
Online-routing on the butterfly network: probabilistic
analysis

Andrey Gubichev

19.09.2008

Contents
1 Introduction: definitions 1

2 Average case behavior of the greedy algorithm 3
2.1 Bounds on congestion . 3
2.2 Bounds on running time . 5

3 Conclusion 7

4 Bibliography 7

1 Introduction: definitions
In this talk we will examine the average-case behavior of the greedy algorithm in butterfly net-
work. Let us first introduce some useful notions and give simple examples.

Definition 1 (Butterfly). The r-dimensional butterfly consists of (r+1)2r nodes and r2r+1 edges.
A node is a pair 〈w, i〉, i is the level of the node, w is the row number (r-bit). An edge links two
nodes 〈w, i〉 and 〈w′, i′〉 if and only if i′ = i + 1 and either w = w′, or w and w′ differs in the ith
bit.

Figure 1 shows an example of 3-dimensional butterfly.
The packet routing problem is the problem of routing N packets from level 0 to level log N

in a log N -dimensional butterfly. Each packet 〈u, 0〉 has its own destination 〈π(u), log N〉 where
π : [1, N] → [1, N] is a permutation.

The most commonly used permutations are the bit-reversal permutation:

π(u1 · · ·ulog N) = ulog N · · ·u1,

1

Figure 1: Three-dimensional butterfly.

and the transpose permutation:

π(u1 · · ·u log N
2

u log N
2

+1 · · ·ulog N) = u log N
2

+1 · · ·ulog Nu1 · · ·u log N
2

We will insist that our routing algorithms be on-line: there is no global controller that can
precompute routing paths, each node decides what to do with a packet that pass through it based
on its local controller and information from packet.

Definition 2. The greedy path from 〈u, 0〉 to 〈v, log N〉 is the unique path of length log N from
the first node to the second node.

The greedy algorithm is the algorithm that constrains each packet to follow its greedy path.
The congestion problem is that many packets might pass through a single node or edge, but

only one packet can use the particular edge or node at a time.

Theorem 1. The greedy algorithm will route N packets to their destinations in a log N -butterfly
in O(

√
(N)) steps.

In fact, the bit-reversal permutation and the transposal permutation are the worst-case per-
mutations for greedy routing.

In the following section we will find out that in average case the greedy algorithm behaves
much better.

2

2 Average case behavior of the greedy algorithm
We will divide our analysis into two parts. First of all, we will bound the congestion. If we
obtain the bound C for congestion, we will automatically have a bound for the running time:
(C − 1) log N . In the second part we will get a tighter bound for the running time.

In this section we consider the routing problem for which each packet has a random destina-
tion (destinations are selected independently and uniformly from among the N possible outputs).
Here we also allow more than one packet to start at each input (denote by p the number of packets
at each input).

2.1 Bounds on congestion
Theorem 2. For all but at most a 1/N3/2 fraction of the possible routing problems with p packets
per input in a log N -dimensional butterfly at most C packets pass through each node during a
greedy routing where

C =

2ep, if p ≥ log N

2

2e log N/ log

(
log N

p

)
, if p ≤ log N

2

Proof. Our main aim here is to bound the probability Pr(v) that r or more packet paths pass
through some node v for each r > 0 and for each node from log N -dimensional butterfly.

Let v be the node on ith level of the butterfly. There are 2i inputs that can reach v and
2log N−i = N2−i choices of destinations that can cause the packet to pass through v. Since we
choose destinations randomly among N destinations, the probability for each of p2i packets to
pass through v is N2−i/N = 2−i. A simple illustration is given on figure 2.

If r or more packets pass through v, then there exists a subset of r packets and all of them
must pass through v:

Pr(v) ≤
(

p2i

r

)
(2−i)r ≤

(
p2ie

r

)r

2−ir =
(pe

r

)r

The upper bound does not depend on v, i. Hence, the probability that r or more packets pass
through all nodes in the butterfly is at most N log N(pe/r)r.

This bound decreases if r increases. If p ≥ log N
2

, let r = 2ep and we get

N log N
(pe

r

)r

≤ N log N

(
1

2

)e log N

= N1−e log N ≤ 1/N3/2

In case that p ≤ log N
2

let r = 2e log N

log(log N
p)

and x = log N
p

≥ 2:

N log N
(pe

r

)r

= N log N

(
log x

2x

) 2e log N
log x

= N log NN− 2e log(2x/ log x)
log x

3

Figure 2: Choices of inputs and destinations that cause the packet to pass through v

The minimum for log(2x/ log x)
log x

where x ≥ 2 occurs if log x = 2e:

N log NN− 2e log(2x/ log x)
log x ≤ N log NN−2e+log x ≤ 1/N2

These facts complete the proof.

