				$^{\circ}$		n
	v	u	u		U	

Network Design

Viceroy Network Structure

Performance Evaluation

The Viceroy Network Algorithms for Modern Communication Networks

Andreas Barthels

Ferienakademie 2008, Course 1 Province of Bolzano-Bozen, Italy

Prof. Dr. E. W. Mayr (TU Munich) Prof. Dr. R. Wanka (Erlangen)

http://www.ferienakademie.eu/

September 21 - October 3, 2008

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Outline				
	oduction			

- 2 Network Design
 - Network Characteristics
 - Trade-Off in Network Design
- 3 Viceroy Network Structure
 - Butterfly-Networks
 - Viceroy: Emulation of Butterfly Networks
- 4 Performance Evaluation
 - Level Selection
 - Routing
 - Peer Insertion
 - Ensuring Constant Indegree
 - Peer Failure / Leaving Peer

5 Summary

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Sumr

Introduction

Previous Peer2Peer Networks

- Single peer linkage cost not constant or fair, or,
- Suboptimal lookup efficiency

Viceroy Design Goals

- Uniformly distribute minimal linkage cost on every peer
- Avoid bottlenecks
- Maximize Lookup Efficiency for Huge Networks

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Sum

Introduction

Previous Peer2Peer Networks

- Single peer linkage cost not constant or fair, or,
- Suboptimal lookup efficiency

Viceroy Design Goals

- Uniformly distribute minimal linkage cost on every peer
- Avoid bottlenecks
- Maximize Lookup Efficiency for Huge Networks

Introduction	Network Design ●०००	Viceroy Network Structure	Performance Evaluation	Summary
Outline)			
1 In	troduction			
•	Network Char Trade-Off in N	acteristics letwork Design		
3 V •	iceroy Network Butterfly-Netw Viceroy: Emul	Structure orks lation of Butterfly Ne	tworks	
	erformance Eva Level Selectio Routing Peer Insertion Ensuring Con Peer Failure /	aluation n stant Indegree Leaving Peer		

5 Summary

Introduction	Network Design ○●○○	Viceroy Network Structure	Performance Evaluation	Summary		
Natural, Obaus stavistica						

Network Characteristics

Network Degree deg

Maximum number of outgoing links out of a single peer

Network Diameter dia

Longest of all shortest distances between two peers

Introduction	Network Design ○○●○	Viceroy Network Structure	Performance Evaluation	Summary
Outline				
1 Int	roduction			
2 Ne • •	etwork Design Network Char Trade-Off in N	acteristics etwork Design		
3 Vi •	ceroy Network Butterfly-Netw Viceroy: Emul	Structure orks ation of Butterfly Net	tworks	
Pe	erformance Eva Level Selectio	aluation n		

- Routing
- Peer Insertion
- Ensuring Constant Indegree
- Peer Failure / Leaving Peer

5 Summary

- Within a distance *d* of a peer there are at most *deg^d* peers reachable.
- The Definition of Diameter and Degree thus yield for the number of peers *n*:

$$deg^{dia} \ge n$$

and thus

$$\Rightarrow dia \geq \frac{\log(n)}{\log(deg)}.$$

• Optimum:

$$deg = \text{const}, dia \propto \log(n).$$

- - Within a distance *d* of a peer there are at most *deg^d* peers reachable.
 - The Definition of Diameter and Degree thus yield for the number of peers *n*:

$$deg^{dia} \ge n$$

and thus

$$\Rightarrow dia \geq \frac{\log(n)}{\log(deg)}.$$

• Optimum:

 $deg = \text{const}, dia \propto \log(n).$

Trade-Off in Network Design

- Within a distance *d* of a peer there are at most *deg^d* peers reachable.
- The Definition of Diameter and Degree thus yield for the number of peers *n*:

$$deg^{dia} \ge n$$

and thus

$$\Rightarrow dia \geq \frac{\log(n)}{\log(deg)}.$$

• Optimum:

 $deg = \text{const}, dia \propto \log(n).$

Trade-Off in Network Design

- Within a distance *d* of a peer there are at most *deg^d* peers reachable.
- The Definition of Diameter and Degree thus yield for the number of peers *n*:

$$deg^{dia} \ge n$$

and thus

$$\Rightarrow dia \geq \frac{\log(n)}{\log(deg)}.$$

• Optimum:

$$deg = \text{const}, dia \propto \log(n).$$

Introduction	Network Design	Viceroy Network Structure	Per
		•••••	

Outline

Introduction

- Network Design
 - Network Characteristics
 - Trade-Off in Network Design
- 3 Viceroy Network Structure
 - Butterfly-Networks
 - Viceroy: Emulation of Butterfly Networks
- Performance Evaluation
 - Level Selection
 - Routing
 - Peer Insertion
 - Ensuring Constant Indegree
 - Peer Failure / Leaving Peer

