(z). A random prefix patho z is a pathR that is chosen
uniformly and independently at random froRy(x). Given and € N, let7, = {T,(z) | x € [0,1)}.
Certainly,|7,| = n/2‘ and each member @ contain2‘ points.

Our goal will be to store up-to-date copies of each data ifeaong©(log n) randomly chosen
prefix paths of lengtiogn to points inhy(d), ..., h.(d) (where the randomness may have some
bias due to blocked and congested nodes). In addition tpwlaswill also make sure that at most
O(logn) outdated copies of are still around in each level. If this is true, then the rethncy of
our storage strategy is limited t(log” n), and if we employ Reed-Solomon coding in each level,
the redundancy can be reduced2fogn). Each rooth;(d) keeps track of the positions of all the
(current and outdated) copies @fstored along prefix paths th;(d). Thus, in order to correctly
store the copies of a data itefnwe have to have access®log n) roots, which may not always be
possible due to an past-insider attack. This is why we alged @et-store. More details about how to
select prefix paths for the copies will be given when we exptllae put strategy for the p-store.

2.2 Thet-store

In order to temporarily store data that cannot be storedarptistore due to a DoS attack, we use the
t-store. The topology of the t-store is a de Bruijn-like netkvwith logarithmic node degree that is
constructed from scratch in every phase. De Bruijn grapbsiseful here as they have a logarithmic
diameter and a high expansion (e.g., [Lei92]). In order tanfthis network, we partition th§), 1)-
space into intervals of sizélogn/n for some fixed and sufficiently large constant 2. For any

i > 0, position: - 6 logn/n is responsible for the intervéd - dlogn/n, (i + 1) - dlogn/n). Atthe
beginning of the current phase, each non-blocked nadehe system chooses uniformly at random
one positionz from the set{0, d logn/n,20logn/n,3dlogn/n, ...}. Thus,dlogn many nodes will
share the same position on expectation @rélog n) many w.h.p.

Each node that selected positioriries to establish connections to all other nodes that tslec
the positionse (the cluster connectiosz_ := =z — dlogn/n andz, = x + dlogn/n (thecycle
connectiony and|x/2 510 n/n @aNA[ (14-2) /2] 510 n/» (thede Bruijn connectioswhere|a |, means
roundinga to the closest integer multiple éffrom below. This results in the union of a redundant
cycle with a redundant form of the de Bruijn graph. In fact,emhviewing the cluster of nodes
assigned to the same positioras a single supernode, then the supernodes form the uniocyofea
and a de Bruijn graph. Once the t-store has been establi$teedpdes at position O select a random
hash functiom. : U — [0, 1) (by leader election) and broadcast that to all nodes in gtere. The
hash function determines the locations of the data itemBe@mew t-store. More precisely, for any
data itemd in the old t-store, we now want to stoden the cluster responsible fér(d) (i.e., whose
interval contains:(d)) in the new t-store. In order to do this, each cluster of nddes the old
t-store will initiate appropriate insert requests for itd data items. The details are explained in the
upcoming Section 2.3.



2.3 Stage 1: Building a new t-store

We first describe how the nodes can find the nodes they are seghpmconnect to in the new t-store.
This is done with the so-callgdin protocol Afterwards, we show how to transfer the data in the old
t-store to the new t-store, which is done with theert protocol

The Join Protocol

In order to learn about its neighbors and build all necedsl#akyg between the nodes, a nodthat se-
lected positionr issues the following five request&in(z), join(x_), join(z), join([x/2]s10gn/m)
andjoin(| (1 4 x)/2]s10gn/m). With thejoin(z) operation, for any positiom, a node tries to find all
other nodes that are executifigin(z) for the samer. The join(z) operation is executed in four
substages that are synchronized among the nodes.

Preprocessing Stage.

Every non-blocked nodechecks the state af; log n random nodes iff;(v) for every0 < i < logn,

for some fixed and sufficiently large constant > 3. If more than half of the nodes ifi;(v) is
blocked,v declaresT;(v) asblockedand otherwisainblocked Since the checking can be done in
parallel in our model, this only needs two communicationnasl Afterwards, each non-blocked
nodev chooses a séf, of o, logn random nodes iy’ for some fixed and sufficiently large constant
ay > 3. The edge setl = {{v,w} |v € V A w € U,} can be shown to form an expander graph
of logarithmic degree among the non-blocked nodes w.hiyeifghat the adversary can only block a
small constant fraction of the nodes). This graph can thewskd to agree on a setdf= O(logn)
random hash functiong, ..., g~ : [0,1) — [0, 1) via randomized leader election (each node guesses
a random bit string and the one with lowest bit string winsheTprocess is folklore and can be
easily shown to require just(logn) communication rounds w.h.p. until all non-blocked nodes ar
informed. Thus, we do not go into details here.

Contraction Stage.

