
T U M
I N S T I T U T F Ü R I N F O R M A T I K

A DoS-Resilient Information System for
Dynamic Data Management

Matthias Baumgart, Christian Scheideler, Stefan Schmid

ABCDEFGHIJKLMNO
TUM-I0906

März 09

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-03-I0906-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2009

Druck: Institut für Informatik der

Technischen Universität München

A DoS-Resilient Information System for
Dynamic Data Management∗

Matthias Baumgart, Christian Scheideler, Stefan Schmid

Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching, Germany
{baumgart,scheideler,schmiste}@in.tum.de

Abstract

Denial of service (DoS) attacks are arguably one of the most cumbersome problems in the
Internet. This paper presents a distributed information system calledChameleonwhich is robust
to DoS attacks on the nodes as well as the operations of the system. In particular, it allows nodes
to efficiently look up and insert data items at any time, despite a powerful “past-insider adversary”
which has complete knowledge of the system up to some time point t0 and can use that knowledge
in order to block a constant fraction of the nodes and inject lookup and insert requests to selected
data. This is achieved with a smart replication policy requiring a polylogarithmic overhead only.
All requests in Chameleon can be processed in polylogarithmic time and work at every node.

1 Introduction

It is widely believed that distributed denial of service (DoS) attacks are one of the biggest problems
in today’s open distributed systems, such as the Internet. Attackers use the fact that Internet servers
are typically accessible to anyone in order to overload themwith bogus requests from so-calledbot
nets, which are large groups of machines that are under their control [WBKS05, WVB+06]. Ex-
amples of such attacks include downloading large files [Rat05], causing computationally expensive
operations [KKJB05], or just overloading servers with junk. Some popular information services like
Google and Akamai are under constant DoS attacks, and the Domain Name System has been hit
several times by major DoS attacks during the last years [Law07].

The predominant approach to deal with the threat of DoS-attacks is the introduction of redundancy.
Information which is replicated on multiple machines is more likely to remain accessible during a DoS
attack. However, storing and maintaining multiple copies of each data item can entail a large overhead
in storage and update costs. In order to preserve scalability, it is therefore vital that the burden on the
servers be minimized.

This paper presents a distributed information system called Chameleonwhich is provably robust
against large-scale DoS attacks. This is even true if the attacker is a past insider with full knowledge

∗Research supported by the DFG project “Algorithms for Self-Stabilizing Overlay Networks”.

1

of the system’s internals up to a certain time pointt0 (which may be unknown to the system). As has
been pointed out in [AS05], robustness to such attacks is a crucial feature, as many security breaches
in corporate systems are caused by human error and negligence (which may temporarily expose the
system to the outside world) as well as past insiders (such astemporary or fired employees). The
Chameleon system can process put and get requests efficiently at any time despite a massive ongoing
DoS attack, and even though the put and get requests were selected by the adversary. The trick of
our system is that it employs a smart replication strategy whose appearance cannot be predicted by
the attacker (hence the system’s name) though the data can still be efficiently located. In fact, in
Chameleon, it is sufficient to employ a logarithmic redundancy, even if we allow the adversary to
block a constant fraction of all servers.

1.1 Model

In a distributed information system, data is distributed among multiple servers, simply callednodes
in the following. We assume that we are given a name spaceU , and each data itemd is identified by
its name in that space. All data items are of unit size (e.g., we are dealing with a block-level storage
system). To provide a basic lookup service, the following operations have to be implemented:

• Put(d): this inserts data itemd into the system (if nothing has been stored under its name before)
or updates it (if its name has already been used).

• Get(name): this returns the data itemd with Name(d)=name, or⊥ if no such data item exists.

We assume that the set of nodes in the system is fixed and that all nodes are honest and reliable
(since we are dealing with a server-based system). However,there is an adversary that has the power
to shut down (or block) up toǫn nodes at any time, for some constantǫ > 0 that we would like
to be as large as possible without harming the functionalityof the system. In order to keep the
description of our problem at a reasonable level, we assume that the time proceeds in time steps that
are synchronized among the nodes. Note however that using local synchronizers, our algorithms also
work in asynchronous settings. All we need is a bounded transmission time between two nodes. In
each time step, every node is able to send and receive a polylogarithmic amount of information, and
as long as this bound is satisfied, any message sent out by somenodev to some nodew will arrive at
w within the next time step (or be dropped ifw is blocked). In this way, a node can easily determine
whether another node is blocked by not receiving an acknowledgement of its message within two time
steps.

We allow the adversary to block any set of nodes and issue any put and get requests, but the rate at
which it can do this is limited. For simplicity, we will assume a batch-like mode in which the time is
partitioned into so-calledphases(that should be as short as possible; in our caseO(log2 n) time steps
suffice). At the beginning of each phase, the adversary selects an arbitrary, fixed set ofǫn nodes that
will be blocked throughout that phase. It also selects an arbitrary set of put and get requests (including
multiple requests to the same data item or get requests to non-existing data items) with at most one
request per non-blocked node. The goal of the system is to serve all of these requests within the given
phase without overloading any node with data over time. A getrequest for some data itemd is served
correctly if a most recentversion ofd is returned and this most recent version isunique. That is, a
version ofd is delivered that belongs to a put request in a most recent phase (including the current
phase), and between two phases with updates ofd, all get requests ford return the same version ofd.

2

This implies that if multiple put requests are issued for thesame name in the same phase, then only
one of them will win, i.e., will determine the unique versionthat will be stored under that name.

A data itemd is said to have aredundancyof r if r times more storage (including any control
storage ford) is used ford than is needed when just storing the plain item. A node is calledoverloaded
if its storage load is by more than a constant factor larger than the average load in the system.

Of course, if the adversary knows everything about the system and the data items have a small
redundancy, then it is impossible for the system to serve allrequests in a correct way. Hence, we
assume that the adversary is apast insider, i.e., it only knows everything about the system up to
some phaset0 that may not be known to the system. Aftert0, the adversary cannot inspect nodes or
communication between the nodes anymore—it can only block nodes and issue requests. The goal of
the system will be to ensure the following properties in any phase (before or aftert0, withoutknowing
t0):

1) Scalability: Every node spends at most polylogarithmic time (number of communication rounds)
and work (number of messages) in order to serve all requests in a phase, and no node will get
overloaded over time.

2) Robustness: All get requests for data that was inserted or last updatedafter t0 are served cor-
rectly under any adversarial attack within our model.

Achieving these conditions is not an easy task as the system cannot afford to continuously replace
all the data in it (recall that the system doesnot know t0 and we have no bound on the number of
data items in the system). Also, no long-term information hiding techniques can be used (as the
adversary hasfull knowledge of the system up to phaset0). Yet, there is a solution. The Chameleon
system we propose in this paper is the first system that can achieve all of these goals. In fact, it
just needs a logarithmic redundancy (when using Reed-Solomon coding, for example) and phases of
polylogarithmic length.

1.2 Related Work

Due to their importance, DoS attacks are a well-studied problem (e.g., [DMDR05, MR04] for an
overview). Unfortunately, it is often difficult to distinguish DoS traffic from legitimate traffic, which
renders many network-layer and transport-layer DoS prevention tools such as installing a box to fil-
ter out anomalies [Maz08], blacklisting particular IP addresses, using TCP SYN cookies [Ber08],
pushback [IB02], etc., problematic [WBKS05]. This observation has led some researchers to pro-
pose means how legitimate clients can “speak up” and thus be identified [WBKS05, WVB+06], for
example.

In this paper, we do not seek to prevent DoS attacks, but rather focus on how to maintain a good
availability and performance during the attack. Our systemis based on the distributed hash table
(DHT) paradigm (e.g., [BKR+04, DR01, HJS+03, RFH+01, SML+02]). In particular, we follow a
consistent hashingapproach [KLL+97] in order to store the data and employ thecontinuous-discrete
techniquespresented in [NW03] for communication between the servers.

DoS-resistant systems based on DHTs have already been studied in [KMW01, KMR02, MSC+03].
For instance, the Secure Overlay Services approach [KMR02]usesproxieson Chord to defend
against flooding DoS attacks. A Chord overlay is also used by the Internet Indirection Infrastruc-
ture i3 [SAZ+02] to achieve resilience to DoS attacks. Other DoS limitingarchitectures have been

3

proposed in [OMRR06, YWA05]. Many of these systems are basedon traffic analysis or some indi-
rection approach.