5 Summary

Introduction Network Design Viceroy Network Structure

Performance Evaluation

Summary

Butterfly-Networks: Level 1

ntroduction Network Design Viceroy Network Structure

Performance Evaluation

Summary

Butterfly-Networks: Level 2

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Butterfl	v-Networks	: Level 3		

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Outline				

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Network Characteristics

3 Viceroy Network Structure Butterfly-Networks

> Level Selection Routing

Trade-Off in Network Design

Viceroy: Emulation of Butterfly Networks

Introduction	Network Design	Viceroy Network Structure	Performance Evalua
Vicerov			

Limenitis archippus (Viceroy Butterfly)

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Vicerov	: Basics			

- Viceroy implements a 1-dimensional distributed hashtable
- Keys are mapped to [0, 1)
- Data is assigned to the clockwise-closest successor

Introduction Network Design Viceroy Network Structure Performance Evaluation Summary

Viceroy: Network Structure

At this point, we assume that each peer s

- features a *s.position* that is determined by its ID, and,
- a level (s.level).
- Links are established to...

Introduction Network Design Viceroy Network Structure

Performance Evaluation

• • • • • • • • • • • •

ъ

Summary

Best Case Emulation - Ring Links

... the first successor and predecessor of s on the Interval [0, 1), regardless of the level...

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Sumr
		000000000000		

Best Case Emulation - Level Links

... the first successor and predecessor of s on s.level...

Introduction Network Design Viceroy Network Structure

Performance Evaluation

Summary

Best Case Emulation - Up Links

... the clockwise-closest peer on level *s.level* -1, if *s.level* > 0...

Introduction Network Design Viceroy Network Structure

Performance Evaluation

• • • • • • • • • • •

Summary

Best Case Emulation - Butterfly Links

... the clockwise-closest peer on *s.level* + 1 to *s.position* and $(s.position + (1/2)^{s.level}) \mod 1...$

Introduction Network Design Viceroy Network Structure Performance Evaluation Summary

Viceroy Outdegree

The outdegree is given by counting:

- 2 ring links
- 2 level links
- 1 up link
- 2 butterfly links

 \Rightarrow Constant network degree of 7.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary

Viceroy Outdegree

The outdegree is given by counting:

- 2 ring links
- 2 level links
- 1 up link
- 2 butterfly links
- \Rightarrow Constant network degree of 7.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation ●o	Summa
Outlin	ne			
1	Introduction Network Design Network Char Trade-Off in N	acteristics etwork Design		
3	Viceroy NetworkButterfly-NetwViceroy: Emul	Structure orks ation of Butterfly Net	tworks	
4	 Performance Eva Level Selection Routing Peer Insertion Ensuring Con Peer Failure / 	aluation n stant Indegree Leaving Peer		
5	Summary			ТЛ 🔍

(日)

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation o●○○○○○○○○○○	Summary
Level S	election			

Performance is proportional to the maximum level

Level selection is key in bounding performance:

- Assume uniform distribution of the peers
- Expected number of nodes is ^k
 distance to the k-th node
- The estimation for the number of peers \hat{n} is

$$\log\left(\frac{n}{c\log(n)}\right) \le \lfloor \log(\hat{n}) \rfloor \le c'\log(n)$$

with high probability.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation o●○○○○○○○○○○	Summary
Level S	election			

Performance is proportional to the maximum level

Level selection is key in bounding performance:

- Assume uniform distribution of the peers
- Expected number of nodes is ^k
 distance to the k-th node
- The estimation for the number of peers \hat{n} is

$$\log\left(\frac{n}{c\log(n)}\right) \leq \lfloor \log(\hat{n}) \rfloor \leq c'\log(n)$$

with high probability.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Outline				
1 In 2 No •	troduction etwork Design Network Char Trade-Off in N	acteristics etwork Design		
3 Vi •	ceroy Network Butterfly-Netw Viceroy: Emul	Structure orks ation of Butterfly Ne	tworks	
4 Pe • • •	erformance Eva Level Selectio Routing Peer Insertion Ensuring Con Peer Failure /	aluation n stant Indegree Leaving Peer		

5 Summary

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation ○○○●○○○○○○○○○	Summary
Routing				

Step 1 - Route up to level 1

Follow up-links. Their number is $O(\log(n))$.