Initially, all join requests are active. Eaghin(z) request issued by some nodeelects a random
nodevéi) € Togn(gi(x)) (i.e., out of all nodes in the system) for dlle {1,...,¢'} and aims at
reaching the node responsible fpfx) within at mostj logn hops, for some fixed and sufficiently
large constant > 6. Let the nodes that are visited in these hops be cazlﬁ%d)g), ... For hopt, v
checks ifvt@1 is blocked or not. Ifut(i)1 is blocked and;t(i)l was sampled out df;(g;(x)), thenv!” is
chosen at random out @f;(g;(x)), otherwisev” is chosen at random out B%_1(g:(x)). If the level

j = 0is reached, or a nodg” is reached that declard$(g;(z)) as blocked, ot = Flogn, thenv
stops going forward for indexand deactivates indexat level;. At the end of the contraction stage,
nodev declaresjoin(z) to belong to level where/ is the smallest level that contains at le2sV' 3
active indices (i.e., indices that were not deactivatetaatearlier).

The contraction stage obviously needs at m@8bg n) time. The following lemma also states
a logarithmic congestion bound, implying that the conimacstage is correctly executed (i.e., all
requests sent to non-blocked nodes can be handled withiodmonunication rounds so that blocked

nodes are correctly identified).



Lemma 2.1. The preprocessing and contraction stages require at i@gktg ») time, and each node
is involved in at mosD (log n) many message transmissions per time step, w.h.p.

Proof. Since the time bound is obvious, it remains to prove the cstimebound. We just focus here
on the congestion of the contraction stage. Recall that radh is the origin of 5 join requests that
are based on some pointchosen independently at random ouf@f1). Consider some fixed node
v and ajoin(zr) request that is currently at levglfor some fixed; (that may or may not depend on
other requests). Given thatis chosen at random, the probability thatn(x) probes node is equal
to

Pr[v € Tj(z)] - Pr[v chosen v € T;(x)] = (27 /n) - 1/2/ = 1/n

as both probabilities are independent of the probabilfbeshe requests issued by other nodes, and
we have to sum up the congestion ougyn + 1 different levels, the Chernoff bounds imply that the
congestion at any time i9(logn) w.h.p. O

Moreover, we can show the following two lemmas, which willghas in the analysis of the next
stage.

Lemma 2.2. For everyjoin(z) request belonging to levéland every active indexe {1,...,c'} in
that level, 7, (g;(x)) contains at leas2” /3 non-blocked nodes for evety> ¢ w.h.p.

Proof. Consider anyjoin(x) request belonging to some leveand leti € {1, ..., ¢’} be any active
index in that level. Suppose that there is aBety; (x)) for some?’ > ¢ that contains less tha /3
non-blocked nodes. In the preprocessing stage, each meadd (g;(x)) samplesy; logn nodes
out of T»(g;(z)). Each sample has a probability of more tt248 to be a blocked node. Hence, the
Chernoff bounds imply that at least half of the samples vélblbocked nodes, w.h.p., sawill declare
Tw(gi(x)) as being blocked. Hence, during the contraction stage indexst have been deactivated
when passing (g;(z)), which contradicts our assumption thas still active at level. O

Lemma 2.3. If ¢ < 1/72, then for every € {0,...,logn} there are at mos6en/2° points whose
join requests belong to levélw.h.p.

Proof. We start with some notation. L&t be the set of all possible points agdbe the collection
of hash functiongy, ..., g~. We know that/P| < n. Given a setS of points and & < N, we
call F C S x {1,...,c} ak-bundleof S if every x € S has exactlyt many tuples(d, i) in F'.
In other words, &-bundle guarantees that each point is representediwdifferent indices. Given
g1, .., 9~ and a level, letI'r,(S) be the union of the sets involved in these indices ffGmi.e.,
U're(S) = Uwginer Te(gi(z)). Given a0 < o < 1, we callH a (k, 0)-expandeif for any ¢ < logn,
any S C P with |S| < on/2¢ and anyk-bundleF of S, it holds that|T'r,(s)| > 2¢S|. Similar to
Lemma 1 in [AS05], the following claim can be shown.

Claim 2.4. If the hash functiongy, . .., g~ are chosen uniformly and independently at random, it
holds thatG is a(¢'/3, o)-expander w.h.p., for any > 6logn and0 < o < 1/24.

Let D, be the set of points with join requests that become inactive at le¢elue to too many
inactive indices. For any and anyl’ C 7,, we callT" blockedif the attacker blocks more than a
third of its nodes with its DoS attack. Consider any paintWe callz blockedat level/ if at least
/3 of its ¢’ setsTy(g;(x)) are blocked, and we call weakly blockedn level ¢ if there are blocked
setsTy, (gi,(x)), Tr, (giy (), - ., 0, (gi, (x)) With ¢4, ... ¢, > Candk = /3 andiy, . .., i being
pairwise different. LetV B, denote the set of weakly blocked data items at |év&le start with the
following claim.



Claim 2.5. Whenever goin(x) request deactivates some indei level ¢ > 1, thenT,(g;(x)) is
blocked, w.h.p.