Replication strategies have already been investigated in the context offlash crowdproblems in
DHTs. Important literature in the systems community includes CoopNet [PS02], Backslash [SMB02]
or PROOFS [SRS02], and there is also theoretical work [NW03]. However, these works only con-
sider scenarios where many requests are targeted to the samedata item, but not to many different
itemsat the same location. Techniques originally proposed for CRCW PRAMs [MV84] allow one
to overcome these limitations [AS06], although only for application layer attacks (i.e., the adversary
selects the put and get requests but does not block nodes) andnot DoS attacks.

This paper builds upon the archival system by Awerbuch and Scheideler [AS05]. The authors
consider the same past-insider DoS attack as we do in this paper, but the strategies there can only
handle get requests, which limits their approach to archival and information retrieval systems like
Google or Akamai. Instead, our system can also handle put requests while an attack is going on.
Being able to handle arbitrary combinations of put and get requests requires a significant extension
of [AS05] which consists of a complex mix of topology and datamanagement techniques as well as
proper routing strategies, as can be seen from the quite lengthy description of our system in the rest
of this paper.

1.3 Our Contributions

To the best of our knowledge, this is the first work to present adistributed information system that can
process any set of put and get requests in a correct and scalable manner even when the system is under
a past-insider attack. This is achieved with a novel put algorithm and the interplay of two distributed
hash tables, a temporary and a permanent one. In particular,this paper shows the following result.

Theorem 1.1. Chameleon requires only a logarithmic redundancy so that any set of put and get
requests with at most one per non-blocked node can be processed in a scalable and robust manner,
w.h.p., for any past-insider adversary within our model.

Throughout the paper,with high probability, or w.h.p., means with probability at least1 − 1/nc

for a constantc that can be made arbitrarily large. A logarithmic redundancy requires Reed-Solomon
codes. If coding strategies are not allowed, the redundancyof our system isO(log2 n). The runtime
needed to process all put and get requests in a phase isO(log2 n).

Notice that we arenotproposing a peer-to-peer system for robust storage management asn is fixed
and the servers are assumed to be honest and reliable. Thus, we can afford to assume in Chameleon
that all the servers know each other as these days even laptops can easily store millions of IP addresses
in their main memory. Our main concern is to store the data items in a scalable way. Designing
scalable and dynamic topologies of potentially untrusted sites that can withstand massive DoS attacks
appears to be very challenging (if not impossible) and is left for future research.

2 The Chameleon System

For simplicity, we will assume that the total number of nodes, n, is a power of two, and that the
nodes are numbered from0 to n − 1. The size of the name universeU is defined asm, wherem is
polynomially bounded inn. The data management of the Chameleon system relies on twostores: the
permanentp-store, and the temporaryt-store. The two stores can be regarded as extensions of DHTs.

4

While the t-store is a dynamic DHT that constantly refreshesits topology as well as the positions of
its data items, the p-store is a static DHT, in which the positions of the data items are fixed unless they
are updated. The t-store can afford to replace all of its dataitems in each phase as it only holdsO(n)
many, while the p-store may hold an arbitrary number of data items. On a high level, a phase of the
Chameleon system proceeds as follows:

1. Build a new t-store from scratch and transfer all data fromthe old t-store to the new t-store (if
possible). As we will see, the t-store is based on a logarithmic-degree network, and there will
never be too much data in the t-store, w.h.p., so that this step is not too expensive.

2. Process all put requests in the t-store.

3. Process all get requests in the t-store, and if a get request cannot be served there (because no
information is available for the given name), process it in the p-store.

4. Try to transfer all data items in the t-store to the p-store. Any data item that cannot be stored in
the p-store (due to blocked, congested or overloaded nodes)is left in the t-store.

In the following, we start with a description of the p-store and the t-store, which is followed by a
detailed description of each of the stages above. Whenever we say “for a fixed and sufficiently large
constantx ≥ y”, we mean a constantx that can be any number at leasty, and the larger the constant,
the better is the exponentγ in our high probability bounds of the form1 − 1/nγ. Sometimes,y
may be large because we did not try to optimize constants. In our analysis, we will assume that our
hash functions are like truly random functions, butO(log n)-universal hash functions suffice for our
temporary hash functions so that they can be efficiently disseminated.

2.1 The p-store

The p-store is similar to the archival system by Awerbuch andScheideler [AS05], with some ex-
tensions to be able to handle put requests. In the p-store thenodes are completely interconnected.
Like in consistent hashing, nodes and data items are mapped to points in the[0, 1)-interval. For
eachi ∈ {0, . . . , n − 1}, nodei is associated with the pointi/n and responsiblefor the interval
[i/n, (i + 1)/n), i.e., it stores all data items that are mapped to a point in its interval. Sincen is a
power of two, for any pointx ∈ [0, 1) with binary representationx =

∑
i≥1 xi/2i, we only need the

first log n bits x1, . . . , xlog n in order to determine the responsible node. Hence, w.l.o.g., we assume
that all pointsx considered below only uselog n bits.

The mapping of the data items to[0, 1) is based onc = Θ(log m) hash functionsh1, ..., hc : U →
[0, 1). This set of hash functions is fixed and hence also known by thepast insider. To be useful for our
system, the hash functions have to fulfill certain expansionproperties. In order to select suitable points
for the data items, the p-store organizes the nodes into levels i that are consecutively numbered from 0
to log n. For each data itemd, the lowest leveli = 0 gives fixed storage locationsh1(d), ..., hc(d) for
d of whichO(log n) are picked at random to store copies ofd. These locations are called therootsof
d. For larger levels, the same number of copies is stored, but an increasing randomness is introduced
in the storage locations. Thus, for larger levels, searching becomes more expensive as the entropy of
the location increases. However, the probability that the adversary manages to block all copies of a
data item in some level declines.

Concretely, we seek to store replicas along so-calledprefix pathsin the p-store. Let pre(x, y)
denote thelongestcommon prefix ofx andy, that is,pre(x, y) = i if and only if x1 = y1, x2 =

5

y2, . . . , xi = yi andxi+1 6= yi+1. We defineTℓ(x) = {z ∈ {0, 1}log n | pre(x, z) ≥ log n − ℓ} to be
the set of all pointsz ∈ [0, 1) (using the encodingz =

∑
i≥1 zi/2i) such that at mostℓ of the least

significant bits ofx andz are different. A sequenceR = (yℓ, yℓ−1, . . . , y0) of points such thaty0 = x
and for eachi > 0, yi ∈ Tℓ(x), is called aprefix pathto x of lengthℓ. The set of all possible prefix
paths tox of lengthℓ is denoted byRℓ(x). A random prefix pathto x is a pathR that is chosen
uniformly and independently at random fromRℓ(x). Given anℓ ∈ N, let Tℓ = {Tℓ(x) | x ∈ [0, 1)}.
Certainly,|Tℓ| = n/2ℓ and each member ofTℓ contains2ℓ points.

Our goal will be to store up-to-date copies of each data itemd alongΘ(log n) randomly chosen
prefix paths of lengthlog n to points inh1(d), . . . , hc(d) (where the randomness may have some
bias due to blocked and congested nodes). In addition to this, we will also make sure that at most
O(log n) outdated copies ofd are still around in each level. If this is true, then the redundancy of
our storage strategy is limited toO(log2 n), and if we employ Reed-Solomon coding in each level,
the redundancy can be reduced toO(log n). Each roothi(d) keeps track of the positions of all the
(current and outdated) copies ofd stored along prefix paths tohi(d). Thus, in order to correctly
store the copies of a data itemd, we have to have access toΩ(log n) roots, which may not always be
possible due to an past-insider attack. This is why we also need a t-store. More details about how to
select prefix paths for the copies will be given when we explain the put strategy for the p-store.

