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Abstract

This paper shows how to build and maintain a distributed heap which we call SHELL. In contrast
to standard heaps, our heap is oblivious in the sense that its structure only depends on the nodes
currently in the network but not on the past. This allows for fast join and leave operations which is
desirable in open distributed systems with high levels of churn and frequent faults. In fact, a node fault
or departure can be fixed in SHELL in a constant number of communication rounds, which significantly
improves the best previous bound for distributed heaps. SHELL has interesting applications. First, we
describe a robust distributed information system which is resilient to Sybil attacks of arbitrary scale.
Second, we show how to organize heterogeneous nodes of arbitrary non-uniform capabilities in an
overlay network such that the paths between any two nodes do not include nodes of lower capacities.
This property is useful, e.g., for streaming. All these features can be achieved without sacrificing
scalability: our heap has a de Bruijn like topology with node degree O(log2 n) and network diameter
O(log n), n being the total number of nodes in the system.

1 Introduction

In recent years, peer-to-peer systems have received a lot of attention both inside and outside of the research
community. Major problems for these systems are how to handle a large churn, adversarial behavior, or
participants with highly varying availability and resources. This is particularly the case in open peer-
to-peer systems, where any user may join and leave at will. In this paper, we argue that many of these
challenges can be solved by organizing the nodes in a distributed heap called SHELL.1 SHELL is oblivious,
which implies that its structure only depends on the nodes currently in the system but not on the past. It
has turned out that this is a crucial property for systems with frequent membership changes as recovery
and maintenance is simpler and faster. In fact, in SHELL, a join operation can be handled in O(log n)
time and a leave operation in constant time, which is much better than the O(log2 n) runtime bound
previously known for scalable distributed heaps [3].

SHELL has a number of interesting applications. As a first case study, we construct a fault-tolerant
distributed information system called i-SHELL which is resilient to churn and Sybil attacks of any size.
Sybil attacks are a particularly cumbersome problem in open distributed systems: a user may join the
system with a large number of identities in order to, e.g., take over responsibility for an unfair amount
of the resources in the system, control or isolate certain parts of the overlay network, or flood the system
with futile traffic. The key idea of i-SHELL is that nodes only connect to older nodes in the system so
that nodes that were already in the system when the Sybil attack takes place are unaffected by it.

As a second case study, we show that SHELL can also be used to organize nodes with arbitrary
capacities in an efficient manner. For example, in a scenario where nodes have non-uniform Internet con-
nections, our h-SHELL system guarantees that the paths between two nodes with fast Internet connections
only include nodes which are also fast while keeping a low congestion. This is a vital property, e.g., for
streaming.

1.1 Model and Definitions

In order to present our key ideas in a clean way, we will use a high-level model for the design and analysis
of the SHELL system. We assume that time proceeds in rounds, and all messages generated in round i
are delivered in round i + 1 as long as no node sends and receives more than a polylogarithmic amount

∗Partly supported by the DFG-Project SCHE 1592/1-1.
1The name SHELL is due to the fact that nodes are organized in different layers in our network, where nodes “higher”

in the heap can be protected and operate independently of nodes “lower” in the heap.
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of information. In other words, we assume the standard synchronous message-passing model with the
restriction that a node can only communicate with nodes that it has currently links to. We do not
consider the amount of time needed for internal computation as that will be very small in our case. Each
node v in the system is associated with a key key(v) ∈ N. Our heap will organize the nodes according
to these keys. We assume the existence of a symmetry breaker (e.g., unique IP addresses) which allows
us to order nodes with the same key so that we can assume w.l.o.g. that all keys are distinct. The order
nv of a node v is defined as the number of nodes w in the system with key(w) < key(v). Intuitively, nv
represents the number of nodes that are above v in the heap.

The problem to be solved for the SHELL system is to find efficient and scalable algorithms for the
following operations:

1. v.join(): Node v joins the system.

2. v.leave(): Node v leaves the system.

3. v.rekey(x): Node v’s key changes to x.

By “scalability” we mean that these operations can also be executed efficiently when performed concur-
rently.

Scalability is an important feature of SHELL. Messages can be routed fast while the traffic is distributed
evenly among nodes. We measure the congestion as follows.

Definition 1.1 (Congestion). The congestion at a node v is the number of packets forwarded by v in a
scenario where each of the n nodes in the system wants to send a message to a random node.

One application of SHELL is a distributed information system resilient to Sybil attacks. Formally, we
will study the following type of attack.

Definition 1.2 (Sybil Attack). Starting with time t0, an attacker joins the network with an arbitrary
number of nodes.

Our goal is to ensure that all nodes that joined the network before t0 are safe against that Sybil attack.

1.2 Our Contributions

The main contribution of this paper is the presentation of a scalable and robust overlay network called
SHELL. SHELL is a distributed heap with join and leave operations with asymptotically optimal runtime.
In contrast to other distributed (as well as many standard sequential) heaps (e.g., PAGODA [3]), SHELL
is oblivious, which allows it to react much more rapidly to dynamic changes: nodes can join in time
O(log n) and leave in time O(1). Another highlight of SHELL is its robustness. For example, we are not
aware of any other structure which allows us to build a distributed information system resilient to Sybil
attacks of arbitrary scale. We also show that SHELL has interesting applications, e.g., it can deal very
efficiently with arbitrary variations in the capacities of the nodes. In summary, our distributed heap has
the following properties.

