
Robust Live Media Streaming in Swarms

Thomas Locher, Remo Meier,
Roger Wattenhofer

Computer Engineering and Networks Laboratory
ETH Zurich

8092 Zurich, Switzerland
{lochert,remmeier,wattenhofer}@tik.ee.ethz.ch

Stefan Schmid
Chair for Efficient Algorithms

TU Munich
85748 Garching

schmiste@in.tum.de

ABSTRACT
Data dissemination in decentralized networks is often realized by
using some form of swarming technique. Swarming enables nodes
to gather dynamically in order to fulfill a certain task collabora-
tively and to exchange resources (typically pieces of files or pack-
ets of a multimedia data stream). As in most distributed systems,
swarming applications face the problem that the nodes in a network
have heterogeneous capabilities or act selfishly. We investigate the
problem of efficient live data dissemination (e.g., TV streams) in
swarms. The live streams should be distributed in such a way that
only nodes with sufficiently large contributions to the system are
able to fully receive it—even in the presence of freeloading nodes
or nodes that upload substantially less than required to sustain the
multimedia stream. In contrast, uncooperative nodes cannot prop-
erly receive the data stream as they are unable to fill their data
buffers in time, incentivizing a fair sharing of resources. If the
number of selfish nodes increases, our emulation results reveal that
the situation steadily deteriorates for them, while obedient nodes
continue to receive virtually all packets in time.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-
Communication Networks

1. INTRODUCTION
Over the past years, decentralized systems have continued to

replace traditional client-server based systems as the preferred
method to quickly and efficiently disseminate bulk data. Likewise,
in live media distribution, the same paradigm shift from central-
ized to decentralized and self-organizing systems can be observed
(e.g., several commercial products for Internet television such as
JumpTV1 or PPLive2 use a decentralized architecture).

A popular technique for data dissemination in decentralized sys-
tems is swarming: nodes with similar interests dynamically gather
in order to fulfill a particular task or to share certain resources. For
this purpose, the nodes build an overlay network as a virtual routing
1See http://www.jumptv.com/.
2See http://www.pplive.com/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’09, June 3–5, 2009, Williamsburg, Virginia, USA.
Copyright 2009 ACM 978-1-60558-433-1/09/06 ...$5.00.

infrastructure. Swarming has its roots in peer-to-peer systems, but
has become a technique of its own merit. The swarming paradigm
is expected to play an increasingly important role in the Internet in
the future.

Unlike in classic content distribution applications, nodes in a
swarm participate in the distribution of data and thereby alleviate
the content servers. In case of live data (e.g., live media streaming),
small buffers are used to hold the data to be played in the next few
seconds, and all data blocks have to be received in time. If a given
data block is not available locally when the buffer content is to be
fetched, an underflow will occur, resulting in a reduced playback
quality. Hence, the required liveness of all data blocks is crucial.

Since any system that depends on the correct functioning of a
centralized authority also exhibits a single point of failure, decen-
tralized systems are the preferred solution for various purposes.
However, in contrast to a centrally monitored system, a decentral-
ized system has the disadvantage that the notorious problem of self-
ish nodes, i.e., nodes that act in their own best interest, cannot be
handled easily. In fact, as decentralized systems depend on the
correct behavior of the nodes, ensuring that it is in the best inter-
est of selfish nodes to adhere to the given protocols is one of the
most essential problems in decentralized networking. Since there
is a trend towards decentralization in many areas of networking,
the problem of selfishness will likely gain increasing importance in
the future. In the context of efficient data dissemination, a selfish
node may consume resources but refuse to offer any service to the
system by uploading data to other nodes. While this normally re-
sults in an overall loss of efficiency as the average download time
for any given file in the system increases, these so-called free rid-
ers can greatly harm the quality of a broadcast for potentially all
nodes in live streaming applications due to the underflows they in-
flict by refraining from providing the required data blocks to their
neighboring nodes.

In some sense, eliminating free riders from live streaming sys-
tems is easier than in on-demand content distribution systems. If it
can be guaranteed, by taking appropriate measures, that free riders
are much more likely to suffer from underflows, they will proba-
bly leave the system quickly as the experienced playback quality is
poor. Moreover, due to the typical repeated interactions between
the same nodes, tit-for-tat-based mechanisms can be employed and
thus free riders can be identified and penalized. Nevertheless, pro-
viding incentives to cooperate in live streaming swarms is still a
challenging problem mainly due to the stringent timing constraints.