Proof. Consider any fixed: € [0,1) andi € {1,...,c'}. First, suppose thatis deactivated at some
level j because some nod¢” is visited in that level that declarés(z) as being blocked. In this

case, more than half of the log n random nodes sampled b)(/) in T;(x) must have been blocked
in the preprocessing stage, wherés a (sufficiently large) constant. If, howevét,(z) contains at
most2’ /3 many blocked nodes, then the probability for each samplingitta blocked node is at
most1/3, so the expected number of blocked nodes noticed is atmadsg /3. Since the samples
are made independently at random, it follows from the Chigbwunds that the probability that more
thana, logn/2 blocked nodes are sampled is polynomially smaltif(where the exponent depends

on ay). Hence, if some nodet(l) is visited in that level that declarés(z) as being blocked, then
T;(x) must contain at leag¥ /3 blocked nodes w.h.p.

It remains to prove the lemma for the case that deactivated because= jlogn, the end of
the contraction stage has been reached. Lemma 2.2 imphedf tinere is a level with at least
(2/3)2¢ blocked nodes ifT;(x), indexi cannot pass it as it will be deactivated there w.h.p. Suppose
that there is no level so thatT,(z) contains at least2/3)2¢ blocked nodes. Then the sequence of

nodesul”, v\”, v{” ... will need at most 3 probes on expectation to lower the level bifhis can
be modeled as a sequence of binary random variab{es(;, X, ... with X; being 1 if and only
if the level is lowered by 1. SincBr[X; = 1] > 1/3 independently of the other random variables,
the Chernoff bounds (for positively correlated randomalales) can be used to prove that it takes at
most 3 logn many hops for a sufficiently large constahtntil level 0 is reached w.h.p. (given that
no non-blocked node is reached that declares its level ag Idocked, which is covered by the case
at the beginning of the proof). In fact, if the constanh the 3 log n bound for the hops is at least 6,
then the sequence will also end at level 0 in the contractagesw.h.p.

Combining all cases, the claim follows. O

Suppose that goin(z) request becomes inactive at levelue to at least’' /3 deactivated indices.
Then it follows from Claim 2.5 that is weakly blocked, w.h.p. For weakly blocked points, the
following claim holds.

Claim 2.6. If s blocked nodes can cause a sebafeakly blocked points at levé] thens blocked
nodes can also cause a setdilocked points at levél.

Proof. Consider point: to be weakly blocked, and &%, (g;, (x)), T4,(gi,(x)), - .., 10, (i, (x)) be the
sets witnessing that with = ¢/3. Any route through a séfy (g, (z)) with ¢ > ¢ contains exactly
2¢'~! setsT € 7,, and each of these sefshas a size of T, (gy(2))|/2"~*. Thus, when distributing
the nodes causing (g, (x)) to be blocked evenly among &ll € 7, in T (gs(x)). We can turn any
set ofb weakly blocked points into blocked points at level O

If the adversary can block at most nodes, then at moskn /2° of the n/2¢ sets in7, can be
blocked, which covers at mo3tn nodes. Suppose the attacker can block aSset points at level
(. Then there is @' /3-bundleF for S. According to Claim 2.4, it holds that'z,(S)| > 2°|S| if
|S| < on/2t. Since the largest possible sizelof,(5) is 3en, it follows that|S| < 3en/2¢, which
is less tharon/2¢ (so that Claim 2.4 implies an upper bound |8H) if 3¢ < 1/24, ore < 1/72,
Hence, if the adversary can block at mestnodes, then it can cause at mdst/2¢ blocked points
z in level . According to Claim 2.6, this implies théltl’ B,| < 6en /2. Since Claim 2.5 implies that
|Dy| < |W By|, w.h.p., the lemma follows. O

Interestingly, the lemma even holds if the adversary kngws. ., g..
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Expansion Stage.

The expansion stage starts withlog n + 1 dissemination rounds numbered from Gdog n, where

v > 9is a fixed and sufficiently large constant. In round 0, every.(x) request from some node
that belongs to levelsends a message, =, /') to v, log n random nodes iff/ (g;(x)) for every index

i that was still active at level, where?’ > ¢ is the smallest value so th@t, (g;(x))| > 72 logn and

o > 96 is a fixed and sufficiently large constant. In this and the othends, all messages that have
been sent to some nodeare recorded by, and multiple messages of the same form are merged into
one. In each round > 1, every nodev sends every message x, /) recorded by it withy; ¢ > r to

a random node iff;(w). If there is a level for which w receives more thamsclog n many messages
for some fixed and sufficiently large constagt> 66 or a message of the forfd, co), thenw deletes
all of them and replaces them g, o), which means that there are too many messages fordénel
the setl,(w). Let us call a sel’ € 7, non-congestei there are at mostsclog n different messages
(v, z, ¢) sent toT" in round O (which implies that a messageoc) will not be created in it). We can
show the following result.

Lemma 2.7. For any non-congested séte 7, and any messade, «, /) sent to it, at least /3 of its
non-blocked nodes stofe, x, /) at the end of the dissemination rounds, w.h.p.

Proof. First of all, it follows from Lemma 2.2 that for any nodevith join(z) request that belongs to
level ¢ it holds for every active indekthatT;(h;(z)) contains at least’/3 non-blocked nodes w.h.p.
Consider some fixed = T,(h;(z)) with such a property. Since sends out messages of the form
(v, 2, ) to 2 logn random nodes ifl", on expectation, at leaét,/3) log n non-blocked nodes will
be informed, and also at leagt,/6) logn w.h.p. if v is sufficiently large (which follows from the
Chernoff bounds). Hence, the mességer, ¢) will not get lost initially.