Step 2 - Route down to target

Is the target in between the left and the right down-link, route left, else right. $O(\log(n))$

Step 3 - Traverse level and outer rings

If there are no down links anymore

- Try level-links in direction of target
- 8 Route along the outer ring

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation ○○○●○○○○○○○○○	Summary
Routing				

Step 1 - Route up to level 1

Follow up-links. Their number is $O(\log(n))$.

Step 2 - Route down to target

Is the target in between the left and the right down-link, route left, else right. $O(\log(n))$

Step 3 - Traverse level and outer rings

If there are no down links anymore

- Try level-links in direction of target
- 8 Route along the outer ring

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation ○○○●○○○○○○○○○	Summary
Routing				

Step 1 - Route up to level 1

Follow up-links. Their number is $O(\log(n))$.

Step 2 - Route down to target

Is the target in between the left and the right down-link, route left, else right. $O(\log(n))$

Step 3 - Traverse level and outer rings

If there are no down links anymore

- Try level-links in direction of target
- Poute along the outer ring

 \Rightarrow Logarithmic complexity with high probability.

Routing Example

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
_				

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summa
_				

Routing Example - Step 2

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation ○○○○○○●○○○○○○	Summar
-				

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summar
Outlin	ie			
1 2 3	Introduction Network Design Network Char Trade-Off in N Viceroy Network Butterfly-Netw Viceroy: Emul	acteristics etwork Design Structure rorks ation of Butterfly Ne	tworks	
4	 Performance Eva Level Selectio Routing Peer Insertion Ensuring Conservation Peer Failure / 	aluation n stant Indegree Leaving Peer		

5 Summary

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Peer Ins	sertion			

• Find peer responsible for SystemID. $O(\log(n))$

- 2 Reassign keys according to successor relationship. O(1)
- Setimate number of peers \hat{n} through distance to *k*-successing peers ($\hat{n} = \frac{k}{dk}$). O(1)
- Choose Butterfly-Level uniformly out of $1 \le l \le \lfloor \log(\hat{n}) \rfloor$. O(1)
- Update links. O(1) in expectation, O(log(n)) with high probability
- Solutional to plain Butterfly, link peers on each level and create uplink. O(1)

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Peer In	sertion			

- Find peer responsible for SystemID. $O(\log(n))$
- **2** Reassign keys according to successor relationship. O(1)
- 3 Estimate number of peers \hat{n} through distance to *k*-successing peers ($\hat{n} = \frac{k}{d_k}$). O(1)
- Choose Butterfly-Level uniformly out of $1 \le l \le \lfloor \log(\hat{n}) \rfloor$. O(1)
- Update links. O(1) in expectation, O(log(n)) with high probability
- Additional to plain Butterfly, link peers on each level and create uplink. O(1)
- \Rightarrow Logarithmic complexity with high probability.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Peer Ins	ertion			

- Find peer responsible for SystemID. $O(\log(n))$
- **2** Reassign keys according to successor relationship. O(1)
- Settimate number of peers \hat{n} through distance to *k*-successing peers ($\hat{n} = \frac{k}{d_k}$). O(1)
- Choose Butterfly-Level uniformly out of $1 \le l \le \lfloor \log(\hat{n}) \rfloor$. O(1)
- Update links. O(1) in expectation, O(log(n)) with high probability
- Additional to plain Butterfly, link peers on each level and create uplink. O(1)
- \Rightarrow Logarithmic complexity with high probability.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Peer Ins	ertion			

- Find peer responsible for SystemID. $O(\log(n))$
- **2** Reassign keys according to successor relationship. O(1)
- Settimate number of peers \hat{n} through distance to *k*-successing peers ($\hat{n} = \frac{k}{d_k}$). O(1)
- Choose Butterfly-Level uniformly out of $1 \le l \le \lfloor \log(\hat{n}) \rfloor$. O(1)
- Update links. O(1) in expectation, O(log(n)) with high probability
- Additional to plain Butterfly, link peers on each level and create uplink. O(1)
- \Rightarrow Logarithmic complexity with high probability.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Peer Ins	sertion			