Thus, the goal of our mechanism for live streaming in swarms
is to identify free riders quickly and to guarantee that these nodes
receive a restricted amount of data such that it is not worthwhile for
them to remain in the system. It must further ensure that, even if
a certain unavoidable amount of bandwidth is wasted, all the obe-
dient and resource-rich nodes do not suffer from underflows, i.e.,
the quality they experience does not deteriorate in the presence of

selfish nodes.
In this paper, we argue that the neighbor selection strategy and

the data distribution paths strongly influence the success of any
incentive mechanism. In order to illustrate this point, we imple-
mented our strategies and performed extensive emulations. By ad-
equately tuning the incentive mechanism, we achieve a high level of
robustness in that obedient nodes always have a satisfactory stream-
ing quality even if a large percentage of all nodes do not provide
current data blocks quickly enough or no blocks at all. Moreover,
selfish nodes are caught rapidly, and other nodes cease to provide
data blocks to them.

The remainder of this paper is organized as follows. In the sub-
sequent section (Section 2), related literature is reviewed. Our fair-
ness mechanism is presented in detail in Section 3; results of our
emulations are discussed in Section 4. Finally, the paper concludes
in Section 5.

2. RELATED WORK
Free riding is a threat to every system depending on the contri-

butions of all its participants. The existence of free riders in peer-
to-peer (p2p) file sharing systems has been pointed out in several
papers, e.g., [1, 7]. In the last few years, several mechanisms to
deter nodes from freeloading have been proposed, although mainly
in the context of peer-to-peer file sharing applications.

One approach to cope with selfish nodes is to maintain private
histories of good and bad nodes [5, 9]. The limited scalability
of this approach and also the zero-cost nature of online identities
in most systems, which can be exploited by creating new iden-
tities when needed (white-washing) or by creating several identi-
ties at the same time (Sybil attack [3]), renders this solution fairly
ineffective. The same holds for rank-based node-selection mech-
anisms [6] where, using scores, cooperation is achieved through
service differentiation. A drawback of this approach is that it is
difficult and costly to ensure that malicious nodes cannot tamper
with the used scores. Moreover, the preference of the best suppli-
ers might quickly result in a clustered topology which might cause
the entire swarm to come apart. Thus, it is hard to maintain a robust
swarm topology with a bounded delay, which requires a relatively
small diameter, in case neighbors are selected strictly according to
a rank-based policy. An improved solution along the same line is to
leverage the opinion of other nodes, for example, by sharing a com-
mon history. Systems based on this principle usually face two chal-
lenges. First, storage and communication is needed to store, update,
and query ranking information. Implementations either use central-
ized servers or incur a high communication overhead by building a
distributed alternative. Second, such systems are vulnerable to col-
lusions of malicious nodes which might improve their ranking by
recommending each other. Collusions can be overcome by adopt-
ing subjective shared histories [4, 8] where nodes favor other nodes
that share a “similar opinion.” A related mechanism is the use of
micro-payments; e.g. KARMA [21] uses a single currency as a way
of secure trading. Problems of this approach include counterfeiting,
collusions, and the inflation and deflation of the currency caused by
the permanent arrival and departure of nodes.

Due to the relatively large overhead and the strict bandwidth re-
quirements of live streaming, mechanisms based on sharing large
histories with their neighbors are not viable solutions for live me-
dia dissemination. A popular and simple alternative to shared his-
tories are tit-for-tat mechanisms (e.g., cf. [10]), where nodes de-
cide locally whether any of its neighbors is served depending on
the respective neighbor’s contribution. Clearly, one of the two par-
ties must start sending packets to prevent deadlocks and starvation
and thereby risks supporting free riding nodes. Thus, the chal-
lenge of this approach is to specify when to send data blocks for

free to a requesting node. Naturally, pure tit-for-tat is only feasible
for protocols where packets are exchanged over bidirectional links,
which immediately excludes systems based on directed acyclic
graphs, e.g. [14], and hence also tree-based protocols. Attempts
to overcome this limitation for trees usually include the splitting of
streams into stripes [2, 20] and periodically rebuilding the trees to
revert the parent-child roles. A parent can then punish a child that
refused to upload in a former tree where the parent-child relation
was inverse (e.g., [13]).