2.2 The t-store

In order to temporarily store data that cannot be stored in the p-store due to a DoS attack, we use the
t-store. The topology of the t-store is a de Bruijn-like network with logarithmic node degree that is
constructed from scratch in every phase. De Bruijn graphs are useful here as they have a logarithmic
diameter and a high expansion (e.g., [Lei92]). In order to form this network, we partition the[0, 1)-
space into intervals of sizeδ log n/n for some fixed and sufficiently large constantδ ≥ 2. For any
i ≥ 0, positioni · δ log n/n is responsible for the interval[i · δ log n/n, (i + 1) · δ log n/n). At the
beginning of the current phase, each non-blocked nodev in the system chooses uniformly at random
one positionx from the set{0, δ log n/n, 2δ log n/n, 3δ log n/n, ...}. Thus,δ log n many nodes will
share the same position on expectation andΘ(δ log n) many w.h.p.

Each node that selected positionx tries to establish connections to all other nodes that selected
the positionsx (the cluster connections), x− := x − δ log n/n andx+ := x + δ log n/n (the cycle
connections), and⌊x/2⌋δ log n/n and⌊(1+x)/2⌋δ log n/n (thede Bruijn connections), where⌊a⌋b means
roundinga to the closest integer multiple ofb from below. This results in the union of a redundant
cycle with a redundant form of the de Bruijn graph. In fact, when viewing the cluster of nodes
assigned to the same positionx as a single supernode, then the supernodes form the union of acycle
and a de Bruijn graph. Once the t-store has been established,the nodes at position 0 select a random
hash functionh : U → [0, 1) (by leader election) and broadcast that to all nodes in the t-store. The
hash function determines the locations of the data items in the new t-store. More precisely, for any
data itemd in the old t-store, we now want to stored in the cluster responsible forh(d) (i.e., whose
interval containsh(d)) in the new t-store. In order to do this, each cluster of nodesfrom the old
t-store will initiate appropriate insert requests for its old data items. The details are explained in the
upcoming Section 2.3.

6

2.3 Stage 1: Building a new t-store

We first describe how the nodes can find the nodes they are supposed to connect to in the new t-store.
This is done with the so-calledjoin protocol. Afterwards, we show how to transfer the data in the old
t-store to the new t-store, which is done with theinsert protocol.

The Join Protocol

In order to learn about its neighbors and build all necessarylinks between the nodes, a nodev that se-
lected positionx issues the following five requests:join(x), join(x−), join(x+), join(⌊x/2⌋δ log n/n)
andjoin(⌊(1 + x)/2⌋δ log n/n). With thejoin(x) operation, for any positionx, a node tries to find all
other nodes that are executingjoin(x) for the samex. The join(x) operation is executed in four
substages that are synchronized among the nodes.

Preprocessing Stage.

Every non-blocked nodev checks the state ofα1 log n random nodes inTi(v) for every0 ≤ i ≤ log n,
for some fixed and sufficiently large constantα1 ≥ 3. If more than half of the nodes inTi(v) is
blocked,v declaresTi(v) asblockedand otherwiseunblocked. Since the checking can be done in
parallel in our model, this only needs two communication rounds. Afterwards, each non-blocked
nodev chooses a setUv of α2 log n random nodes inV for some fixed and sufficiently large constant
α2 ≥ 3. The edge setE = {{v, w} | v ∈ V ∧ w ∈ Uv} can be shown to form an expander graph
of logarithmic degree among the non-blocked nodes w.h.p. (given that the adversary can only block a
small constant fraction of the nodes). This graph can then beused to agree on a set ofc′ = Θ(log n)
random hash functionsg1, . . . , gc′ : [0, 1) → [0, 1) via randomized leader election (each node guesses
a random bit string and the one with lowest bit string wins). The process is folklore and can be
easily shown to require justO(log n) communication rounds w.h.p. until all non-blocked nodes are
informed. Thus, we do not go into details here.

Contraction Stage.

Initially, all join requests are active. Eachjoin(x) request issued by some nodev selects a random
nodev

(i)
0 ∈ Tlog n(gi(x)) (i.e., out of all nodes in the system) for alli ∈ {1, ..., c′} and aims at

reaching the node responsible forgi(x) within at mostβ log n hops, for some fixed and sufficiently
large constantβ ≥ 6. Let the nodes that are visited in these hops be calledv

(i)
1 , v

(i)
2 , . . . For hopt, v

checks ifv(i)
t−1 is blocked or not. Ifv(i)

t−1 is blocked andv(i)
t−1 was sampled out ofTj(gi(x)), thenv

(i)
t is

chosen at random out ofTj(gi(x)), otherwisev(i)
i is chosen at random out ofTj−1(gi(x)). If the level

j = 0 is reached, or a nodev(i)
t is reached that declaresTj(gi(x)) as blocked, ort = β log n, thenv

stops going forward for indexi and deactivates indexi at levelj. At the end of the contraction stage,
nodev declaresjoin(x) to belong to levelℓ whereℓ is the smallest level that contains at least2c′/3
active indices (i.e., indices that were not deactivated atℓ or earlier).

The contraction stage obviously needs at mostO(log n) time. The following lemma also states
a logarithmic congestion bound, implying that the contraction stage is correctly executed (i.e., all
requests sent to non-blocked nodes can be handled within twocommunication rounds so that blocked
nodes are correctly identified).

7

Lemma 2.1. The preprocessing and contraction stages require at mostO(log n) time, and each node
is involved in at mostO(log n) many message transmissions per time step, w.h.p.

Proof. Since the time bound is obvious, it remains to prove the congestion bound. We just focus here
on the congestion of the contraction stage. Recall that eachnode is the origin of 5 join requests that
are based on some pointx chosen independently at random out of[0, 1). Consider some fixed node
v and ajoin(x) request that is currently at levelj for some fixedj (that may or may not depend on
other requests). Given thatx is chosen at random, the probability thatjoin(x) probes nodev is equal
to

Pr[v ∈ Tj(x)] · Pr[v chosen| v ∈ Tj(x)] = (2j/n) · 1/2j = 1/n

as both probabilities are independent of the probabilitiesfor the requests issued by other nodes, and
we have to sum up the congestion overlog n + 1 different levels, the Chernoff bounds imply that the
congestion at any time isO(logn) w.h.p.

Moreover, we can show the following two lemmas, which will help us in the analysis of the next
stage.

Lemma 2.2. For everyjoin(x) request belonging to levelℓ and every active indexi ∈ {1, ..., c′} in
that level,Tℓ′(gi(x)) contains at least2ℓ′/3 non-blocked nodes for everyℓ′ ≥ ℓ w.h.p.

Proof. Consider anyjoin(x) request belonging to some levelℓ and leti ∈ {1, ..., c′} be any active
index in that level. Suppose that there is a setTℓ′(gi(x)) for someℓ′ ≥ ℓ that contains less than2ℓ′/3
non-blocked nodes. In the preprocessing stage, each nodev ∈ Tℓ′(gi(x)) samplesα1 log n nodes
out of Tℓ′(gi(x)). Each sample has a probability of more than2/3 to be a blocked node. Hence, the
Chernoff bounds imply that at least half of the samples will be blocked nodes, w.h.p., sov will declare
Tℓ′(gi(x)) as being blocked. Hence, during the contraction stage indexi must have been deactivated
when passingTℓ′(gi(x)), which contradicts our assumption thati is still active at levelℓ.

Lemma 2.3. If ǫ < 1/72, then for everyℓ ∈ {0, . . . , log n} there are at most6ǫn/2ℓ points whose
join requests belong to levelℓ w.h.p.

Proof. We start with some notation. LetP be the set of all possible points andG be the collection
of hash functionsg1, . . . , gc′. We know that|P | ≤ n. Given a setS of points and ak ∈ N, we
call F ⊆ S × {1, . . . , c′} a k-bundleof S if every x ∈ S has exactlyk many tuples(d, i) in F .
In other words, ak-bundle guarantees that each point is represented withk different indices. Given
g1, . . . , gc′ and a levelℓ, let ΓF,ℓ(S) be the union of the sets involved in these indices fromTℓ, i.e.,
ΓF,ℓ(S) =

⋃
(d,i)∈F Tℓ(gi(x)). Given a0 < σ < 1, we callH a (k, σ)-expanderif for any ℓ ≤ log n,

anyS ⊆ P with |S| ≤ σn/2ℓ, and anyk-bundleF of S, it holds that|ΓF,ℓ(s)| ≥ 2ℓ|S|. Similar to
Lemma 1 in [AS05], the following claim can be shown.