Suppose thal’ is non-congested, i.e., it receives at moslog n different messages in round 0.
In this case, a node in it will never create the mesgégeo) which would delete other messages of
the form (v, z,¢) in T. So we can focus on the spreading of a message, /) in 7. Suppose that
k non-blocked nodes i are currently informed about, z, £), wherek < m/3 andm > 2¢/3is
the number of non-blocked nodesih Then the probability that an uninformed node= T" will be
informed in the next round is equal kg2¢. Hence, the expected number of uninformed non-blocked
nodes that will be informed is

(m — k)k/2" > [(2/3)m/2k > (2/9)k

and at least /9 w.h.p. (due to the Chernoff bounds)+f > 96 is a sufficiently large constant.
Standard calculations yield thiat- 9¢ rounds are sufficient untfll +1/9)* > m/3, so at least a third
of the non-blocked nodes will knoyw, z, £) at the end of the dissemination rounds w.h.p. O

At the end of the expansion stage, every nadeends each nodethat sent a messade, x, ()
to it in round 0 a message containing all nodesith entries(u, x, ¢') in w for any ¢’. Finally, every
nodev with a join(x) request will tell all nodes reported to it in this way that it has senjein(z)
request as well.

As v has sent outv, z, /) to 7, log n many nodes in round O for each active indeand for any
such index, a third of the nodes T (g;(z)) is non-blocked w.h.p. (Lemma 2.2), we can show the
following lemma.

Lemma 2.8. For any two non-congested séfsc 7, and7’ € 7, with T" C T it holds for any
two messageg, z, () and (v', x, ¢') with x € T that v will be notified about/’ in the second last
communication round w.h.p.
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Proof. Consider any two non-congested séts 7, and7” € 7, with 7' C 7" and any two messages
(v,z,0) and (v', z, ') with x € T. We know from Lemma 2.7 that at least3 of the non-blocked
nodes inI” will know (v', x, ¢’) at the end of the broadcasting rounds w.h.p., which imptgsther
with Lemma 2.2 that at leas/9 of the nodes i will know (v, z, ¢') at the end of the broadcasting
rounds w.h.p. The probability that a specific non-blockedenm 7" belongs to these nodes is at least
1/9. On the other hand, we know from the proof of Lemma 2.7 tharafiund O at leasty,/6) logn
non-blocked nodes i will know (v, z, ¢) w.h.p. The probability that none of them knows, x, ¢')

is at most(1 — 1/9)2/9)le™ which is polynomially small im for 4, > 96. Hencep will learn about

v" in the second last communication round w.h.p., which firsshe proof. O

Also, the following lemma holds, which is based on Lemma 2.3.

Lemma 2.9. If the current phase is beyorng, then all setslI” € 7, used in the expansion stage are
non-congested w.h.p.

Proof. Consider some fixed levél We define a set’ € 7, to benon-blockedf for every ¢ > /, at
most1/3 of the nodes in th&” € 7,, with T C 7" are blocked. The following claim holds. Its proof
follows from the insights of Claim 2.6.

Claim 2.10. Given that the adversary can block at mestnodes, there are at leaskn/2° non-
blocked set§” € 7,.

From Lemma 2.3 we know that there are at m@st/2‘ pointsz whose join requests belong
to level /. Let P be the set of these points. Let the indices of the correspgndin requests be
partitioned in any way into active and inactive indices st tit most’/3 indices of any join request
are declared inactive. Since the hash functi@ns. ., g are chosen uniformly and independently at
random, it follows that the active indices distribute amangroup of set§" € 7, that includes all
non-blocked sets iff;, according to Claim 2.5. Since there are at I&ast/2° non-blocked sets iff,
and each of them would be successfully passed w.h.p., avislthat each of them has a probability
of at most2¢/(3en) of being selected by an active index. The other set§ ia 7, have a lower
probability as it is not guaranteed any more that an actidexnwould pasg’ w.h.p. Hence, the
expected congestion due to active indices inany 7, is at most

(6en/2%) - (26logn) - ¢ - 2°/(3en) = 4dclogn

where the first term is the number of points, the second thamrmam number of join requests per
point, the third the maximum number of active indices andlésé our probability bound. Further-
more, since the probability distribution over the setgjirapplies independently for each index, the
Chernoff bounds imply that the congestion in &y 7, is at mostdclog n w.h.p. Hence, if;3 > 66,
then the lemma follows. O

We need the fact that the hash functigns. .., g~ are chosen at random and that they are not
known to the adversary. Let us now recall what we know so faat wLbe a node with goin(z)
request belonging to the lowest level among all other nediesth join requests ta:. We know that
any request belonging to levéhas at leastc’ /3 active indices irf. Hencep andv’ share a common
active index, so Lemma 2.8 implies thatwill learn abouty’ in the second last communication round
w.h.p. Thus, after the last communication round, every nodéh join(z) knows every other node
v" with join(x), which implies the following lemma.