Because of the somewhat rigid data paths in tree-based systems,
it is easier to realize incentive-compatibility in systems that do
without trees, e.g., in systems such as Chainsaw [16] whose under-
lying topology is reminiscent of random graphs. However, it has
been pointed out that using simple random topologies and a pull-
based data distribution mechanism, tit-for-tat-based approaches
work poorly [15]. In this paper, we show that the neighbor se-
lection strategy is crucial, and that by carefully mixing explicit re-
quests for missing data (pull operations) with push operations [11,
22] where data is immediately forwarded to neighboring nodes, the
risk of node starvation and deadlocks can be greatly reduced. This
implies that it is possible to discriminate against free riders by us-
ing simple tit-for-tat based mechanisms given a suitable network
structure. The mechanism closest to ours is Swift [19], a credit-
based incentive mechanism originally intended for p2p file sharing.
Unfortunately, if applied directly, the Swift approach suffers from
deadlocks and is not resilient to large view exploits [12, 18].

3. FAIRNESS MECHANISM
The objective of our fairness mechanism is to identify and fend

off nodes in a swarm with upload rates substantially smaller than
the bitrate of the data stream. We face the challenge that nodes
that are eager to contribute but currently do not have to offer any
data—e.g., because they have just joined the swarm—, should not
be excluded.

In the following, we will give a short overview of our tech-
niques. Our mechanism exploits some properties of live streaming
which do not appear in file sharing systems. In live streaming, all
nodes of a swarm are interested in the same data within the same
time-frame. This mutual interest in each other’s packets facilitates
pair-wise fair exchanges which are hard to achieve in file sharing
systems. We employ a novel form of time-constrained tit-for-tat
exchanges which seeks to allocate an equal share of a node’s up-
load bandwidth to each of its neighbors. This is in stark contrast
to rank-based systems which typically strive to provide most data
blocks to the best contributors among all neighboring nodes, often
resulting in a skewed data distribution. Another crucial property
of live streaming is that the quality degrades quickly with a larger
number of buffer underflows: Nodes receiving less than roughly
80% of the packets of a live video stream are not able to watch it
in reasonable quality,3 and hence free riders can be punished easily
by merely reducing the stream rate to them. However, note that it is
nevertheless a waste of resources to upload any data to those nodes,
and it ought to be avoided.

In Section 3.1, we present the neighbor selection strategy of our
mechanism. Subsequently, the incentive-compatible data distribu-
tion policy is described.

3There are video coding schemes that allow playback in reduced
quality if parts of the stream are missing. However, these solutions
typically employ a pyramid-like structure with multiple coding lay-
ers to gain acceptable performance, and hence our fairness mech-
anism can be applied on each such layer: Blocks of one layer are
only useful if all blocks in lower layers are fully received.

3.1 Neighbor Selection Strategy
In order to maintain desirable swarm properties such as a small

diameter, locality awareness and robustness to churn, our mecha-
nism builds upon a hypercubic overlay network [11] as it is used in
the context of distributed hash tables (DHT), for instance in Pas-
try [17]. Nodes maintain connections to other nodes in the overlay
according to the lengths of the shared prefixes of their respective
identifiers, where the node identifiers are determined, e.g., by ap-
plying a hash function to the node’s addresses in the underlying
network. In particular, each node strives to maintain a connection
to at least one other node whose identifier starts with the same i bits
as its own identifier for each i ≥ 0. Assuming that the hash func-
tion maps addresses to identifiers uniformly at random, the length
of the longest shared prefix is bounded by O(logN) in a swarm
containing N nodes, thus only O(logN) connections need to be
maintained. Note that this overlay is merely used as an efficient
streaming topology—no data is stored in the DHT. In our incentive
mechanism, we exploit the DHT’s flexibility to choose a neighbor
to replace nodes with poor upload bandwidth by better ones.