Claim 2.4. If the hash functionsg1, . . . , gc′ are chosen uniformly and independently at random, it
holds thatG is a (c′/3, σ)-expander w.h.p., for anyc′ ≥ 6 log n and0 < σ ≤ 1/24.

Let Dℓ be the set of pointsx with join requests that become inactive at levelℓ due to too many
inactive indices. For anyℓ and anyT ⊆ Tℓ, we callT blockedif the attacker blocks more than a
third of its nodes with its DoS attack. Consider any pointx. We callx blockedat levelℓ if at least
c′/3 of its c′ setsTℓ(gi(x)) are blocked, and we call itweakly blockedin level ℓ if there are blocked
setsTℓ1(gi1(x)), Tℓ2(gi2(x)), . . . , Tℓk

(gik(x)) with ℓ1, . . . , ℓk ≥ ℓ andk = c′/3 andi1, . . . , ik being
pairwise different. LetWBℓ denote the set of weakly blocked data items at levelℓ. We start with the
following claim.

8

Claim 2.5. Whenever ajoin(x) request deactivates some indexi in level ℓ ≥ 1, thenTℓ(gi(x)) is
blocked, w.h.p.

Proof. Consider any fixedx ∈ [0, 1) andi ∈ {1, . . . , c′}. First, suppose thati is deactivated at some
level j because some nodev(i)

t is visited in that level that declaresTj(x) as being blocked. In this
case, more than half of theα1 log n random nodes sampled byv(i)

t in Tj(x) must have been blocked
in the preprocessing stage, whereγ is a (sufficiently large) constant. If, however,Tj(x) contains at
most2j/3 many blocked nodes, then the probability for each sampling to hit a blocked node is at
most1/3, so the expected number of blocked nodes noticed is at mostα1 log n/3. Since the samples
are made independently at random, it follows from the Chernoff bounds that the probability that more
thanα1 log n/2 blocked nodes are sampled is polynomially small inn (where the exponent depends
on α1). Hence, if some nodev(i)

t is visited in that level that declaresTj(x) as being blocked, then
Tj(x) must contain at least2j/3 blocked nodes w.h.p.

It remains to prove the lemma for the case thati is deactivated becauset = β log n, the end of
the contraction stage has been reached. Lemma 2.2 implies that if there is a levelℓ with at least
(2/3)2ℓ blocked nodes inTℓ(x), indexi cannot pass it as it will be deactivated there w.h.p. Suppose
that there is no levelℓ so thatTℓ(x) contains at least(2/3)2ℓ blocked nodes. Then the sequence of
nodesv(i)

0 , v
(i)
1 , v

(i)
2 , . . . will need at most 3 probes on expectation to lower the level by1. This can

be modeled as a sequence of binary random variablesX0, X1, X2, . . . with Xi being 1 if and only
if the level is lowered by 1. SincePr[Xi = 1] ≥ 1/3 independently of the other random variables,
the Chernoff bounds (for positively correlated random variables) can be used to prove that it takes at
mostβ log n many hops for a sufficiently large constantβ until level 0 is reached w.h.p. (given that
no non-blocked node is reached that declares its level as being blocked, which is covered by the case
at the beginning of the proof). In fact, if the constantβ in theβ log n bound for the hops is at least 6,
then the sequence will also end at level 0 in the contraction stage w.h.p.

Combining all cases, the claim follows.

Suppose that ajoin(x) request becomes inactive at levelℓ due to at leastc′/3 deactivated indices.
Then it follows from Claim 2.5 thatx is weakly blocked, w.h.p. For weakly blocked points, the
following claim holds.

Claim 2.6. If s blocked nodes can cause a set ofb weakly blocked points at levelℓ, thens blocked
nodes can also cause a set ofb blocked points at levelℓ.

Proof. Consider pointx to be weakly blocked, and letTℓ1(gi1(x)), Tℓ2(gi2(x)), . . . , Tℓk
(gik(x)) be the

sets witnessing that withk = c/3. Any route through a setTℓ′(gi′(x)) with ℓ′ > ℓ contains exactly
2ℓ′−ℓ setsT ∈ Tℓ, and each of these setsT has a size of|Tℓ′(gi′(x))|/2ℓ′−ℓ. Thus, when distributing
the nodes causingTℓ′(gi′(x)) to be blocked evenly among allT ∈ Tℓ in Tℓ′(gi′(x)). We can turn any
set ofb weakly blocked points into blocked points at levelℓ.

If the adversary can block at mostǫn nodes, then at most3ǫn/2ℓ of the n/2ℓ sets inTℓ can be
blocked, which covers at most3ǫn nodes. Suppose the attacker can block a setS of points at level
ℓ. Then there is ac′/3-bundleF for S. According to Claim 2.4, it holds that|ΓF,ℓ(S)| ≥ 2ℓ|S| if
|S| ≤ σn/2ℓ. Since the largest possible size ofΓF,ℓ(S) is 3ǫn, it follows that |S| ≤ 3ǫn/2ℓ, which
is less thanσn/2ℓ (so that Claim 2.4 implies an upper bound on|S|) if 3ǫ < 1/24, or ǫ < 1/72.
Hence, if the adversary can block at mostǫn nodes, then it can cause at most3ǫn/2ℓ blocked points
x in levelℓ. According to Claim 2.6, this implies that|WBℓ| ≤ 6ǫn/2ℓ. Since Claim 2.5 implies that
|Dℓ| ≤ |WBℓ|, w.h.p., the lemma follows.

Interestingly, the lemma even holds if the adversary knowsg1, . . . , gc′.

9

Expansion Stage.

The expansion stage starts withγ1 log n+1 dissemination rounds numbered from 0 toγ1 log n, where
γ1 ≥ 9 is a fixed and sufficiently large constant. In round 0, everyjoin(x) request from some nodev
that belongs to levelℓ sends a message(v, x, ℓ′) to γ2 log n random nodes inTℓ′(gi(x)) for every index
i that was still active at levelℓ′, whereℓ′ ≥ ℓ is the smallest value so that|Tℓ′(gi(x))| ≥ γ2 log n and
γ2 ≥ 96 is a fixed and sufficiently large constant. In this and the other rounds, all messages that have
been sent to some nodew are recorded byw, and multiple messages of the same form are merged into
one. In each roundr ≥ 1, every nodew sends every message(v, x, ℓ) recorded by it withγ1ℓ ≥ r to
a random node inTℓ(w). If there is a levelℓ for whichw receives more thanγ3c log n many messages
for some fixed and sufficiently large constantγ3 ≥ 6δ or a message of the form(ℓ,∞), thenw deletes
all of them and replaces them by(ℓ,∞), which means that there are too many messages for levelℓ in
the setTℓ(w). Let us call a setT ∈ Tℓ non-congestedif there are at mostγ3c log n different messages
(v, x, ℓ) sent toT in round 0 (which implies that a message(ℓ,∞) will not be created in it). We can
show the following result.

Lemma 2.7. For any non-congested setT ∈ Tℓ and any message(v, x, ℓ) sent to it, at least1/3 of its
non-blocked nodes store(v, x, ℓ) at the end of the dissemination rounds, w.h.p.

Proof. First of all, it follows from Lemma 2.2 that for any nodev with join(x) request that belongs to
level ℓ it holds for every active indexi thatTℓ(hi(x)) contains at least2ℓ/3 non-blocked nodes w.h.p.
Consider some fixedT = Tℓ(hi(x)) with such a property. Sincev sends out messages of the form
(v, x, ℓ) to γ2 log n random nodes inT , on expectation, at least(γ2/3) logn non-blocked nodes will
be informed, and also at least(γ2/6) log n w.h.p. if γ2 is sufficiently large (which follows from the
Chernoff bounds). Hence, the message(v, x, ℓ) will not get lost initially.