Lemma 2.11. At the end of the expansion stage, every nodéth a join(x) request knows all other
nodes with gjoin(z) request, w.h.p.
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Obviously, the runtime of the expansion stag®idogn), and given that every node will send
out at mostO(clogn) messages to random nodes for each léyelvery node will receive at most
O(clogn) messages for each level.h.p., which yields the following result.

Lemma 2.12. The expansion stage requires at m@3togn) time, and each node is involved in at
mostO (log” n) many message transmissions per time step, w.h.p.

Construction Stage.

Finally, the network of the t-store is built from the membaiormation the nodes obtained from their
join requests. Since the nodes already have all the conitgdtiformation they need for that, this
does not involve any communication.

The I nsert Protocol

Subsequently, the data items which have been stored in thestbre are transferred to the new t-
store. In order to make sure that this does not cause too madty we will enforce the following
rule:

t-Store Load Rule: At any time, every cluster stores at mgstlog n data items that belong to the
t-store, for some fixed and sufficiently large consiant 24. If that cap is exceeded, data is deleted,
with a priority on the older data, until the cap is reached.

Besides this rule, we need the following lemma, which useddht that the clusters are formed
by random node sets that are not known by the adversary ifstav@ady a past insider at that point.

Lemma 2.13. If the past phase was beyoty] then any adversarial attack within our model will only
block a constant fraction of the nodes in each cluster of tde-store, w.h.p.

Proof. The lemma directly follows from the fact that the adversapgsinot know the membership
of the clusters in the old t-store, and since each clustesistsof a random subset of the nodes of
(sufficiently large) sizeéd(log n), the Chernoff bounds imply that the adversary will only mge¢o
block at most half of the nodes in each cluster with a DoS kttacat most:/3 nodes, w.h.p. [

With the help of this lemma we can use the following stratdeyr. every cluster in the old t-store
with currently non-blocked nodes, one of its nodes (whicly ha determined by some random-
ized local leader election that can be implemented withimmO (logn) w.h.p.) callsinsert(d)
for each of the data items stored in it. The insert requests are sent along the generBrdijn

paths. More precisely, a request starting at paint= (z1,...,z,) and ending at poiny =
(y1,-- -, Yogn) is Sent along the cluster nodes responsible for the peintogn, 1, - - Tiogn-1),
(Yiogn—1s Yiogny s T1s - - - Tlogn—2)s - - - » (Y2, - - -, Yiogn, 1), y. These cluster nodes are indeed connected

due to the de Bruijn rule of selecting edges. As (1) the hashbtfon for the new t-store is chosen at
random, (2) there is at most oiesert(d) request for each data itedpand (3) each node is the start-
ing point of at most)(log n) many data items (w.h.p.), it follows from standard Chertaffinds that
the congestion caused by the routing probler® {®g* n) in each cluster w.h.p. Hence, all requests
reaching a cluster in a time unit can be passed on in the magtunit, which implies the following
result.

Lemma 2.14. All insert requests can be served by the t-store in at mysbgn) communication
rounds, w.h.p. Moreover, every node (as well as clusterhenriew t-store has to store at most
O(logn) data items, w.h.p.
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2.4 Stage 2: Processing all put requestsin thet-store

Once the new t-store has been built, the new put request&iwedsin the t-store, with at most one
put request per node (to enforce our model). For each of the$eé) requests, we execute atit(d)
request that is routed along the same path as described &vabe insert requests. However, the
critical issue remains that there might be many t-put reigfesthe same name. To solve the problem,
we use a simple filtering mechanism during the routing: Wkienevo or more t-put requests for
the same name meet in a node, then only one of them survivetharmthers are deleted. If a t-
put(d) request arrives at its destination cluster and this clugteady stores an old data itethwith
name(d") = name(d), thend' is replaced byi.

In order to bound the congestion for this routing problenhwidmbining, it suffices to determine
the number of distinct data itenaswhose tput(d) requests pass through the same cluster. This can
easily be shown to b€ (log® n) w.h.p. using standard Chernoff bounds, as long as the aatyaises
not knowh (i.e., the current phase is beyofadl To prevent too much congestion in case the adversary
knowsh, the following simple rule suffices:

t-Store Routing Rule: If more thanp, log? n many t-store messages pass a node at any time, for
some fixed and sufficiently large constant> 24, then any set of messages is deleted to get their
number down tgs log® n.

Since de Bruijn routing is used, each cluster receives rmgessiiom only two other clusters,
which implies together with the congestion bound for theincs data items that each cluster sends
and receives at mosl(log” n) messages within any time step. This implies the followingriea.

Lemma 2.15. If at most one t-put request is issued per node, all t-put estgican be served in at
mostO (log n) communication rounds, w.h.p. Moreover, only one updatedch name is successfully
stored and every cluster in the new t-store has to store at M@sg n) data items for these requests,
w.h.p.

When combining Lemmas 2.14 and 2.15, it follows that eveugtdr in the new t-store has to
store at mosO (logn) data items, w.h.p., which sums up to a totalliff:) data items in the t-store.
However, since the O-notation ignores constants, we alsd tteshow that there is an absolute bound
of ¢ - n for some constant that is not violated over time after time poifgt We will address this in
Stage 4.