Initially, a node is assigned a random set of neighbors. Over
time, a refinement process takes place as nodes learn about other
nodes from their neighbors and add them to their routing table.
While new nodes are selected depending on the latency measured,
in order to achieve a certain locality-awareness, existing neighbors
are continuously evaluated according to their bandwidth contribu-
tions: Each node maintains a score for each of its neighbors which
represents the total number of blocks it has received from this
neighbor during the last 5 seconds. All neighbors are then ranked
with respect to this score. After 10 to 20 seconds, the neighbors
having the worst ranks are dropped. Furthermore, each node has a
small cache of nodes which have recently been replaced and whose
connection requests are rejected immediately. However, these op-
timizations respect the condition that at least one node for each
length i of the shared prefix must be retained, i.e., a node v can
only be substituted if v is not the only node that shares a prefix of
a specific length i. This restriction ensures that the network topol-
ogy is connected and hypercubic, and the diameter of the overlay
remains bounded at any time.

Although bad nodes are dropped quickly, an unfortunate node
may have many free riding neighbors in case of a large fraction of
free riders. Therefore, it is vital that every node have an adequate
minimum degree. In our protocol, each node has at least 25 neigh-
bors, which, according to our emulations, works well for swarms
up to 10,000 nodes.4

3.2 Data Distribution Policy
A key feature of our incentive mechanism is the addition of a

push-based data distribution to the pull-based exchanges, which
will be discussed afterwards. Fresh data blocks are pushed directly
to a fraction of the nodes without preceding requests, in order to
fuel the subsequent pull-based exchanges and to achieve low laten-
cies in the swarm. Packets are pushed to specific neighbors depend-
ing on the prefixes of the nodes’ identifiers and the number of hops
the packets have already taken. As a simple example, the source
may choose up to 2k − 1 nodes for a small k (e.g., k = 2) with the
property that the k-bit prefixes of the identifiers of any two nodes
differ in at least one bit and are also different from the k-bit prefix
of the identifier of the source. The source will then push the packet
to these nodes. A node that receives such a packet proceeds accord-
ingly, but it selects (up to 2k−1) nodes whose identifiers start with
the same k bits as its own identifier and whose identifiers differ in
at least one bit in the next k bits of the identifier etc. It is not hard

4Naturally, the degree will grow logarithmically as the swarm size
increases.

to see that no node can receive the same packet more than once.5

Note that while fresh data blocks are distributed on trees induced
by prefixes of node identifiers, the topology is still hypercubic and
every data block may be pushed along a different induced tree.
What is more, only a small fraction of all data blocks are received
by means of pushing operations. Therefore, our approach does not
have the shortcomings of topologies consisting of one or more trees
where it is inherently difficult to add a good fairness mechanism.
Moreover, the hypercubic nature of the neighbor selection strategy
often allows to choose among several neighbors to forward push
packets, which in turn allows nodes to favor neighbors with high
scores.

The majority of data blocks are received during the pulling phase
by explicitly requesting them from the neighboring nodes (pull op-
eration). The pull phase facilitates the adoption of a simple and
practical fairness mechanism. Furthermore, explicit requests avoid
redundant transmissions while being self-organizing and—at least
to a certain extent—robust to dynamic changes. In our mechanism,
nodes having received new data blocks notify their neighbors about
the corresponding sequence numbers. A node interested in such a
block then sends a request message. If multiple nodes offer the
same block, the least used neighbor is selected for the download.
Download slots are allocated to neighbors to avoid overloading
nodes, where each neighbor receives the same amount of download
slots. Both the request strategy and slot allocation are designed
towards a uniform block trading with all neighbors.

The proposed algorithm combines a tit-for-tat like exchange with
a certain “altruistic factor” to accommodate for newly joined nodes.
Let sAB(t) and rAB(t) denote the number of packets A has sent
to B and A has received from B, respectively, within the last
t seconds. Let further hδ(i1, i2, . . . , in) be a hash function that
takes inputs i1, i2, . . ., in and produces a hash value in the range
{0, . . . , δ− 1}. Besides having an unused download slot available,
a request from a node A to a node B for a packet with sequence
number seq is granted if at least one of the following two condi-
tions is satisfied.

Node A is allowed to request any data block from B whenever
it has sent more to B than requested from B. This can be further
generalized by defining a repayment ratio α ≤ 1 that has to be
satisfied:

α · rAB(t) < sAB(t).