Suppose thatT is non-congested, i.e., it receives at mostγ3 log n different messages in round 0.
In this case, a node in it will never create the message(ℓ,∞) which would delete other messages of
the form(v, x, ℓ) in T . So we can focus on the spreading of a message(v, x, ℓ) in T . Suppose that
k non-blocked nodes inT are currently informed about(v, x, ℓ), wherek ≤ m/3 andm ≥ 2ℓ/3 is
the number of non-blocked nodes inT . Then the probability that an uninformed nodew ∈ T will be
informed in the next round is equal tok/2ℓ. Hence, the expected number of uninformed non-blocked
nodes that will be informed is

(m − k)k/2ℓ ≥ [(2/3)m/2ℓ]k ≥ (2/9)k

and at leastk/9 w.h.p. (due to the Chernoff bounds) ifγ2 ≥ 96 is a sufficiently large constant.
Standard calculations yield thatt ≥ 9ℓ rounds are sufficient until(1+1/9)t ≥ m/3, so at least a third
of the non-blocked nodes will know(v, x, ℓ) at the end of the dissemination rounds w.h.p.

At the end of the expansion stage, every nodew sends each nodev that sent a message(v, x, ℓ)
to it in round 0 a message containing all nodesu with entries(u, x, ℓ′) in w for anyℓ′. Finally, every
nodev with a join(x) request will tell all nodesu reported to it in this way that it has sent ajoin(x)
request as well.

As v has sent out(v, x, ℓ) to γ2 log n many nodes in round 0 for each active indexi, and for any
such index, a third of the nodes inTℓ(gi(x)) is non-blocked w.h.p. (Lemma 2.2), we can show the
following lemma.

Lemma 2.8. For any two non-congested setsT ∈ Tℓ and T ′ ∈ Tℓ′ with T ⊆ T ′ it holds for any
two messages(v, x, ℓ) and (v′, x, ℓ′) with x ∈ T that v will be notified aboutv′ in the second last
communication round w.h.p.

10

Proof. Consider any two non-congested setsT ∈ Tℓ andT ′ ∈ Tℓ′ with T ⊆ T ′ and any two messages
(v, x, ℓ) and(v′, x, ℓ′) with x ∈ T . We know from Lemma 2.7 that at least1/3 of the non-blocked
nodes inT ′ will know (v′, x, ℓ′) at the end of the broadcasting rounds w.h.p., which implies together
with Lemma 2.2 that at least1/9 of the nodes inT ′ will know (v′, x, ℓ′) at the end of the broadcasting
rounds w.h.p. The probability that a specific non-blocked node inT belongs to these nodes is at least
1/9. On the other hand, we know from the proof of Lemma 2.7 that after round 0 at least(γ2/6) log n
non-blocked nodes inT will know (v, x, ℓ) w.h.p. The probability that none of them knows(v′, x, ℓ′)
is at most(1− 1/9)(γ2/6) log n which is polynomially small inn for γ2 ≥ 96. Hence,v will learn about
v′ in the second last communication round w.h.p., which finishes the proof.

Also, the following lemma holds, which is based on Lemma 2.3.

Lemma 2.9. If the current phase is beyondt0, then all setsT ∈ Tℓ used in the expansion stage are
non-congested w.h.p.

Proof. Consider some fixed levelℓ. We define a setT ∈ Tℓ to benon-blockedif for every ℓ′ ≥ ℓ, at
most1/3 of the nodes in theT ′ ∈ Tℓ′ with T ⊆ T ′ are blocked. The following claim holds. Its proof
follows from the insights of Claim 2.6.

Claim 2.10. Given that the adversary can block at mostǫn nodes, there are at least3ǫn/2ℓ non-
blocked setsT ∈ Tℓ.

From Lemma 2.3 we know that there are at most6ǫn/2ℓ pointsx whose join requests belong
to level ℓ. Let P be the set of these points. Let the indices of the corresponding join requests be
partitioned in any way into active and inactive indices so that at mostc′/3 indices of any join request
are declared inactive. Since the hash functionsg1, . . . , gc′ are chosen uniformly and independently at
random, it follows that the active indices distribute amonga group of setsT ∈ Tℓ that includes all
non-blocked sets inTℓ, according to Claim 2.5. Since there are at least3ǫn/2ℓ non-blocked sets inTℓ,
and each of them would be successfully passed w.h.p., it follows that each of them has a probability
of at most2ℓ/(3ǫn) of being selected by an active index. The other sets inT ∈ Tℓ have a lower
probability as it is not guaranteed any more that an active index would passT w.h.p. Hence, the
expected congestion due to active indices in anyT ∈ Tℓ is at most

(6ǫn/2ℓ) · (2δ log n) · c · 2ℓ/(3ǫn) = 4δc logn

where the first term is the number of points, the second the maximum number of join requests per
point, the third the maximum number of active indices and thelast our probability bound. Further-
more, since the probability distribution over the sets inTℓ applies independently for each index, the
Chernoff bounds imply that the congestion in anyT ∈ Tℓ is at most6δc log n w.h.p. Hence, ifγ3 ≥ 6δ,
then the lemma follows.

We need the fact that the hash functionsg1, . . . , gc′ are chosen at random and that they are not
known to the adversary. Let us now recall what we know so far. Let v be a node with ajoin(x)
request belonging to the lowest level among all other nodesv′ with join requests tox. We know that
any request belonging to levelℓ has at least2c′/3 active indices inℓ. Hence,v andv′ share a common
active indexi, so Lemma 2.8 implies thatv will learn aboutv′ in the second last communication round
w.h.p. Thus, after the last communication round, every nodev with join(x) knows every other node
v′ with join(x), which implies the following lemma.

Lemma 2.11. At the end of the expansion stage, every nodev with a join(x) request knows all other
nodes with ajoin(x) request, w.h.p.

11

Obviously, the runtime of the expansion stage isO(logn), and given that every node will send
out at mostO(c log n) messages to random nodes for each levelℓ, every node will receive at most
O(c log n) messages for each levelℓ w.h.p., which yields the following result.

Lemma 2.12. The expansion stage requires at mostO(log n) time, and each node is involved in at
mostO(log2 n) many message transmissions per time step, w.h.p.

Construction Stage.

Finally, the network of the t-store is built from the member information the nodes obtained from their
join requests. Since the nodes already have all the connectivity information they need for that, this
does not involve any communication.

The Insert Protocol

Subsequently, the data items which have been stored in the old t-store are transferred to the new t-
store. In order to make sure that this does not cause too much work, we will enforce the following
rule:

t-Store Load Rule: At any time, every cluster stores at mostρ1 log n data items that belong to the
t-store, for some fixed and sufficiently large constantρ1 ≥ 2δ. If that cap is exceeded, data is deleted,
with a priority on the older data, until the cap is reached.

Besides this rule, we need the following lemma, which uses the fact that the clusters are formed
by random node sets that are not known by the adversary if it was already a past insider at that point.

Lemma 2.13. If the past phase was beyondt0, then any adversarial attack within our model will only
block a constant fraction of the nodes in each cluster of the old t-store, w.h.p.

Proof. The lemma directly follows from the fact that the adversary does not know the membership
of the clusters in the old t-store, and since each cluster consists of a random subset of the nodes of
(sufficiently large) sizeΘ(log n), the Chernoff bounds imply that the adversary will only manage to
block at most half of the nodes in each cluster with a DoS attack on at mostn/3 nodes, w.h.p.

With the help of this lemma we can use the following strategy:For every cluster in the old t-store
with currently non-blocked nodes, one of its nodes (which may be determined by some random-
ized local leader election that can be implemented with runtime O(logn) w.h.p.) callsinsert(d)
for each of the data itemsd stored in it. The insert requests are sent along the generic de Bruijn
paths. More precisely, a request starting at pointx = (x1, . . . , xlog n) and ending at pointy =
(y1, . . . , ylog n) is sent along the cluster nodes responsible for the pointsx, (ylog n, x1, . . . , xlog n−1),
(ylog n−1, ylog n, , x1, . . . , xlog n−2), . . . , (y2, . . . , ylog n, x1), y. These cluster nodes are indeed connected
due to the de Bruijn rule of selecting edges. As (1) the hash function for the new t-store is chosen at
random, (2) there is at most oneinsert(d) request for each data itemd, and (3) each node is the start-
ing point of at mostO(log n) many data items (w.h.p.), it follows from standard Chernoffbounds that
the congestion caused by the routing problem isO(log2 n) in each cluster w.h.p. Hence, all requests
reaching a cluster in a time unit can be passed on in the next time unit, which implies the following
result.