2.5 Stage 3: Processing all get requests

The processing of the get requests proceeds in two furthgest First, the get requests are processed
in the t-store using theget protocol (with at most one t-get request per node), and alteppiests
that cannot be served in the t-store are processed in the@isting thep-getprotocol.

The t-Get Protocol

For eachyet(name) request, a ret(name) request is executed in the t-store. These requests are sent
along the same routes as the insert and t-put requests abieein the t-put protocol, we have to
deal with the problem that multiple t-get requests existtf@ same name. This can be handled by
using combining and splitting. More precisely, wheneveo towv more t-get requests meet at some
node during the routing, then only one of them is forwardedlthie others are left in that node. Once
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the t-get requests have reached their destinations, tluéyup the requested data item, if it exists
in the t-store, and send it back to their sources along thes gsaths they came from. Whenever a
returning t-get request hits a node that stores t-get régjteegthe same name (which were left behind
in the forward phase), the answer of that request is stortteinther requests and all of them are sent
backwards to their destinations.

As the forward phase of the t-get protocol is equivalent ®ttput protocol and the backward
phase is just the reverse of the forward phase, the folloveimgna follows from Lemma 2.15.

Lemma 2.16. Given that we are beyond timgand every non-blocked node issues at most one t-get
request, every cluster has to serve at mogdbg n) t-get requests and all t-get requests can be served
in at mostO(log n) time, w.h.p.

The p-Get Protocol

For each destination cluster of a t-get request that careree dhat t-get request, a p-get request
is issued for that name in the p-store. Thus, we have at masipeget request for each name.
Distributing these p-get requests evenly among the nodeaalf cluster results in a constant number
of p-get requests w.h.p. (see Lemma 2.16). Once they haveall served, the destinations of the
corresponding t-get requests will receive the answerstwaie then delivered back to the sources
of the t-get requests in the same way as in the t-get protdtehce, it remains to describe how to
execute the p-get protocol in the p-store.

The p-get protocol is similar to the lookup protocol in [A$0%ith two differences. (1) In
Chameleon, a get request will proceed to the next level icdinéraction stage only if at least/6 of
its indices are still active (in [AS05] the limit i3/4 indices) and (2) in our system, we do not have
to deal with multiple p-get requests to the same name. Pb)r(aé well as the fact that a node may
initiate a constant number of p-get requests and not jugteaarebe handled with a slight adaptation
of the analysis in [AS05] and point (2) just simplifies thauaiion studied [ASO05].

Lemma2.17. Given that we are beyond timgand every non-blocked node issues at most a constant
number of p-get requests, all p-get requests are serveectyrin at most)(log” n) communication
rounds, w.h.p.

Note that the p-get protocol is the only protocol whose metiexceed$)(logn), otherwise a
phase would just nee@(log n) time. However, a runtime aP (log® n) seems only necessary if the
system is under adversarial attack. It is easy to modifydbkup protocol in [AS05] to obtain a p-get
protocol so that as long as there is no attack, its runtinigisg n) w.h.p. (see also [AS06]).

2.6 Stage4: Transferring the dataitemsfrom thet-storetothe p-store

Finally, we try to transfer all items stored in thestore (i.e., the old and new ones) to tlpestore
using the p-put protocol; if the transfer of a certain dagmitl is successful, that is, if sufficiently
many replicas ofl can be stored correctly in thgstore the corresponding data item in thatore

is removed. Otherwise, the item is left in thetore From the t-Store Load Rule and Lemma 2.15
it follows that if every cluster evenly distributes the ptpequests among its nodes, then each node
only has to issue a constant number of p-put requests.
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The p-Put Protocol

The p-put protocol consists of three substages: a presingestage, a contraction stage and a storage
stage. Recall the preprocessing stage of the join protacehich every non-blocked nodechecks

the state 0B (log n) random nodes iff;(v) for every0 < i < logn. If more than half of the nodes in
T;(v) is blocked,v declaresl;(v) as blocked and otherwise unblocked. We will use that infdiona

in the contraction stage as well.

Preprocessing Stage.

Every non-blocked node picks a4 logn random nodes from the entire node set for a fixed and
sufficiently large constani,. If at most half of them are blocked (which is the case w.h.pemv

€ < 1/3) thenv computes the average data lohgd of the non-blocked nodes in the p-store. The
following lemma can be shown for this.

Lemma 2.18. Let L be the average load in the system agl, be the maximum load at a node. If
Limax < 2ML, e < 1/(8)\) anday > 24\ is sufficiently large, then for every nodel, € [L/2,2L]
w.h.p.

Proof. Let L andL,,,, be defined as in the lemma. First, we prove an upper bourd offi ¢ < 1/3,
then no matter whicle-fraction of the nodes is shut down by the adversary, theageeload of the
non-blocked nodeqd,,, is at most

(n-L)/(1—en < (3/2)L.

Consider any node and letL, ..., L, be random variables denoting the loads of the alogn
random nodes picked by, Given that previously. ..., < 2\L, L; < 2\L for everyi, andE[L;] <
(3/2)L. Hence, forl, = 3* | L;itholds thatE[L] < (3k/2) L. Furthermore, the Chernoff-Hoeffding
bounds imply that, for any > 1,

Pr[L > (14 0)E[L]] < e~ OB[L]/(3Lmax)

Thus,L < 2L w.h.p. if the constant is sufficiently large.