Naturally, either A or B has to start sending by giving the other
party a certain credit γ ≥ 1. This allows the other party to issue an
initial request without having provided anything. In order to ensure
that this cannot be exploited by selfish nodes to obtain all blocks
for free by maintaining a large number of neighbors, the credit is
always limited to a subset of all current blocks, determined by the
address addrA of the requesting node and the sequence number
seq of the requested block. For example, assuming that the hash
function produces uniformly distributed hash values, the following
condition limits the credit to about 1

δ
of all blocks:

(α(rAB(t)− γ) < sAB(t)) ∧ (hδ(addrA, seq) = 0).

It is crucial to prevent newly joined nodes willing to contribute
from being excluded because they do not have anything to offer.
Getting a credit and pushing new blocks to ensure that they can
spread quickly is sufficient to achieve this goal as we will show in
Section 4.

Choosing the repayment ratio α to be equal to 1 is natural as
every node expects the same amount of blocks in return. The sub-
sequent evaluation section also shows that setting the credit γ to 1

5For a more detailed discussion of pushing on hypercubic overlays,
the reader is referred to the pertinent literature, e.g., [11].

and δ to 2 results in basically no underflows for all honest nodes
and that selfish nodes are never able to receive enough data blocks
to view the broadcast. Of course, the quality still depends strongly
on the number of disobedient nodes in the system. As we have
argued before, the number of such nodes can reasonably expected
to be small, because these nodes have no incentives to stay in the
swarm. Nevertheless, we will show that the fairness mechanism
works reliably even if the percentage of selfish nodes is large.

Observe that while this solution successfully discriminates
against selfish nodes, it is not resilient to malicious attacks: A ma-
licious node can simply request the same packet again and again
from different nodes. Although these repeated downloads are of no
use, valuable bandwidth is wasted. Unfortunately, it seems inher-
ently difficult to counter such an attack.

4. EVALUATION
We have performed several emulations in order to study the pro-

posed mechanisms in different environments. First, a scenario is
considered with a fraction of free riding nodes which completely
refrain from uploading anything. We then study a heterogeneous
swarm where some nodes have a poor Internet connection and are
not able to upload a sufficient amount of blocks in order to receive
the live stream. Subsequently, evidence is provided that our mech-
anism is robust to large view exploits [12, 18] and Sybil attacks [3].
Finally, our protocol is compared to other solutions. As it turns out,
while our mechanism guarantees full buffers at honest nodes in the
presence of free riders, other approaches inflict substantially more
underflows even if there are only obedient, resource-rich nodes in
the swarm, which is mainly due to the deadlocks that these ap-
proaches generate.

Unless stated otherwise, the source sends 36 data blocks per sec-
ond of size 1328 bytes, resulting in a bitrate of roughly 50 KB/s.
At this bitrate, codecs such as H.264 allow the source to send high-
quality video streams. Overhead induced by the various network
layers, namely Ethernet, IP, UDP, and the streaming protocol itself,
results in total bitrate of approximately 53 KB/s. Nodes maintain
a buffer five seconds in length and the delivery is weakly synchro-
nized with the source, that is, a block is delivered roughly five sec-
onds after it has become available at the source. Packets are dis-
carded after they have been delivered and are no longer available to
neighbors. For most of our tests, we have used an emulated swarm
of 1,000 nodes. Some tests with up to 50,000 nodes indicate that
our mechanism maintains the properties observed with fewer nodes
and scales well. In all our experiments, nodes do not make use of
private histories, i.e., recently rejected nodes are not cached.

4.1 Free Riding Nodes
A key feature of our proposed mechanism is its ability to cope

with completely free riding nodes which do not adhere to their duty
of forwarding push packets or sharing packets in the pull phase. In
the following, we are interested in the impact of such completely
free riding nodes.

Figure 1 depicts the number of underflows, that is, the number of
packets not delivered in time, depending on the fraction of free rid-
ing nodes. In this experiment, honest nodes have an upload band-
width of 70 KB/s. First, the figure shows that while the free riders
have a large number of underflows implying an intolerably poor
playback quality, the honest nodes receive almost all packets in
time. Second, it can be seen that honest nodes are hardly affected
by the presence of free riders.

Figure 2 shows a snapshot of the buffers in an experiment with
20% free riding nodes. Again, we can see a clear difference be-
tween free riders and honest nodes: Most packets are available in
the buffer of honest nodes, while selfish nodes suffer from many

underflows.