1. Scalability : Nodes have degree O(log2 n) and the network diameter is O(log n), where n is the
network size. Congestion is bounded by O(log n) on expectation and O(log2 n) w.h.p.2, which is on
par with well-known peer-to-peer networks like Chord [18].

2. Dynamics: Nodes can be integrated in O(log n) time and removed in O(1) time.

3. Robustness: SHELL can be used to build robust distributed information systems, e.g., a system
which is resilient to arbitrarily large Sybil attacks.

4. Heterogeneity : SHELL can organize arbitrarily heterogeneous nodes in an efficient way (e.g., for
streaming).

2By ”with high probability” or ”w.h.p.” we mean a probability of at least 1− 1/poly(n).
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1.3 Related Work

A heap is a standard data structure that has been extensively studied in computer science (e.g., [4]).
There are several types of concurrent heap implementations such as skip queues [15] or funnel trees [16].
Moreover, distributed heaps have been used in the context of garbage collection in distributed programs.
However, none of these constructions can be used to design scalable distributed systems like those consid-
ered in this paper.

A prominent way to build scalable distributed systems are distributed hash tables (or DHTs). Since the
seminal works by Plaxton et al. [12] on locality-preserving data management in distributed environments
and by Karger et al. [8] on consistent hashing, many DHTs have been proposed and implemented, e.g.,
Chord [18], CAN [13], Pastry [14], Tapestry [20], or D2B [7]. While these systems are highly scalable,
they often assume nodes to be homogeneous, and they are vulnerable to various attacks, especially Sybil
attacks that, if large enough, can cause network partitions in these DHTs.

Sybil attacks [6] are an important challenge for open distributed systems. A prominent example is our
email system in which tons of spam emails are created by Sybils to evade filtering. A solution to the Sybil
attack problem in practice is to have new subscribers solve difficult cryptographic puzzles which limits
the rate at which participants can join, or to perform Turing tests to prevent automated subscriptions
and to ensure that a new user is indeed a human being. Most of these solutions are based on centralized
entities. In fact, a well-known result by Douceur [6] claims that in purely decentralized environments, it is
inherently difficult to handle Sybil attacks. Douceur finds that the only means to limit the generation of
multiple identities is to have a trusted authority be responsible for generating them. Bazzi et al. propose a
Sybil defense based on network coordinates [1, 2] in order to differentiate between nodes. Other approaches
are based on social networks [5, 19] and game theory [9]. All of these approaches are aiming at detecting
and/or limiting Sybil attacks. In our paper, we do not aim at preventing Sybil attacks. We assume that
an attacker can indeed connect an unbounded number of nodes to the network (by controlling, e.g., a
botnet). Nevertheless, SHELL remains efficient at any time for those nodes that have already been in the
system before the attack.

As a second application, we demonstrate how SHELL can organize heterogeneous nodes such that
stronger nodes can operate independently of weaker nodes. While many peer-to-peer systems assume
that nodes have uniform capabilities, there have also been several proposals to construct heterogeneous
systems (e.g., [11, 17]). These are usually based on multi-tier architectures but can only handle a certain
subset of the capacity distributions well. The system closest to ours is PAGODA [3] which also constructs
a distributed heap. However, this architecture is not oblivious. The more rigid structure implies that the
system is less dynamic and cannot adapt to bandwidth changes nearly as quickly as SHELL. In fact, a
join and leave operation take O(log2 n) time, and it appears that without major modifications it is not
possible to lower the runtime of the operations to something comparable with SHELL.

2 The SHELL Heap

In this section, we present the SHELL heap. We first introduce the topology and then describe our routing
algorithms.

2.1 The SHELL Topology

The SHELL topology is based on a dynamic de Bruijn graph and builds upon the continuous-discrete
approach introduced by Naor and Wieder [10]. In the classical d-dimensional de Bruijn graph, {0, 1}d
represents the set of nodes and two nodes x, y ∈ {0, 1}d are connected by an edge if and only if there is a
bit b ∈ {0, 1} so that x = (x1 . . . xd) and y = (b x1 . . . xd−1) (i.e., y is the result of a right shift of the bits
in x with the highest bit position taken by b) or y = (x2 . . . xdb). When viewing every node x ∈ {0, 1}d as
a point

∑d
i=1 xi/2

i ∈ [0, 1) and letting d→∞, then the node set of the de Bruijn graph is equal to [0, 1)
and two points x, y ∈ [0, 1) are connected by an edge if and only if x = y/2, x = (1 + y)/2 or x = 2y (mod
1). This motivates the dynamic variant of the de Bruijn graph described in the following.