- Find peer responsible for SystemID. $O(\log(n))$
- **2** Reassign keys according to successor relationship. O(1)
- Settimate number of peers \hat{n} through distance to *k*-successing peers ($\hat{n} = \frac{k}{d_k}$). O(1)
- Choose Butterfly-Level uniformly out of $1 \le l \le \lfloor \log(\hat{n}) \rfloor$. O(1)
- Update links. O(1) in expectation, $O(\log(n))$ with high probability
- Additional to plain Butterfly, link peers on each level and create uplink. ${\cal O}(1)$

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Peer Ins	ertion			

- Find peer responsible for SystemID. $O(\log(n))$
- 2 Reassign keys according to successor relationship. O(1)
- Settimate number of peers \hat{n} through distance to *k*-successing peers ($\hat{n} = \frac{k}{d_k}$). O(1)
- Choose Butterfly-Level uniformly out of $1 \le l \le \lfloor \log(\hat{n}) \rfloor$. O(1)
- Update links. O(1) in expectation, O(log(n)) with high probability
- Solutional to plain Butterfly, link peers on each level and create uplink. O(1)

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Peer Ins	ertion			

- Find peer responsible for SystemID. $O(\log(n))$
- 2 Reassign keys according to successor relationship. O(1)
- Settimate number of peers \hat{n} through distance to *k*-successing peers ($\hat{n} = \frac{k}{d_k}$). O(1)
- Choose Butterfly-Level uniformly out of $1 \le l \le \lfloor \log(\hat{n}) \rfloor$. O(1)
- Update links. O(1) in expectation, O(log(n)) with high probability
- Solutional to plain Butterfly, link peers on each level and create uplink. O(1)
- \Rightarrow Logarithmic complexity with high probability.

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summar
Outline				
1 In 2 Ne •	troduction etwork Design Network Char Trade-Off in N	acteristics letwork Design		
3 Vi •	ceroy Network Butterfly-Netw Viceroy: Emul	Structure orks lation of Butterfly Ne	tworks	
 Pe <	erformance Eva Level Selectio Routing Peer Insertion Ensuring Con Peer Failure /	aluation n stant Indegree Leaving Peer		
5 St	ummary			ПЛ 🔍

・ロト ・雪 ト ・ 油 ト ・ 油 ト

æ

Ensuring Constant Indegree

Although the expected indegree is constant, it can still be logarithmic for some node.

- local coordination on "buckets" with $O(\log(n))$ peers
- position and level selection is not random any more
- good and sane distribution of peers over stretches and levels
- really complex procedure

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summar
Outline)			
1 Ir 2 N	ntroduction letwork Design Network Char Trade-Off in N	acteristics letwork Design		
3 V	iceroy Network Butterfly-Netw Viceroy: Emu	Structure vorks lation of Butterfly Net	tworks	
	Performance Evan Level Selection Routing Peer Insertion Ensuring Con Peer Failure /	aluation n stant Indegree Leaving Peer		
5 S	ummary			በጠ 💿

(日)

Introduction

Network Design

Viceroy Network Structure

Performance Evaluation

Summary

Peer Failure / Leaving Peer

The successing peer has to take over the data. O(1) Every former link has to find a replacement. O(log(n))

Introduction Network Design Viceroy Network Structure Perfor

Peer Failure / Leaving Peer

- The successing peer has to take over the data. O(1)
- 2 Every former link has to find a replacement. $O(\log(n))$

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Outline				
1 In 2 No 9	troduction etwork Design Network Char Trade-Off in N	acteristics letwork Design		
3 Vi •	ceroy Network Butterfly-Netw Viceroy: Emul	Structure vorks lation of Butterfly Net	tworks	
	erformance Eva Level Selectio Routing Peer Insertion Ensuring Con Peer Failure /	aluation on stant Indegree Leaving Peer		
5 SI	ummary			◨◧ 🤍

Introduction	Network Design	Viceroy Network Structure	Performance Evaluation	Summary
Summa	ıry			

Viceroy features

- constant degree
- Iogarithmic diameter
- quite complex implementation

Introduction

Network Desigr

Viceroy Network Structure

Performance Evaluation

Summary

Thank you

Additional Literature I

Peter Mahlmann and Christian Schindelhauer Peer-to-Peer-Netzwerke. Springer Berlin Heidelberg, 2007. <springerlink.de>

Dahlia Malkhi and Moni Naor and David Ratajczak Viceroy: A Scalable and Dynamic Emulation of the Butterfly Proceedings of the twenty-first annual symposium on Principles of distributed computing, 2002.

The picture of the Viceroy Butterfly is by Namek Piccolo

The picture of the Monarch Butterfly is by April M. King

Both are from wikimedia and under the GNU Free Documentation License