Figure 1: Emulation with different numbers of free riding
nodes. Honest nodes have an upload rate of 70 KB/s, while free
riding nodes do not upload anything at all.

Figure 2: Snapshot of the nodes’ buffers in an emulation with
20% free riding nodes (bottom). The x-axis indicates how much
time is left until the data blocks have to be delivered to the ap-
plication layer.

Figure 3: Percentage of free riding neighbors of honest nodes
for different overall fractions of free riders.

In conclusion, while honest nodes receive almost all packets, free
riders experience many gaps. For up to 15% free riders, there are
hardly any underflows at all honest nodes, and even for up to 35%
free riders underflows are limited to very few nodes. This is mainly
due to the fact that free riders are not evenly distributed among the
honest nodes. Of course, the higher the ratio of free riders, the more
likely it is that there are nodes with many free riding neighbors (see
Figure 3). In this case, a high-quality stream cannot be sustained.

Fortunately, by dropping misbehaving nodes and looking for new
neighbors, such nodes typically recover within seconds. Having
more neighbors—which comes at a certain overhead of course—or
searching more intensively for new neighbors can further alleviate
the problem. With 40% and more free riders, also the bandwidth
available among honest nodes starts to drop below the threshold
needed to sustain the data stream, resulting in more underflows.

In Figure 3, we plot the number of free riding neighbors of the
honest nodes for different percentages of the total number of free
riders. It can be seen that the variance is reasonable small, im-
plying that there are almost no unlucky honest nodes completely
surrounded by bad neighbors.

4.2 Nodes with Scarce Upload Bandwidth
This section studies more heterogeneous swarms where some

nodes do provide some upload bandwidth but not enough to sus-
tain the stream. Note that this scenario is not necessarily simpler
than the scenario with completely free riding clients: The nodes
upload some data and can hence not immediately be identified as
weak nodes. However, we do not primarily seek to minimize the
upload to those nodes which are not able to fully reciprocate, in-
stead the main goal is to minimize the number of underflows at the
resource-rich nodes. Figure 4 depicts the underflows the 10% weak
nodes experience in a swarm of 1,000 nodes where the 90% strong
nodes feature an upload capacity of 65 KB/s.

Figure 4: Emulation with 90% nodes having an upload rate of
65 KB/s and 10% weak nodes for different upload bandwidths.
The underflows of the weak nodes are shown.

Strong nodes can download the stream with virtually no under-
flows. In contrast, weak nodes providing 30 KB/s or less are not
able to playback the stream in reasonable quality. With upload rates
of approximately 35 KB/s there are still some underflows, leading
to artifacts during playback.

For nodes providing 40 KB/s and more, but less than the actual
stream bitrate, we cannot force them to upload more data. Oth-
erwise, deadlocks and starvation are much more likely to occur.
However, note that nodes still profit from contributing more: If the
number of nodes providing merely 40 KB/s increases, they again
suffer from permanent underflows, thus it is always beneficial to
upload at the bitrate of the data stream. Once the number of nodes
uploading at 40 KB/s amounts to more than 35% of all nodes, both
these nodes and the resource-rich nodes suffer from considerably
more underflows, because the total amount of available bandwidth
is not sufficient to distribute the stream quickly enough. This sce-
nario is depicted in Figure 5.

4.3 Large View Exploit & Sybil Attack
Our protocol is also resilient to the so-called large view exploit

[12, 18], i.e., free riding nodes eager to connect to as many nodes as
possible in order to benefit from more freely available packets. Our
emulation has used 1,000 nodes of which 5% were malicious and
connected to as many as 128 other nodes. Our results have shown
that the non-cooperative nodes still do not receive more than 40%

Figure 5: Percentage of underflows experienced by strong and
weak nodes as a function of the fraction of weak nodes. If the
number of weak nodes increases, the number of underflows oc-
curring at weak nodes grows quickly.

of the packets in time. This matches our expectations as the nodes
can choose free packets among 50% of all packets based on their
identifier, and because some additional data is received through the
pushing mechanism. As long as a malicious node does not have an
abundant supply of unique network addresses, there is no benefit in
creating many nodes (locally) again because the free set of packets
depends on the network address. Thus, the mechanism is also able
to withstand a moderately powerful Sybil attack. Of course, if an
attacker possesses several network addresses, it can use them to get
more data for free.