For any i ∈ N0, a level i interval (or simply i-interval) is an interval of size 1/2i starting at an integer
multiple of 1/2i in [0, 1). The buddy of an i-interval I is the other half of the (i− 1)-interval that contains
I. We assume that every node in the system is assigned to some fixed (pseudo-)random point in [0, 1)
(the node set of the continuous de Bruijn graph above) when it joins the system. We also call this point
its identity or ID. For now, suppose that every node v knows its order nv. Later in this section we present
a local control strategy that allows the nodes to obtain a good estimate on nv. We want to maintain the
following condition at any point in time for some fixed and sufficiently large constant c > 1.
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Condition 2.1. Each node v has forward edges to all nodes w with key(w) < key(v) in the following
three intervals:

• the `v,0-interval containing v (v’s home interval) and its buddy,

• the `v,1-interval containing v/2 and the `v,2-interval containing (1 + v)/2 (v’s de Bruijn intervals)
and their buddies.

v also has backward edges to all nodes that have forward edges to it.
The level `v,0 ∈ N0 of v is chosen as the largest value such that the `v,0-interval containing v contains

at least c log nv nodes w with key(w) < key(v) for some fixed and sufficiently large constant c. If there is
no such `v,0 (i.e., nv is very small), then `v,0 is set to 0. The same rule is used for the selection of the
levels `v,i, i ∈ {1, 2}, using the points (i+ v − 1)/2 instead of v.

The conditions on `v,i suffice for our operations to work w.h.p. If we want guarantees, one would have
to extend the definition of `v,i to lower bounds on the number of nodes in both halves of the `v,i-interval
as well as its buddy, but for simplicity we will not require that here.

The forward edges are related to the upward edges in a standard (min-)heap while the backward edges
are related to the downward edges. However, instead of a tree-like structure, we have a de Bruijn-like
structure among the nodes. Forward edges to the home interval of a node are called home edges and edges
to the de Bruijn intervals de Bruijn edges. Our construction directly yields the following properties.

Fact 2.2 (Oblivious Structure). The SHELL topology only depends on the current set of nodes and their
keys but not on the past.

Fact 2.3 (Forward Independence). The forward edges of a node v only depend on nodes u with key(u) <
key(v).

Recall that every node is given a (pseudo-)random point in [0, 1). Then the following property also
holds.

Lemma 2.4 (Level Quasi-Monotonicity). For any pair of nodes v and w with key(v) > key(w) it holds
that `v,i ≥ `w,j − 1 for any i, j ∈ {0, 1, 2}, w.h.p.

Proof. Recall the definition of nv. Suppose that the level `v,i is chosen so that on expectation, the
corresponding interval of node v contains γ log nv nodes u with key(u) < key(v) for some sufficiently large
constant γ > 1. Then it follows from the Chernoff bounds that v’s interval contains within (1± ε)γ log nv
nodes u with key(u) < key(v), w.h.p. (with respect to nv), where the constant ε > 0 can be made
arbitrarily small depending on γ.

According to Condition 2.1, `v,i is the smallest level so that v has forward edges to at least c log nv
nodes (cf Condition 2.1) in its interval. Then v’s interval of level `v,i + 1 contains less than c log nv nodes
u with key(u) < key(v), which implies that, on expectation, there are at most (1 + ε)c log nv nodes u
with key(u) < key(v) in that interval. This implies that the interval of size 1/2`v,j+2 of any node w with
key(w) < key(v) contains at most (1 + ε)(c log nv)/2 nodes u with key(u) < key(w) on expectation. In
this case, the interval of w would contain at most (1+ε)2(c log nv)/2 nodes u with key(u) < key(w) w.h.p.,
which is less than c log nv if ε is sufficiently small resp. c is sufficiently large. From these arguments, it
follows that there cannot be a node w with key(w) < key(v) and `w,j > `v,i + 1 w.h.p.

In this lemma and the rest of the paper, “w.h.p.” means with probability at least 1 − 1/poly(nv).
Next we bound the degree of the nodes. From the topological conditions we can immediately derive the
following property when using the well-known Chernoff bounds.

Lemma 2.5. Every node v has Θ(c log nv) many forward edges to every one of its intervals and also to
both halves of each of them, w.h.p.

For the backward edges, we have the following bound, where n is the total number of nodes in the
system.

Lemma 2.6. The maximal number of backward edges of a node is limited by O(c log2 n) w.h.p.

Proof. Clearly, the node with smallest key in the system is expected to have the largest number of incoming
forward edges, and hence, focusing on that node v yields an upper bound for all other nodes. Consider
any node w in the system and observe that the expected interval size of w is at most (2c log nw)/nw.
Therefore, since the nodes are distributed uniformly at random over the [0, 1) interval, the probability
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that w has a forward edge to v is at most (2c log nw)/nw for each of its six intervals (normal and buddies),
which implies that the the expected number of forward edges that w has to v is at most (12c log nw)/nw.
When summing up over all nodes, we obtain an expected number of forward edges to v of at most∑

w

12c log nw
nw

≤
n∑
i=1

12c log n
i

∈ O(c log2 n)

This is also true w.h.p. due to the Chernoff bounds.

2.2 Routing

We now present a routing algorithm on top of the described topology. For any pair (u, v) of nodes, the
operation route(u, v) routes a message from node u to node v. The routing operation consists of two
phases: first, a forward(v) operation is invoked which routes a message from node u to some node w with
key(w) < key(u) whose home interval contains v. Subsequently, if necessary (i.e., if w 6= v), a refine(v)
operation performs a descent or ascent along the levels until (the level of) node v is reached. In the
following, we will show how to implement the route(u, v) operation in such a way that a message is only
routed along nodes w for which it holds that key(w) ≤ max{key(u), key(v)}.