Lemma 2.14. All insert requests can be served by the t-store in at mostO(log n) communication
rounds, w.h.p. Moreover, every node (as well as cluster) in the new t-store has to store at most
O(log n) data items, w.h.p.

12

2.4 Stage 2: Processing all put requests in the t-store

Once the new t-store has been built, the new put requests are served in the t-store, with at most one
put request per node (to enforce our model). For each of theseput(d) requests, we execute a t-put(d)
request that is routed along the same path as described abovefor the insert requests. However, the
critical issue remains that there might be many t-put requests for the same name. To solve the problem,
we use a simple filtering mechanism during the routing: Whenever two or more t-put requests for
the same name meet in a node, then only one of them survives andthe others are deleted. If a t-
put(d) request arrives at its destination cluster and this clusteralready stores an old data itemd′ with
name(d′) = name(d), thend′ is replaced byd.

In order to bound the congestion for this routing problem with combining, it suffices to determine
the number of distinct data itemsd whose t-put(d) requests pass through the same cluster. This can
easily be shown to beO(log2 n) w.h.p. using standard Chernoff bounds, as long as the adversary does
not knowh (i.e., the current phase is beyondt0). To prevent too much congestion in case the adversary
knowsh, the following simple rule suffices:

t-Store Routing Rule: If more thanρ2 log2 n many t-store messages pass a node at any time, for
some fixed and sufficiently large constantρ2 ≥ 2δ, then any set of messages is deleted to get their
number down toρ2 log2 n.

Since de Bruijn routing is used, each cluster receives messages from only two other clusters,
which implies together with the congestion bound for the distinct data items that each cluster sends
and receives at mostO(log2 n) messages within any time step. This implies the following lemma.

Lemma 2.15. If at most one t-put request is issued per node, all t-put requests can be served in at
mostO(log n) communication rounds, w.h.p. Moreover, only one update foreach name is successfully
stored and every cluster in the new t-store has to store at most O(logn) data items for these requests,
w.h.p.

When combining Lemmas 2.14 and 2.15, it follows that every cluster in the new t-store has to
store at mostO(log n) data items, w.h.p., which sums up to a total ofO(n) data items in the t-store.
However, since the O-notation ignores constants, we also need to show that there is an absolute bound
of φ · n for some constantφ that is not violated over time after time pointt0. We will address this in
Stage 4.

2.5 Stage 3: Processing all get requests

The processing of the get requests proceeds in two further stages. First, the get requests are processed
in the t-store using thet-getprotocol (with at most one t-get request per node), and all get requests
that cannot be served in the t-store are processed in the p-store using thep-getprotocol.

The t-Get Protocol

For eachget(name) request, a t-get(name) request is executed in the t-store. These requests are sent
along the same routes as the insert and t-put requests above.Like in the t-put protocol, we have to
deal with the problem that multiple t-get requests exist forthe same name. This can be handled by
using combining and splitting. More precisely, whenever two or more t-get requests meet at some
node during the routing, then only one of them is forwarded and the others are left in that node. Once

13

the t-get requests have reached their destinations, they look up the requested data item, if it exists
in the t-store, and send it back to their sources along the same paths they came from. Whenever a
returning t-get request hits a node that stores t-get requests to the same name (which were left behind
in the forward phase), the answer of that request is stored inthe other requests and all of them are sent
backwards to their destinations.

As the forward phase of the t-get protocol is equivalent to the t-put protocol and the backward
phase is just the reverse of the forward phase, the followinglemma follows from Lemma 2.15.

Lemma 2.16. Given that we are beyond timet0 and every non-blocked node issues at most one t-get
request, every cluster has to serve at mostO(log n) t-get requests and all t-get requests can be served
in at mostO(log n) time, w.h.p.

The p-Get Protocol

For each destination cluster of a t-get request that cannot serve that t-get request, a p-get request
is issued for that name in the p-store. Thus, we have at most one p-get request for each name.
Distributing these p-get requests evenly among the nodes ofeach cluster results in a constant number
of p-get requests w.h.p. (see Lemma 2.16). Once they have allbeen served, the destinations of the
corresponding t-get requests will receive the answers which are then delivered back to the sources
of the t-get requests in the same way as in the t-get protocol.Hence, it remains to describe how to
execute the p-get protocol in the p-store.

The p-get protocol is similar to the lookup protocol in [AS05], with two differences. (1) In
Chameleon, a get request will proceed to the next level in thecontraction stage only if at least5c/6 of
its indices are still active (in [AS05] the limit is3c/4 indices) and (2) in our system, we do not have
to deal with multiple p-get requests to the same name. Point (1) (as well as the fact that a node may
initiate a constant number of p-get requests and not just one) can be handled with a slight adaptation
of the analysis in [AS05] and point (2) just simplifies the situation studied [AS05].

Lemma 2.17. Given that we are beyond timet0 and every non-blocked node issues at most a constant
number of p-get requests, all p-get requests are served correctly in at mostO(log2 n) communication
rounds, w.h.p.

Note that the p-get protocol is the only protocol whose runtime exceedsO(log n), otherwise a
phase would just needO(log n) time. However, a runtime ofO(log2 n) seems only necessary if the
system is under adversarial attack. It is easy to modify the lookup protocol in [AS05] to obtain a p-get
protocol so that as long as there is no attack, its runtime isO(log n) w.h.p. (see also [AS06]).

2.6 Stage 4: Transferring the data items from the t-store to the p-store

Finally, we try to transfer all items stored in thet-store (i.e., the old and new ones) to thep-store
using the p-put protocol; if the transfer of a certain data itemd is successful, that is, if sufficiently
many replicas ofd can be stored correctly in thep-store, the corresponding data item in thet-store
is removed. Otherwise, the item is left in thet-store. From the t-Store Load Rule and Lemma 2.15
it follows that if every cluster evenly distributes the p-put requests among its nodes, then each node
only has to issue a constant number of p-put requests.

14

The p-Put Protocol

The p-put protocol consists of three substages: a preprocessing stage, a contraction stage and a storage
stage. Recall the preprocessing stage of the join protocol in which every non-blocked nodev checks
the state ofΘ(log n) random nodes inTi(v) for every0 ≤ i ≤ log n. If more than half of the nodes in
Ti(v) is blocked,v declaresTi(v) as blocked and otherwise unblocked. We will use that information
in the contraction stage as well.

Preprocessing Stage.

Every non-blocked nodev picks α4 log n random nodes from the entire node set for a fixed and
sufficiently large constantα4. If at most half of them are blocked (which is the case w.h.p. when
ǫ < 1/3) thenv computes the average data loadL̄v of the non-blocked nodes in the p-store. The
following lemma can be shown for this.

Lemma 2.18. Let L̄ be the average load in the system andLmax be the maximum load at a node. If
Lmax ≤ 2λL̄, ǫ ≤ 1/(8λ) andα4 ≥ 24λ is sufficiently large, then for every nodev, L̄v ∈ [L̄/2, 2L̄]
w.h.p.

Proof. Let L̄ andLmax be defined as in the lemma. First, we prove an upper bound onL̄v. If ǫ ≤ 1/3,
then no matter whichǫ-fraction of the nodes is shut down by the adversary, the average load of the
non-blocked nodes,̄La, is at most

(n · L̄)/(1 − ǫ)n ≤ (3/2)L̄.

Consider any nodev and letL1, . . . , Lk be random variables denoting the loads of thek = α log n
random nodes picked byv. Given that previouslyLmax ≤ 2λL̄, Li ≤ 2λL̄ for everyi, andE[Li] ≤

(3/2)L̄. Hence, forL =
∑k

i=1 Li it holds thatE[L] ≤ (3k/2)L̄. Furthermore, the Chernoff-Hoeffding
bounds imply that, for anyδ ≥ 1,

Pr[L ≥ (1 + δ)E[L]] ≤ e−δE[L]/(3Lmax).