However, performing such attacks is irrational and expensive as
the attacker never receives enough packets in order to achieve a
good playback quality. Moreover, many join requests have to be
issued, and many notifications have to be sent in order to avoid be-
ing dropped by a neighbor within seconds. Given the rather large
packet headers in today’s Internet, such nodes have to constantly
upload about 15 KB/s. Simple tricks like banning nodes and forc-
ing to send more notifications while no packets are offered further
increase this overhead. In general, the upload bandwidth is better
invested in maintaining fewer neighbors and sharing data instead.

4.4 Comparison to Other Mechanisms
In contrast to other live streaming protocols, our mechanism uses

a combination of push and pull based data dissemination. As al-
ready noted, push-only protocols, e.g., based on trees, are incom-
patible with tit-for-tat mechanisms and overcoming this restriction
is hard without sacrificing either fairness or efficiency. Pull-only
protocols allow tit-for-tat mechanisms, but are likely to suffer from
deadlocks and starvation, even if all nodes are honest. For example,
1,000 honest nodes with 70 KB/s upload bandwidth fail to deliver
about 2-3% of the data blocks if our fairness mechanism is used
without pushing.

One possibility to avoid underflows in pull-only protocols is to
relax tit-for-tat by introducing a third condition, namely, a perma-
nent credit for a small subset of all current blocks, where

σ > δ : hσ(addrA, seq) = 0.

This third condition is somewhat related to a pushing mecha-
nism as it enables a fast distribution of blocks among subsets of
nodes. These blocks can subsequently be used to trade for other
blocks. Using this rule, selfish nodes can of course obtain more
blocks without reciprocating, which potentially lowers the through-
put of the entire swarm. Since free data blocks are disseminated
more quickly if they are pushed along induced trees, it is in general
better to use pushing than this additional rule.

The Swift approach is the closest to our mechanism in spirit.
Since it is a pull-based system, the data is not distributed quickly

enough for live streams: In a network consisting of 1000 honest
nodes, approximately 25% of all packets are not received in time
even if the upload rate of all nodes is 70KB/s. If we augment Swift
with our pushing scheme, only 0.05% of all packets are not re-
ceived in time when setting the repayment ratio α to 1 and allow a
one-time credit γ of 1. Relaxing the repayment ratio to α = 0.75
reduces this number by a factor 10, and 10% free riding nodes lead
to an increase by a factor of 2 to 3. While these numbers are fairly
small, it has to be pointed out that all underflows typically occur
at a small number of nodes, which experience considerably more
underflows. Connecting to new neighbors helps nodes to over-
come this problem; however, this means that more messages need
to be sent in order to find new neighbors, which again lowers the
throughput. Thus, our scheme is better suited for live streaming as
nodes suffer less from underflows and it achieves a higher overall
throughput.

Omitting tit-for-tat and merely adopting a choke/unchoke ap-
proach similar to protocols such as BitTorrent is not advisable due
to the larger number of neighbors and the unrestricted neighbor se-
lection: Selfish nodes can quickly reconnect to other nodes. For
instance, a test with 30% free riders and 70% honest nodes with a
bitrate of 70 KB/s resulted in 23% underflows for the free riders
and 16% for the honest nodes. Restricting the neighbor strategy,
similar to [6], is problematic since the broadcast content is live,
and the protocol has to be resilient both against churn and massive
correlated leaves, e.g., caused by advertisement breaks or the end
of a movie in a live TV broadcast.

5. CONCLUSIONS
It is widely believed that live streaming is difficult in heteroge-

neous swarms where some nodes have poor upload capacities at bit
rates smaller than the streaming rate, or where nodes do not up-
load on purpose because they are selfish. Indeed, we demonstrated
that several fairness mechanisms cause an intolerable number of
underflows even if the network consists entirely of honest nodes.
This paper has proposed a mechanism that provides good stream-
ing quality to those nodes that are sufficiently strong by minimiz-
ing the influence of weak nodes. Moreover, it is not worthwhile for
freeloading nodes to remain in the swarm as they are never able to
obtain the needed data blocks in time.