Forward(v).

We first consider the forward(v) algorithm, where node u sends a message along forward edges to a
node whose home interval includes node v. Let (x1, x2, x3, . . .) be the binary representation of u and
(y1, y2, y3, . . .) be the binary representation of v (i.e., u =

∑
i≥1 xi/2

i). Focus on the first k = log nu bits
of these representations. Ideally, we would like to send the message along the points z0 = (x1, x2, x3, . . .),
z1 = (yk, x1, x2, x3, . . .), z2 = (yk−1, yk, x1, x2, x3, . . .), . . . , zk = (y1, . . . , yk, x1, x2, x3, . . .). We emulate
that in SHELL by first sending the message from node u along a forward edge to a node u1 with largest
key whose home interval contains z1. u can indeed identify such a node since z1 = z0/2 or z1 = (1+z0)/2,
i.e., z1 is contained in one of u’s de Bruijn intervals, say, I. Furthermore, it follows from Lemma 2.5 that
u has Θ(c log nu) forward edges to each of the two halves of I, w.h.p., and we know from Lemma 2.4 that
every node w that u has a forward edge to, `w,0 ≤ `u,i + 1, i.e., w’s home interval has at least half the size
of I. Hence, u has a forward connection to a node u1 whose home interval contains z1 w.h.p. From u1,
we forward the message along a forward edge to a node u2 with largest key whose home interval contains
z2. Again, u1 can identify such a node since z2 = z1/2 or z2 = (1 + z1)/2 and z1 belongs to the home
interval of u1, which implies that z2 belongs to one of the de Bruijn intervals of u1. We continue that
way until a node uk is reached whose home interval contains zk, as desired. Observe that according to
Lemma 2.4, uk contains v in its home interval as the first k bits of uk and v match and `uk,0 < k, w.h.p.,
so the forward operation can terminate at uk. We summarize the central properties of the forward phase
in three lemmas. The first lemma bounds the dilation.

Lemma 2.7. For any starting node u and any destination v, forward(v) has a dilation of log nu, w.h.p.

Proof. The dilation follows directly from the description of the routing path.

The next lemma is crucial for the routing to be scalable.

Lemma 2.8. In the forward phase, a packet issued by a node u of order nu will terminate at a node of
order at least nu/2 w.h.p.

Proof. Let δi denote the difference between the order of the node which issued the request and the node
reached after the ith hop of the lookup operation. In the first hop, the probability that the node u1 reached
from node u is of order nu − δ1 is equal to

α0 ·
c log nu
nu

·
(

1− c log nu
nu

)δ1−1

for some α0 ≤ 2 which depends on the true interval size that is equal to γ log nu/nu for some constant
γ ∈ [c/2, 2c], w.h.p. To see this, observe that with probability γ log nu/nu, the node of the corresponding
order is indeed in the interval I determined by the first hop, and the probability that the nodes of order
nu − δ + 1, . . . , nu − 1 are not in I is (1− γ log nu/nu)δ1−1. Similarly, for i > 1, the probability that the
node ui+1 is of order nu − δi+1 is equal to

αi ·
c log nui

nui

·
(

1− c log nui

nui

)δi+1−δi−1
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for some αi ≤ 2. Suppose that there is a k ≤ log nu with δk ≥ nu/2, and let k be as small as possible with
that property. Observe that in this case there are at most (nu/2)

(
nu/2
k−1

)
ways to select the δi’s for i ≤ k.

Let δ0 = 0. The overall probability that there is a δk > nu/2 for k ∈ {1, ..., log nu} is at most

lognu∑
k=1

∑
δ1,...,δk

k−1∏
i=0

αi ·
c log nui

nui

·
(

1− c log nui

nui

)δi+1−δi−1

≤
lognu∑
k=1

∑
δ1,...,δk

2lognu

k−1∏
i=0

c log nui

nui

· exp
[
− (δi+1 − δi − 1)

c log nui

nui

]

≤
lognu∑
k=1

∑
δ1,...,δk

nu

k−1∏
i=0

c log nu
nu/2

· exp
[
− (δi+1 − δi − 1)

c log nui

nui

]

≤
lognu∑
k=1

∑
δ1,...,δk

2nu
k−1∏
i=0

c log nu
nu/2

· exp
[
− (δi+1 − δi)

c log nu
nu

]

≤
lognu∑
k=1

∑
δ1,...,δk

2nu

[
c log nu
nu/2

]k
· exp

[
k−1∑
i=0

− (δi+1 − δi)
c log nu
nu

]

≤ 2nu
lognu∑
k=1

(nu/2)
(
nu/2
k − 1

)[
c log nu
nu/2

]k
· exp

[
−δk

c log nu
nu

]

≤ n2
uc log nu

lognu∑
k=1

(
nu/2
k − 1

)k−1 [
c log nu
nu/2

]k−1

· exp
[
−nu

2
· c log nu

nu

]

≤ n2
uc log nu

lognu∑
k=1

(
ec log nu
k − 1

)k−1

e−c lognu/2

≤ n2
uc log nu

lognu∑
k=1

(ec)lognu · e−c lognu/2

≤ n2
uc log2 nu · e−c lognu/4 ∈ O(n−c/8u ).

for a sufficiently large constant c, where exp(·) denotes the exponential function e·. Therefore, with high
probability, the request does not travel further along the ordered node list than to the node of order
nu/2.