Next, we prove a lower bound oh,. If L., < 2\AL ande < 1/(8)), then no matter which
e-fraction of the nodes is shut down by the adversary, theageeload of the non-blocked nodds,
is at least

(n-L—en-2\L)/(1—¢e)n > (3/4)L.

HenceE[L;] > (3/4)L for everyi, which implies tha[L] > (3k/4)L. Furthermore, the Chernoff-
Hoeffding bounds imply that, forany < § < 1,

Pr[L < (1 -9)E[L]] < o~ 0°EIL]/(2Lmax)
Thus,L > L/2 w.h.p. if the constant is sufficiently large. 0

If v's own data load., satisfiesL, > ) - L for some fixed and sufficiently large constant 4
(or more than half of the sampled nodes are blocked), theonisiders itself to be overloaded and
will behave in the rest of the p-put protocol as if it is blodkehen contacted by other requests.iAs
will not get any new data in this case, Lemma 2.18 guarantestshere will never be a node (w.h.p.)
whose load exceeds\ L, which satisfies our scalability requirement in Section Also, the number
of overloaded nodes is not too high as stated by the follovgangna.
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Lemma 2.19. If ¢ < 1/(8)), the number of nodes that consider themselves to be ovedoiacdat
most2n /A w.h.p.

It immediately follows from Lemma 2.18 and the fact that thean be at mostn/A nodes with
a load of more thartA/2)L. Thus, if A is sufficiently large, we can just treat all of them as being
blocked for the further analysis.

Contraction Stage.

Each pput(d) request issued by some nodeselects a random nodéf) € Tiogn(hi(d)) (i.e., out
of all nodes in the system) for alle {1, ..., ¢} and aims at reaching the node responsiblef¢d)
within at mostg log n hops, for some fixed and sufficiently large constant 6. This is done in the
same way as in the join protocol. If the leyek 0 is reached, or a nodéi) is reached that declares
T;(hi(z)) as blocked, or a nodel” is reached that received more thaf p-put requests with the
same index during the current time step, or= 3 logn, thenwv stops going forward and deactivates
indexi at levelj, whereg' is a sufficiently large constant. At the end of the contracstage, node
v declaresjoin(x) to belong to level, wherel is the smallest level that contains at le2st3 active
indices.

The contraction stage obviously needs at niadbg ) time. Moreover, we can show the follow-
ing crucial result.

Lemma 2.20. If e < 1/144 and 3’ > 1/¢, then at mosgen of the data in the t-store does not belong
to level0 w.h.p.

Proof. We will apply concepts similar to the proof of Lemma 2.3. REettaat U is the name universe
andm = |U|. Let’H be the collection of hash functions, . . ., h.. Given a setS C U of data names
and ak € N,we callF' C S x {1,...,c} ak-bundleof S if everyd € S has exactlyc many tuples
(d,i) in F'. In other words, &-bundle guarantees that each data item is represented: witferent
indices. Giverhy, .. ., h. and a distancé letI'r,(.S) be the union of the sets involved in these indices
from 7y, i.e., Ure(S) = Uier Te(hi(d)). Given a0 < o < 1, we call’H a (k, o)-expanderf for
any/ < logn, anyS C U with |S| < on/2%, and anyk-bundleF of S, it holds thatT'r ,(s)| > 2¢|5|.
Similar to Lemma 1 in [AS05], the following claim can be shawn

Claim 2.21. If the hash function#,, ..., h. are chosen uniformly and independently at random, it
holds thatH is a(¢/6, o)-expander w.h.p., for any> 12log m and0 < o < 1/36.

Our goal is to upper bound the number of p-put requests wloatotireach leved. This analysis
follows the same lines as analyzing the lookup protocol i8QA].

Given a sefl”’ € 7, for some level, we callT blockedif the adversary blocks more than a fourth
of the nodes during the DoS attack. Analogouglys calledcongestedf more than a fourth of the
nodes inT" have a congestion of at least.

Let d be a data item. We call blockedat level/ if at leastc/6 of its ¢ setsT}(h;(d)) are blocked,
and we calll weakly blockedt levell if there are blocked sefs, (h;, (d)), T4, (hi,(d)), . . ., Ty, (hi, (d))
with ¢4, ... 0, > {, k = ¢/6, andiy, ..., i, being pairwise different. Similarly, we call congested
at roundr if at leastc/6 of its ¢ setsT,(h;(d)) are congested, and we callveakly congestedt level
¢ if there are congested s€ty (h;, (d)), Ty, (hi,(d)), ..., Ty, (hi (d)) With ¢4, ..., ¢, > €, k = ¢/6,
andiq, ..., 7, being pairwise different.

Recall Claim 2.6. Furthermore, we make the following obaton, whose proof follows along
the same lines as the proof of Claim 2.5.
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Claim 2.22. Whenever a request for some data itérdeactivates some indéxat level/, the set
T,(hi(d)) is either blocked or congested, w.h.p.