Thus,L ≤ 2L̄ w.h.p. if the constantα is sufficiently large.
Next, we prove a lower bound on̄Lv. If Lmax ≤ 2λL̄ and ǫ ≤ 1/(8λ), then no matter which

ǫ-fraction of the nodes is shut down by the adversary, the average load of the non-blocked nodes,L̄a,
is at least

(n · L̄ − ǫn · 2λL̄)/(1 − ǫ)n ≥ (3/4)L̄.

Hence,E[Li] ≥ (3/4)L̄ for everyi, which implies thatE[L] ≥ (3k/4)L̄. Furthermore, the Chernoff-
Hoeffding bounds imply that, for any0 < δ < 1,

Pr[L ≤ (1 − δ)E[L]] ≤ e−δ2E[L]/(2Lmax)

Thus,L ≥ L̄/2 w.h.p. if the constantα is sufficiently large.

If v’s own data loadLv satisfiesLv > λ · L̄ for some fixed and sufficiently large constantλ ≥ 4
(or more than half of the sampled nodes are blocked), then it considers itself to be overloaded and
will behave in the rest of the p-put protocol as if it is blocked when contacted by other requests. Asv
will not get any new data in this case, Lemma 2.18 guarantees that there will never be a node (w.h.p.)
whose load exceeds2λL̄, which satisfies our scalability requirement in Section 1.1. Also, the number
of overloaded nodes is not too high as stated by the followinglemma.

15

Lemma 2.19. If ǫ ≤ 1/(8λ), the number of nodes that consider themselves to be overloaded is at
most2n/λ w.h.p.

It immediately follows from Lemma 2.18 and the fact that there can be at most2n/λ nodes with
a load of more than(λ/2)L̄. Thus, if λ is sufficiently large, we can just treat all of them as being
blocked for the further analysis.

Contraction Stage.

Each p-put(d) request issued by some nodev selects a random nodev(i)
0 ∈ Tlog n(hi(d)) (i.e., out

of all nodes in the system) for alli ∈ {1, ..., c} and aims at reaching the node responsible forhi(d)
within at mostβ log n hops, for some fixed and sufficiently large constantβ ≥ 6. This is done in the
same way as in the join protocol. If the levelj = 0 is reached, or a nodev(i)

t is reached that declares
Tj(hi(x)) as blocked, or a nodev(i)

t is reached that received more thanβ ′c p-put requests with the
same indexi during the current time step, ort = β log n, thenv stops going forward and deactivates
index i at levelj, whereβ ′ is a sufficiently large constant. At the end of the contraction stage, node
v declaresjoin(x) to belong to levelℓ, whereℓ is the smallest level that contains at least2c/3 active
indices.

The contraction stage obviously needs at mostO(log n) time. Moreover, we can show the follow-
ing crucial result.

Lemma 2.20. If ǫ < 1/144 andβ ′ ≥ 1/ǫ, then at most8ǫn of the data in the t-store does not belong
to level0 w.h.p.

Proof. We will apply concepts similar to the proof of Lemma 2.3. Recall that U is the name universe
andm = |U |. LetH be the collection of hash functionsh1, . . . , hc. Given a setS ⊂ U of data names
and ak ∈ N, we callF ⊆ S × {1, . . . , c} a k-bundleof S if everyd ∈ S has exactlyk many tuples
(d, i) in F . In other words, ak-bundle guarantees that each data item is represented withk different
indices. Givenh1, . . . , hc and a distanceℓ, letΓF,ℓ(S) be the union of the sets involved in these indices
from Tℓ, i.e.,ΓF,ℓ(S) =

⋃
(d,i)∈F Tℓ(hi(d)). Given a0 < σ < 1, we callH a (k, σ)-expanderif for

anyℓ ≤ log n, anyS ⊆ U with |S| ≤ σn/2ℓ, and anyk-bundleF of S, it holds that|ΓF,ℓ(s)| ≥ 2ℓ|S|.
Similar to Lemma 1 in [AS05], the following claim can be shown.

Claim 2.21. If the hash functionsh1, . . . , hc are chosen uniformly and independently at random, it
holds thatH is a (c/6, σ)-expander w.h.p., for anyc ≥ 12 log m and0 < σ ≤ 1/36.

Our goal is to upper bound the number of p-put requests which do not reach level0. This analysis
follows the same lines as analyzing the lookup protocol in [AS05].

Given a setT ∈ Tℓ for some levelℓ, we callT blockedif the adversary blocks more than a fourth
of the nodes during the DoS attack. Analogously,T is calledcongestedif more than a fourth of the
nodes inT have a congestion of at leastβ ′c.

Let d be a data item. We calld blockedat levelℓ if at leastc/6 of its c setsTℓ(hi(d)) are blocked,
and we calld weakly blockedat levelℓ if there are blocked setsTℓ1(hi1(d)), Tℓ2(hi2(d)), . . . , Tℓk

(hik(d))
with ℓ1, . . . , ℓk ≥ ℓ, k = c/6, andi1, . . . , ik being pairwise different. Similarly, we calld congested
at roundr if at leastc/6 of its c setsTℓ(hi(d)) are congested, and we call itweakly congestedat level
ℓ if there are congested setsTℓ1(hi1(d)), Tℓ2(hi2(d)), . . . , Tℓk

(hik(d)) with ℓ1, . . . , ℓk ≥ ℓ, k = c/6,
andi1, . . . , ik being pairwise different.

Recall Claim 2.6. Furthermore, we make the following observation, whose proof follows along
the same lines as the proof of Claim 2.5.

16

Claim 2.22. Whenever a request for some data itemd deactivates some indexi at levelℓ, the set
Tℓ(hi(d)) is either blocked or congested, w.h.p.

We assume that a request for some data itemd becomes inactive at levelℓ due to at leastc/3
deactivated indices. By the pigeon hole principle, there are at leastc/6 indices for which the first
condition in Lemma 2.22 is true, or there are at leastc/6 indices for which the second condition is
true. Together with Lemma 2.22 this implies thatd is either weakly blocked or weakly congested.

If the adversary can block up toǫn nodes, at most4ǫn/2ℓ of then/2ℓ sets inTℓ can be blocked,
which covers at most4ǫn nodes. Suppose the attacker can block a setS of data items at levelℓ. Then
there is ac/6-bundleF for S, i.e., we can identifyc/6 indices to blocked or congested sets. Due
to Claim 2.21, if|S| ≤ σn/2ℓ then |ΓF,ℓ(S)| ≥ 2ℓ|S|. As ΓF,ℓ(S) is of size at most4ǫn, we have
that |S| ≤ 4ǫn/2r, which is less thanσn/2ℓ (so that Claim 2.21 implies an upper bound on|S|) if
4ǫ < 1/36, or ǫ < 1/144. Hence, if the adversary can block up toǫn nodes, this entails at most
4ǫn/2ℓ blocked data items at levelℓ. Together with Lemma 2.6 this implies that if the adversary can
block at mostǫn nodes, then there are at most4ǫn/2ℓ weakly blocked data items at levelℓ.

Now, we observe that a weakly blocked data item at levelℓ is also weakly blocked in each level
ℓ′ with ℓ′ < ℓ. The same holds for weakly congested data items. Hence, we have to determine the
number of weakly blocked data items in round0 and the number of weakly congested data items
in round0, respectively. As seen above, the number of weakly blocked and the number of weakly
congested data items cannot be larger than4ǫn, that is, we have at most8ǫn weakly blocked or
congested data items in total. From this observation, we directly obtain the lemma.

Since all p-put requests that made it to level 0 will be servedin the p-store, the t-store is left with
at mostn data items after the phase and at most2n data items during the next phase, w.h.p., which
makes sure that none of them is removed in the next phase (if the constantsρ1 andρ2 in our t-store
rules are sufficiently large).

Permanent Storage Stage.

Each data itemd whose p-put request does not manage to reach level 0 will remain in the t-store.
Otherwise, selectγ1 log n random indices among the active indices ofd and deactivate all others for
some fixed and sufficiently large constantγ1. Let i be an index that remains active.