As a consequence, we can bound the congestion.

Lemma 2.9. For a random routing problem, the congestion at any node v is O(log nv) on expectation
and O(log2 nv) w.h.p.

Proof. Consider some fixed node v and let I be its home interval. Let us assume that |I| = s where
s = c log nv/nv for some constant c. Consider some fixed de Bruijn path of length k following the bit
sequence b = (x1, . . . , xk) in order to get to interval I. Let I0, I1, . . . , Ik = I be the sequence of intervals
that is passed by the de Bruijn path of length k. Our goal is to bound the expected number of nodes u for
which this de Bruijn path would pass v. For this to hold there must exist a sequence of nodes u0 = u ∈ I,
u1 ∈ I1, u2 ∈ I2, . . ., uk = v that are visited by this path. This sequence is valid (i.e., it would be taken
by our routing strategy) if for each Ij there is no node w of order between ui−1 and ui. Hence, when
defining m = nu−nv, the expected number of nodes for which the de Bruijn path would pass v is at most∑

m≥k

(
m− 1
k − 1

)
sk(1− s)m−k =

∑
m≥k

[m− 1]k−1

(k − 1)!
sk(1− s)−k(1− s)m

≤ sk

(1− s)k(k − 1)!

∑
m≥k

(m− 1)k−1e−s·m

where s is the maximum size that an interval along the de Bruijn path can have w.h.p. Consider the
function fk(x) = xke−s·x. It is not difficult to check that

gk(x) = −
k∑
i=0

[k]i
si+1

xk−ie−s·x

6



satisfies g′(x) = f(x). Hence,∫ ∞
x=k

fk(x)dx = [gk(x)]∞x=k = −gk(k) = O

(
k!
sk+1

e−s·k
)

which implies that in our case that (after taking the rounding effects into account, which is not too
difficult),

∑
m≥k

(
m− 1
k − 1

)
sk(1− s)m−k = O

(
sk

(1− s)k(k − 1)!
· (k − 1)!

sk
e−s(k−1)

)
= O(1).

In order to determine the expected number of nodes whose packets pass v when using a random routing
problem, we have to take into account that there are 2k possibilities for a de Bruijn path of length k and
the probability that a particular path is used by a packet is 1/2k. Since every packet passing v travels
for at most O(log nv) hops due to the previous lemma, w.h.p., it follows that the expected congestion at
v during the forward phase is O(log nv).

It remains to provide a bound on the congestion that holds w.h.p. We know from above that only
nodes of order between nv and 2nv pass messages through v, w.h.p. These nodes send their messages
along routing paths of length at most log(2nv) using intervals of size at most 2c log nv/nv, w.h.p. Since the
nodes have random positions in [0, 1) and the destinations of the packets are chosen uniformly at random,
the probability that a packet from the node of order between nv and 2nv passes through the interval of v
in its ith hop is at most 2c log nv/nv. Hence, the expected number of packets passing through the interval
of v is at most

nv log(2nv) ·
2c log nv
nv

∈ O(c log2 nv)

This bound also holds w.h.p. as the number of origins of relevant packets is nv w.h.p., the path lengths of
these packets are at most log(2nv) w.h.p. and the interval sizes used are at most (2c log nv)/nv w.h.p, and
given that these three properties are true, the probability bounds for the relevant nodes to send packets
through v’s interval hold independently of each other. This completes the proof.

Refine(v).

Recall that once the forward(v) operation terminates, the packet has been sent to a node w that contains
the location of v in its home interval. In a second refining phase refine(v), the packet is forwarded
to the level of v in order to deliver it to v. First, suppose that the packet reaches a node w with
key(w) > key(v). According to Condition 2.1, w has forward connections to all nodes x in its home
interval with key(x) < key(w). Hence, w has a forward edge to v and can therefore directly send the
packet to v.

So suppose that the packet reached a node w with key(w) < key(v). In this case, w may not be
directly connected to v since there will only be a forward edge from v to w (and therefore a backward edge
from w to v) if w is in v’s home interval, which might be much smaller than w’s home interval. Therefore,
the packet has to be sent downwards level by level until node v is reached. Suppose that w is at level ` in
its home interval. We distinguish between two cases.

Case 1 : nv ≤ (3/2)nw. Then v and w can be at most one level apart w.h.p.: Since the interval size
of w can be at most 2(1 + δ)c log nw/nw for some constant δ > 0 (that can be made arbitrarily small
depending on c) w.h.p., two levels downwards there can be at most (1 + δ)2c log nw/2 nodes left in a home
interval of that level that w has forward edges to, w.h.p. Moreover, there can be at most an additional
(1 + δ)(nw/2)(1 + δ)c log nw/(2nw) = (1 + δ)2c log nw/4 nodes that v has forward edges to, which implies
that the level of v must be larger than ` + 2 w.h.p. Thus, w is either in v’s home interval or its buddy,
which implies that v has a forward edge to w (resp. w has a backward edge to v), so w can deliver the
packet directly to v.