We assume that a request for some data itebecomes inactive at levéldue to at least/3
deactivated indices. By the pigeon hole principle, theeearleast:/6 indices for which the first
condition in Lemma 2.22 is true, or there are at ledstindices for which the second condition is
true. Together with Lemma 2.22 this implies tlidas either weakly blocked or weakly congested.

If the adversary can block up tm nodes, at mosten /2¢ of then/2¢ sets in7, can be blocked,
which covers at mosten nodes. Suppose the attacker can block é's#tdata items at level. Then
there is ac/6-bundle F' for S, i.e., we can identify:/6 indices to blocked or congested sets. Due
to Claim 2.21, if|S| < on/2° then|T'r,(S)| > 2¢|S|. AsTx.(S) is of size at mostien, we have
that|S| < 4en/2", which is less thamn/2¢ (so that Claim 2.21 implies an upper bound |6t if
4e < 1/36, ore < 1/144. Hence, if the adversary can block updo nodes, this entails at most
4en/2° blocked data items at levél Together with Lemma 2.6 this implies that if the adversay ¢
block at mostn nodes, then there are at mdst /2¢ weakly blocked data items at level

Now, we observe that a weakly blocked data item at lIéuslalso weakly blocked in each level
¢ with ¢/ < ¢. The same holds for weakly congested data items. Hence, veetbaletermine the
number of weakly blocked data items in rouficand the number of weakly congested data items
in round0, respectively. As seen above, the number of weakly blockeldtlhe number of weakly
congested data items cannot be larger than that is, we have at mostn weakly blocked or
congested data items in total. From this observation, wextyr obtain the lemma. O

Since all p-put requests that made it to level 0 will be seimdtie p-store, the t-store is left with
at mostn data items after the phase and at nibstata items during the next phase, w.h.p., which
makes sure that none of them is removed in the next phasee(ddhstantg, andp, in our t-store
rules are sufficiently large).

Permanent Storage Stage.

Each data iteml whose p-put request does not manage to reach level O williremahe t-store.
Otherwise, select; log n random indices among the active indicesiaind deactivate all others for
some fixed and sufficiently large constant Let: be an index that remains active.

We want to prevent the accumulation of obsolete data itenmgiirsystem. In order to achieve
this, we maintain in the node responsible figfd) — d’s “root node” — information about the nodes
storing a copy ofl w.r.t. index:. In order to suppomipdatesf a data itemf in our system, we use this
information to remove all out-of-date copiesdiv.r.t. i. Clearly, since some nodes may be blocked,
this may not always be possible. If it is not possible, rafees to these out-of-date copies are left
in the roots so that they may be deleted at some later p-puestglf more thany, log n out-of-date
copies remain for some fixed and sufficiently large constatwhich would only happen w.h.p. if the
system is under an insider attack, as we will see), thisronly updated in the rodt;(d). Otherwise,
we select a random non-blocked node in edgth;(d)) with ¢ € {0, ... ,logn} (which requires at
mostO(logn) attempts w.h.p.), store an up-to-date copy/afh these nodes and store references to
these nodes ih;(d).

Lemma 2.23. Given that att, the total number of (obsolete and up-to-date) copies of datad in

the p-store iD(log” n) (which is enforced by the permanent storage stage), the auoflzopies of
d remainsO(log” n) w.h.p. at any time aftef,.
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Proof. Consider some fixed data itednindex: and levell. Certainly, every node € T,(h;(d)) will
only store one copy of at a time because whenever it receives a newer copy, the ab@ewill be
deleted. Let the random variahlé be one if and only ifv stores a copy ofl for index: and level

¢ at the beginning of phase and letp, = Pr[X; = 1]. Suppose that is blocked at some phage
in which d is updated. Themp,,; = p; as nothing changes for. Otherwise, suppose thatis non-
blocked. Ifi is not active for the prut(d) request, them,,; = p, as well. Otherwisep,,; < 3/2°
asTy(hi(d)) contains at leas?’/3 non-blocked nodes w.h.p. and a random set bfgn of these
nodes is picked for the up-to-date copiesiofHence, given that the number of obsolete copies of
d wasO(log® n) at time pointt,, the expected number of obsolete copied oémains atD(log” n).
This also holds w.h.p. as the probabilities are negativetyaetated for Chernoff bounds of negatively
correlated random variables). O

When combining all of our results, we obtain Theorem 1.1.

3 Conclusion

This paper has shown for the first time how to build an infoiorasystem that is robust to an im-
portant class of DoS attacks where a past-insider advecsarpring down a constant fraction of the
servers. Our solution is efficient in the sense that inforomais only replicated by a polylogarith-
mic factor, and put and get requests require polylogarithnark and time. We believe that these
properties renders our solution interesting both from ardtcal and a practical point of view.

However, several important questions remain. In futureassh, we want to investigate whether
the runtime of a phase can be reduced to a logarithmic bouriy {oe p-get protocol prevents that)
and whether our algorithms can be simplified to somethingensompact and easier to implement.
Also we would like to explore whether our concepts be adafidsbunded-degree peer-to-peer sys-
tems with potentially unreliable peers. Finally, althougé believe that our replication factors are
optimal, we still do not have a lower bound.
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