We want to prevent the accumulation of obsolete data items inour system. In order to achieve
this, we maintain in the node responsible forhi(d) — d’s “root node” — information about the nodes
storing a copy ofd w.r.t. indexi. In order to supportupdatesof a data itemd in our system, we use this
information to remove all out-of-date copies ofd w.r.t. i. Clearly, since some nodes may be blocked,
this may not always be possible. If it is not possible, references to these out-of-date copies are left
in the roots so that they may be deleted at some later p-put request. If more thanγ2 log n out-of-date
copies remain for some fixed and sufficiently large constantγ2 (which would only happen w.h.p. if the
system is under an insider attack, as we will see), thend is only updated in the roothi(d). Otherwise,
we select a random non-blocked node in eachTℓ(hi(d)) with ℓ ∈ {0, . . . , log n} (which requires at
mostO(logn) attempts w.h.p.), store an up-to-date copy ofd in these nodes and store references to
these nodes inhi(d).

Lemma 2.23. Given that att0 the total number of (obsolete and up-to-date) copies of dataitemd in
the p-store isO(log2 n) (which is enforced by the permanent storage stage), the number of copies of
d remainsO(log2 n) w.h.p. at any time aftert0.

17

Proof. Consider some fixed data itemd, indexi and levelℓ. Certainly, every nodev ∈ Tℓ(hi(d)) will
only store one copy ofd at a time because whenever it receives a newer copy, the olderone will be
deleted. Let the random variableXt be one if and only ifv stores a copy ofd for index i and level
ℓ at the beginning of phaset, and letpt = Pr[Xt = 1]. Suppose thatv is blocked at some phaset
in which d is updated. Thenpt+1 = pt as nothing changes forv. Otherwise, suppose thatv is non-
blocked. If i is not active for the p-put(d) request, thenpt+1 = pt as well. Otherwise,pt+1 ≤ 3/2ℓ

asTℓ(hi(d)) contains at least2ℓ/3 non-blocked nodes w.h.p. and a random set ofγ log n of these
nodes is picked for the up-to-date copies ofd. Hence, given that the number of obsolete copies of
d wasO(log2 n) at time pointt0, the expected number of obsolete copies ofd remains atO(log2 n).
This also holds w.h.p. as the probabilities are negatively correlated for Chernoff bounds of negatively
correlated random variables).

When combining all of our results, we obtain Theorem 1.1.

3 Conclusion

This paper has shown for the first time how to build an information system that is robust to an im-
portant class of DoS attacks where a past-insider adversarycan bring down a constant fraction of the
servers. Our solution is efficient in the sense that information is only replicated by a polylogarith-
mic factor, and put and get requests require polylogarithmic work and time. We believe that these
properties renders our solution interesting both from a theoretical and a practical point of view.

However, several important questions remain. In future research, we want to investigate whether
the runtime of a phase can be reduced to a logarithmic bound (only the p-get protocol prevents that)
and whether our algorithms can be simplified to something more compact and easier to implement.
Also we would like to explore whether our concepts be adaptedto bounded-degree peer-to-peer sys-
tems with potentially unreliable peers. Finally, althoughwe believe that our replication factors are
optimal, we still do not have a lower bound.

References
[AS05] Baruch Awerbuch and Christian Scheideler. A Denial-of-Service Resistant DHT. InProc. 16th International

Symposium on Algorithms and Computation (ISAAC), 2005.

[AS06] Baruch Awerbuch and Christian Scheideler. Towards aScalable and Robust DHT. InProc. 18th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 318–327, 2006.

[Ber08] D.J. Bernstein. SYN Cookies. Inhttp://cr.yp.to/syncookies.html, 2008.

[BKR+04] Ankur Bhargava, Kishore Kothapalli, Chris Riley, Christian Scheideler, and Mark Thober. Pagoda: A Dy-
namic Overlay Network for Routing, Data Management, and Multicasting. InProc. 16th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 170–179, 2004.

[DMDR05] D. Dittrich, J. Mirkovic, S. Dietrich, and P. Reiher. Internet Denial of Service: Attack and Defense Mecha-
nisms. Prentice Hall PTR, 2005.

[DR01] P. Druschel and A. Rowstron. Pastry: Scalable, Distributed Object Location and Routing for Large-Scale
Peer-to-Peer Systems. InProc. of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), 2001. See alsohttp://research.microsoft.com/∼antr/Pastry.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman. SkipNet: A
Scalable Overlay Network with Practical Locality Properties. InProc. 4th Conference on USENIX Sympo-
sium on Internet Technologies and Systems (USITS), 2003.

18

[IB02] John Ioannidis and Steven M. Bellovin. ImplementingPushback: Router-Based Defense Against DDoS
Attacks. InProc. Network and Distributed System Security Symposium (NDSS), 2002.

[KKJB05] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger. Botz-4-Sale: Surviving Organized DDoS
Attacks that Mimic Flash Crowds. InProc. 2nd Conference on Symposium on Networked Systems Design &
Implementation (NSDI), pages 287–300, 2005.

[KLL +97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel Lewin. Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web.
In Proc. 29th Annual ACM Symposium on Theory of Computing (STOC), pages 654–663, 1997.

[KMR02] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Services. InProc. ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications,
pages 61–72, 2002.

[KMW01] F. Kargl, J. Maier, and M. Weber. Protecting Web Servers from Distributed Denial of Service Attacks. In
Proc. World Wide Web (WWW), 2001.

[Law07] G. Lawton. Stronger Domain Name System Thwarts Root-Server Attacks. InIEEE Computer, pages 14–17,
May 2007.

[Lei92] F.T. Leighton.Introduction to Parallel Algorithms and Architectures: Arrays· Trees· Hypercubes. Morgan
Kaufmann Publishers (San Mateo, CA), 1992.

[Maz08] Mazu Networks Inc. http://mazunetworks.com. 2008.

[MR04] J. Mirkovic and P. Reiher. A Taxonomy of DDoS Attacks and Defense Mechanisms.ACM SIGCOMM
Computer Communications Review, 34(2), 2004.

[MSC+03] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis, V. Misra, and D. Rubenstein. Using Graphic
Turing Tests to Counter Automated DDoS Attacks Against Web Servers. InProc. 10th ACM Int. Conference
on Computer and Communication Security (CCS), pages 8–19, 2003.

[MV84] Kurt Mehlhorn and Uzi Vishkin. Randomized and Deterministic Simulations of PRAMs by Parallel Ma-
chines with Restricted Granularity of Parallel Memories.Acta Inf., 21(4):339–374, 1984.

[NW03] Moni Naor and Udi Wieder. Novel Architectures for P2PApplications: the Continuous-Discrete Approach.
In Proc. 15th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 50–59, 2003.

[OMRR06] G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson. A Framework for Collaborative DDoS Defense.
In Proc. Annual Computer Security Applications Conference (ACSAC), 2006.

[PS02] Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. The Case for Cooperative Networking. InProc.
1st International Workshop on Peer-to-Peer Systems (IPTPS), pages 178–190, 2002.

[Rat05] E. Ratliff. The Zombie Hunters. InThe New Yorker, 2005.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable Network.
In Proc. of the ACM SIGCOMM, 2001.

[SAZ+02] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Internet Indirection Infras-
tructure. InProc. ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2002.

[SMB02] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-Peer Caching Schemes to Address Flash Crowds.
In Proc. 1st International Workshop on Peer-to-Peer Systems (IPTPS), pages 203–213, 2002.

[SML+02] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek, and H. Kalakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. InTechnical Report MIT, 2002.

[SRS02] Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. ALightweight, Robust P2P System to Handle Flash
Crowds. InProc. 10th IEEE International Conference on Network Protocols (ICNP), pages 226–235, 2002.

[WBKS05] Michael Walfish, Hari Balakrishnan, David Karger,and Scott Shenker. DoS: Fighting Fire with Fire. In
Proc. Workshop on Hot Topics in Networks (HotNets), 2005.

[WVB+06] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott Shenker. DDoS Defense
By Offense.SIGCOMM Comput. Commun. Rev., 36(4):303–314, 2006.

[YWA05] X. Yang, D. Wetherall, and T. Anderson. A DoS-Limiting Network Architecture. InProc. ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications,
2005.

19