Case 2 : nv > (3/2)nw. Then there must be at least one node x with key(w) ≤ key(x) < key(v) that
is in the `+ 1-interval containing v (which might be w itself) w.h.p. Take the node with largest such key.
This node must satisfy nx ≤ (3/2)nw w.h.p., which implies that it is at level ` or ` + 1 by Case 1, so w
has a backward edge to that node and therefore can send the packet to it. The forwarding of the packet
from x is continued in the same way as for w so that it reaches node v in at most log nv hops.

For the refine operation, the following lemma holds.

Lemma 2.10. For any starting node w and any node v, the refine(v) operation has a dilation of O(log nv).
Furthermore, the congestion at any node u is at most O(c log nu) w.h.p.
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Proof. The dilation follows directly from the fact that the remaining worst-case distance to v is cut in
half in each hop. Thus, it remains to bound the congestion. Here, we only need to focus on the case
that key(v) > key(w) since otherwise the packet is directly delivered to v, giving a congestion of at most
O(c log nw) w.h.p. since the destinations are chosen uniformly at random.

So suppose that key(v) > key(w). Observe that w only receives packets from nodes of order at most
2nw in the forward phase of the routing w.h.p. and the probability that the v lies in the home interval of
w is at most 2c log nw/nw, which gives an expected number of at most 4c log nw packets. This is also the
bound on the expected total number of packets that the level-` nodes whose home interval contains v start
the refinement phase with. This expected number is cut in half as the packets are sent down the levels.
Hence, the total expected number of packets that a level ` node u has to forward during the refinement
phase is at most

∑
i≥0

4c lognu

2i ≤ 8c log nu. A bound of O(c log nu) can also be shown to hold w.h.p., using
Chernoff bounds, which completes the proof.

2.3 Join and Leave

Open distributed systems need to incorporate mechanisms for nodes to join and leave. Through these
membership changes, the size of the network can vary significantly over time. A highlight of SHELL is its
flexibility which facilitates very fast joins and leaves.

Join

We first describe the join operation. Recall that each node v is assigned to a (pseudo-)random point in
[0, 1) when it joins the system. For the bootstrap problem, we assume that node v knows an arbitrary
existing node u in the system which can be contacted initially. Then the following operations have to be
performed for x ∈ {v, v/2, (1 + v)/2}:

1. forward(x): Route v’s join request along forward edges to a node w with key(w) ≤ key(u) whose
home interval contains x.

2. refine(x): Route v’s join request along forward or backward edges to a node w′ with maximum key
≤ key(v) that contains x in its home interval.

3. integrate(x): Copy the forward edges that w′ has in its home interval and buddy to v (and check
Condition 2.1 for the involved nodes).

Here, we use a slight extension of the refine operation proposed for routing. If key(v) > key(w), there is
no change compared to the old refine operation. However, if key(v) < key(w), then we have to send v’s
join request upwards along the levels till it reaches a node w′ with maximum key ≤ key(v) that contains
v in its home interval. This is necessary because w may not have a forward edge to w′.

Observe that a membership change can trigger other nodes to upgrade or downgrade. To capture these
effects formally, we define the update cost as follows.

Definition 2.11 (Update Cost). The total number of links which need to be changed after a given operation
(e.g., a single membership change) is referred to as the update cost induced by the operation.

Theorem 2.12. A join operation terminates in time O(log n) w.h.p. The update cost of a join operation
is bounded by O(c log2 n) w.h.p.

Proof. The upwards routing is done as follows. Suppose that w is at level `. We distinguish between two
cases.

Case 1: nv ≥ 2nw/3. Then v and w are at most one level apart w.h.p. Since the interval size of w
must be at least (1−δ)c log nw/nw for some constant δ > 0 (that can be made arbitrarily small depending
on c) w.h.p., one level upwards there must be, on expectation, at least (1 − δ)2c log nw nodes u in the
home interval of that level containing w with key(u) < key(w). Since nv ≥ 2nw/3, 2/3 of these nodes
u satisfy key(u) < key(v) on expectation, and therefore there are at least (1 − δ)2(4/3)c log nw nodes u
one level upwards with key(u) < key(v) w.h.p. Hence, v’s level cannot be higher than `− 1. Since w has
forward edges to all nodes in the (`− 1)-interval containing w in their home interval, w also has a forward
edge to the node w′ with maximum key ≤ key(v), so w can directly deliver v’s join request to w′.

Case 2: nv < 2nw/3. Then there must be at least one node x with key(v) < key(x) < key(w) that is
in level `− 1 and contained in the interval containing v w.h.p. Node w takes the node with smallest such
key and forwards v’s join request to it. This is continued until the desired node w′ is reached.

Hence, operations forward(v) and refine(v) can be performed in logarithmic time. For integration, a
two-phase mechanism is used. First, node w′ helps node v to get integrated into all higher levels that the
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two nodes share. This can be done very efficiently (i.e., in constant time). Subsequently, node v has to
collect information for its backward edges which are obtained by a descent to the bottom level like in the
original refine operation.