The presented algorithms have been fully incorporated in our au-
dio and video streaming client Pulsar [11], and we plan to measure,
in future research, how our techniques perform “in the wild.” An-
other significant direction of future work is to investigate whether
and how our techniques are applicable in the context of on-demand
streaming, an emerging industry in the Internet.

6. REFERENCES
[1] E. Adar and B. A. Huberman. Free Riding on Gnutella. In

First Monday, 2000.
[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,

A. Rowstron, and A. Singh. SplitStream: High-bandwidth
Content Distribution in a Cooperative Environment. In Proc.
2nd International Workshop on Peer-to-Peer Systems
(IPTPS), 2003.

[3] J. R. Douceur. The Sybil Attack. In Proc. 1st Int. Workshop
on Peer-to-Peer Systems (IPTPS), 2003.

[4] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust
Incentive Techniques for Peer-to-Peer Networks. In Proc.
ACM Conference on Electronic Commerce (EC), 2004.

[5] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer.
Havelaar: A Robust and Efficient Reputation System for
Active Peer-to-Peer Systems. In Proc. 1st Workshop on the
Economics of Networked Systems (NetEcon), 2006.

[6] A. Habib and J. Chuang. Service Differentiated Peer
Selection: An Incentive Mechanism for Peer-to-Peer Media
Streaming. IEEE Transactions on Multimedia, 8(3), 2006.

[7] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on
Gnutella Revisited: The Bell Tolls? IEEE Distributed
Systems Online, 6(6):1, 2005.

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
EigenTrust Algorithm for Reputation Management in P2P
Networks. In Proc. 12th International World Wide Web
Conference (WWW), 2003.

[9] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentives for
Cooperation in Peer-to-Peer Networks. In Proc. 1st
Workshop on Economics of Peer-to-Peer Systems (P2PEcon),
2003.

[10] Z. Liu, Y. Shen, K. W. Ross, S. Panwar, and Y. Wang.
Substream Trading: Towards an Open P2P Live Streaming
System. In Int. Conf. on Network Protocols (ICNP), 2008.

[11] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer.
Push-to-Pull Peer-to-Peer Live Streaming. In 21st
International Symposium on Distributed Computing (DISC),
pages 388–402, 2007.

[12] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
Riding in BitTorrent is Cheap. In Proc. 5th Workshop on Hot
Topics in Networks (HotNets), 2006.

[13] T.-W. Ngan, P. Druschel, and D. S. Wallach.
Incentives-Compatible Peer-to-Peer Multicast. In Proc. 2nd
Workshop on Economics of Peer-to-Peer Systems (P2PEcon),
2004.

[14] W. T. Ooi. Dagster: Contributor-aware End-host Multicast
for Media Streaming in Heterogeneous Environment. In
Proc. SPIE, pages 77–90, 2004.

[15] V. Pai and A. E. Mohr. Improving Robustness of Peer-to-Peer
Streaming with Incentives. In Proc. 1st Workshop on the
Economics of Networked Systems (NetEcon), 2006.

[16] V. Pai, K. Tamilmani, V. Sambamurthy, K. Kumar, and
A. Mohr. Chainsaw: Eliminating Trees from Overlay
Multicast. In Proc. 4th International Workshop on
Peer-To-Peer Systems (IPTPS), Ithaca, New York, USA,
2005.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems. In Proc. International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, 2001.

[18] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding
in BitTorrent Networks with the Large View Exploit. In
Proc. 1st International Workshop on Peer-to-Peer Systems
(IPTPS), 2007.

[19] K. Tamilmani, V. Pai, and A. E. Mohr. SWIFT: A System
with Incentives for Trading. In Proc. 2nd Workshop on
Economics of Peer-to-Peer Systems (P2PEcon), 2004.

[20] V. Venkataraman, P. Francis, and J. Calandrino.
Chunkyspread: Multi-Tree Unstructured Peer-to-Peer
Multicast. In Proc. 5th Int. Workshop on Peer-to-Peer
Systems (IPTPS), 2006.

[21] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.
KARMA: A Secure Economic Framework for P2P Resource
Sharing. In Proc. 1st Workshop on Economics of
Peer-to-Peer Systems (P2PEcon), 2003.

[22] M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang. A
Peer-to-Peer Network for Live Media Streaming using a
Push-Pull Approach. In Proc. 13th Annual ACM
International Conference on Multimedia, pages 287–290,
2005.