The time bound follows directly from Lemmas 2.7 and 2.10. For the update cost, consider any interval
I in some level that contains the new node v. Suppose for the moment that all nodes u belonging to some
interval I at level ` use the same threshold c log n′ for some parameter n′. Then at most one of them will
downgrade its level as no two of them can have the same number of forward edges in I. In reality, we know
that nodes can only have orders differing by a factor of at most 4 in order to belong to the same level. In
that case, their thresholds differ by at most an additive 2c, so at most 2c nodes of those belonging to the
same level can downgrade their level. Since we have at most log n levels, the bound on the update work
follows w.h.p.

Leave

If a node v leaves in SHELL, it suffices for its neighbors to drop v from their neighbor list, which can be
done in constant time. Some of the nodes may then have to upgrade one of their intervals to a higher
level. Consider some node w that upgrades one of its intervals, say, I. In this case, the new I is equal to
the old I and its buddy. In order to learn about its new buddy, it has to contact nodes in the next higher
level whose home interval is equal to the new I. Since w knows these nodes, it can directly contact them
and then gets all the necessary contact information for the new buddy. Hence, all level upgrades are done
in constant time w.h.p. More specifically, we get:

Theorem 2.13. The leave operation takes a constant number of communication rounds w.h.p. Moreover,
the update cost induced at other nodes (cf Definition 2.11) is bounded by O(c log2 n) w.h.p.

Proof. The number of nodes that need to upgrade their level can be bounded in the same way as for the
downgrades for the join operation. Hence there are at most O(log n) upgrades w.h.p. Each node that
upgrades its level has to learn about at most O(c log n) new contacts w.h.p. Thus, in the worst-case,
summing up over all levels, the update cost per leave is at most O(c log2 n).

2.4 Rekey

There are applications where node keys are not static and change over time. For instance, in the hetero-
geneous peer-to-peer system described in Section 3, the available bandwidth at a node can decrease or
increase dynamically. Our distributed heap takes this into account and allows for frequent rekey opera-
tions. Observe that we can regard a rekey operation as a leave operation which is immediately followed
by a join operation at the same location in the ID space but maybe on a different partition level. While
a node can downgrade in constant time, decrease key operations require collecting additional contact
information, which takes logarithmic time. From our analysis of join and leave operations, the following
corollary results.

Corollary 2.14. In SHELL, a node can perform a rekey operation in time O(log n), where n is the total
number of nodes currently in the system. The update cost induced at other nodes (cf Definition 2.11) is
at most O(c log2 n).

2.5 Estimation of the Order

So far, we have assumed that nodes know their order in order to determine their level. Of course, an exact
computation takes time and may even be impossible in dynamic environments. In the following, we will
show that sufficiently good approximations of the correct partition level i can be obtained by sampling.

In order to find the best intervals, a node v counts the number B(j) of nodes in a given j-level interval
it observes. Ideally, the smallest j with the property that the home interval contains at least c log nv nodes
of lower keys defines the forward edges. We now prove that if decisions are made with respect to these
B(j), errors are small in the sense that the estimated level is not far from the ideal level i.

Concretely, at join time, nodes do binary search to determine the level i according to the following rule:
if j > B(j)/c− logB(j) then level j is increased, and otherwise, if j < B(j)/c− logB(j), j is decreased,
until (in the ideal case) a level i with i = B(i)/c− logB(i) is found (or the level i closest to that).

The following lemma shows that this process converges and that the search algorithm efficiently de-
termines a level which is at most one level off the ideal level with high probability.

Theorem 2.15. Let î be the level chosen by the sampling method and let i be the ideal level. It holds that
|̂i− i| ≤ 1 w.h.p.
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Proof. Suppose that in a level j interval, a node v observes B(j) = α · c log nv many nodes with smaller
key for some parameter α. Ideally, B(j) should be equal to the expected number of nodes in level j, i.e.,

B(j) =
nv
2j

⇒ nv = B(j) · 2j .

In this case,

1
α
B(j) = c log nv = c log(2jB(j))

= c(j + logB(j)),

and therefore,

j =
B(j)
αc
− logB(j).

The first derivative of this function is monotonic, and hence the function has a single extremal value,
facilitating binary search. The monotonicity can be used by v to determine the (closest) level i with
i = B(i)/c− logB(i).

Unfortunately, the world is not ideal and it may hold for B(j) that B(j) = (1± δ)αc log nv instead of
the ideal value αc log nv at level j. In this case, it holds that

nv =
B(j)
1± δ

· 2j

and therefore,
1

α(1± δ)
B(j) = c log nv = c(j + log(B(j)/(1± δ))

which implies that

j =
B(j)

(1± δ)αc
− log(B(j)/(1± δ)).

Since δ > 0 can be bounded by an arbitrarily small constant depending on c, w.h.p., the deviation between
the level î found in that way and the ideal level i is at most one w.h.p., completing the proof.

3 Applications

A distributed and oblivious heap structure turns out to be very useful in various application domains.
This section gives two examples. We first describe a fault-tolerant information system called i-SHELL
which is resilient to Sybil attacks of arbitrary scale. Second, we show how our heap can be used to build
a heterogeneous peer-to-peer network called h-SHELL.

3.1 A Robust Information System

In order to obtain a robust distributed information system, we order the nodes with respect to their
join times (i-order). Concretely, key(v) is equal to the time step when v joined the system. For the
bootstrap problem, we assume the existence of a network entry point assigning time-stamps to the nodes
in a verifiable way (by using, for example, a digital signature scheme). Recall that for this choice of the
keys the forward connections of a node only depend on older nodes. Moreover, whenever two nodes u and
v want to exchange messages, our routing protocol makes sure that these messages are only forwarded
along nodes w that are at least as old as u or v. This has the following nice properties:

Churn Suppose that there are some nodes frequently joining and leaving the system. Then the more
reliable nodes can decide to reject re-establishing forward edges to such a node each time the node is
back up, forcing it to obtain a new join time stamp from the entry point so that it can connect back
to the system. In this way, the unreliable nodes are forced to the bottom of the SHELL system so that
communication between reliable nodes (higher up in SHELL) will not be affected by them.

Sybil Attacks Suppose that at some time t0 the adversary enters the system with a huge number of
Sybil nodes. Then any two nodes u and v that joined the SHELL system before t0 can still communicate
without being affected by the Sybils. The Sybils may try to create a huge number of backward edges to
the honest nodes, but an honest node can easily counter that by only keeping backward edges to the T
oldest nodes, for some sufficiently large threshold T . Moreover, Sybils could try to overwhelm the honest
nodes with traffic. But also here the honest nodes can easily counter that by preferentially filtering out
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packets from the youngest nodes in case of congestion, so that packets from nodes that joined the system
before t0 can still be served in a timely manner.

Robust DHT We can combine SHELL with consistent hashing in order to convert it into a DHT that
is robust to the Sybil attacks described above. Recall that in the consistent hashing approach we have a
(dynamic) set of nodes V and a (dynamic) set of data D. There are two (pseudo-)random hash functions
h : V → [0, 1) and g : D → [0, 1) that map nodes and data to points in [0, 1). Each data item d ∈ D is
stored at the node v ∈ V with h(v) being the closest predecessor of g(d) in [0, 1) among all values h(w),
w ∈ V . It is known that such a mapping can be efficiently updated as nodes join and leave which is why
it is used in systems like Chord.

Suppose now that a node v wants to store data item d in SHELL. Then it uses the forward(g(d))
protocol to forward d to a node w with key(w) < key(v) that contains g(d) in its home interval. Node
w (or all nodes w has forward edges to in its home interval if redundancy is required) will then store d.
In addition to that, (a copy or reference to) d is stored in a node in each of the lower levels using the
refine(g(d)) operation so that nodes never have to search for data in higher levels. Since nw > nv/2 w.h.p.,
the data will be distributed among the nodes as if stored in a flat DHT like Chord so that all of the nice
data management properties of these systems also basically hold in SHELL.

If a node wants to find a data item d, it first uses the forward(g(d)) protocol to forward the request
for d to a node w with key(w) < key(v) that contains g(d) in its home interval. If none of w’s forward
or backward neighbors contains d, d is searched by contacting all nodes in the intervals containing g(d)
at lower levels, until d is found or the bottom level is reached. In this way, d is found if it exists in the
system.

One can show the following result:

Theorem 3.1. The insert, delete and find operations have a runtime of O(log n), where n is the number
of nodes currently in the system, and their congestion is bounded by O(log2 n).

3.2 A Heterogeneous Peer-to-Peer Overlay

As a second example, we sketch how to use our heap structure to build a peer-to-peer overlay called
h-SHELL. h-SHELL takes into account that nodes can have heterogeneous bandwidths. The system can
be used, e.g., for streaming. In h-SHELL, key(v) is defined as the inverse of the bandwidth of v, i.e., the
higher its bandwidth, the lower its key and therefore the higher its place in h-SHELL. Nodes may propose
a certain bandwidth, or (in order to avoid churn) its neighbors in h-SHELL are measuring its bandwidth
over a certain time period and propose an average bandwidth value for a node v that may be used for its
key. When the bandwidth at a node changes, a fast rekey operation will reestablish the heap condition.

From the description of the SHELL topology it follows that whenever two nodes u and v communicate
with each other, only nodes w with a bandwidth that is at least the bandwidth of u or v are used for that.
Thus, in the absence of other traffic, the rate at which u and v can exchange information is essentially
limited by the one with the smaller bandwidth. But even for arbitrary traffic patterns h-SHELL has a
good performance. Using Valiant’s random intermediate destination trick, the following property can be
shown using the analytical techniques in PAGODA [3].

Theorem 3.2. For any communication pattern, the congestion in h-SHELL in order to serve it is at
most by a factor of O(log2 n) higher w.h.p. compared to a best possible network of bounded degree for that
communication pattern.

This is worse than PAGODA since PAGODA can achieve an overhead of O(log n) w.h.p., but PAGODA
has the disadvantage to be very slow to changes in the system. Due to the oblivious property, h-SHELL
is more flexible and allows for much higher churn rates or more frequent bandwidth changes.

4 Conclusion

The runtime bounds obtained for SHELL are optimal in the sense that scalable distributed heaps cannot
be maintained at asymptotic lower cost. In future research, it would be interesting to study the average
case performance and robustness of SHELL “in the wild”.
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