In fact, the fraction of "bad" routing problems can be made arbitrary small.

Corollary 1. ∀α the congestion for all but 1/Nα problems is at most O(αp) + o(α log N)

Proof. In order to prove it we can modify the previous proof.
If p ≥ log N

2
let r = 2epα = O(pα):

N log N
(pe

r

)r

≤ N−α

If p ≤ log N
2

let r = 2e log N

log(log N
p)

= o(α log N):

N log N
(pe

r

)r

≤ N−α

Now we see that routing problems with bit-reversal permutation and transpose permutation
are incredibly rare: for 99% of all routing problems at most C + O(1) packets pass through any
node during the routing.

4

Let us consider two special cases of the theorem. If p = 1, we have a single N -packet routing
problem. With high probability, the maximum number of packets that pass through any node is
O(log N/ log log N) with high probability.

The second case is when p = Θ(log N), and we have Θ(N log N) packets on an N log N -
node butterfly. At most O(log N) packets pass through any node with high probability.

2.2 Bounds on running time
If two or more packets are waiting to exit a node, we need to specify a protocol for deciding
which packet will exit the node first. We will use a random-rank protocol in such cases:

• assign a random priority key r(P) ∈ [1, K] to each packet P

• define a total order on packets: t(P) is the rank of P

• define w(P) = (r(P), t(P)). If P/ = P ′, we say that w(P < w(P ′) if and only if
r(P) < r(P ′), or r(P) = r(P ′) and t(P) < t(P ′).

• if there is a collision, we choose the packet with minimal w

Consider the routing problem with congestion C. Let P0 be the last packet to reach its
destination v0 at time T . It was delayed at v1, l0 is the number of steps in path v1 → v0. P0 was
delayed during the step T − l0.

Let P1 be the packet responsible for delaying P0. Next record the path of P1 from the time it
was last delayed before step T − l0 until the step T − l0. Let l1 be the number of edges in this
path and v2 the node where P1 was last delayed at step T − l0 − l1 − 1.

We proceed to record the sequence of delays and remove repeated nodes. We get delay path
P = v0 → v1 → . . . → vs - a simple path of length log N .

An example of the delay path is given on figure 3. Each packet on the figure 3 consists of the
destination (binary number),the name and the random rank.

It is obvious that T − l0 − l1 − · · · − ls − (s − 1) = 1 and l0 + · · · + ls = log N . Hence,
T = s + log N .

An active delay sequence consists of

• a delay path P

• integers l0 ≥ 1, l1 ≥ 0, . . . , ls−1 ≥ 0, l0 + . . . + ls−1 = log N

• nodes v0,v1,. . .,vs: vi is the node of P on level log N − l0 − . . .− ls−1

• different packets P0, P1, . . . , Ps: the greedy path for Pi contains vi

• keys k0, k1, . . . , ks for the packets: ks ≤ ks−1 ≤ . . . ≤ k0, ki ∈ [0, K] and r(Pi) = ki for
0 ≤ i ≤ s.

5

Figure 3: Delay path

There exist lots of possible delay sequences.
The probability that r(Pi) = ki for 0 ≤ i ≤ s is K−(s+1). There are N2 possible delay paths

(they are uniquely defined by endpoints). There are
(

s+log N−2
s−1

)
choices for l0, . . . , ls: there is

one-to-one correspondence between choices for li and (s + log N − 2)-bit binary string t with
s− 1 zeros, where li is the number of "1" between (i+1)st and (i+2)nd zeros in the string 01t0

Since we fix P and li’s, the nodes vi are determined. Then there are at most C choices for
any P . Hence, there are at most Cs+1 choices for all packets. We also have

(
s+k
s+1

)
ways to choose

k0, . . . , ks such that ks ≤ ks−1 ≤ · · · ≤ k0 and ki ∈ [1, K]: there is one-to-one correspondence
between choices for ki and (s + K)-bit binary string u with s + 1 zeros, where ki is the number
of "1" to the left of the (s + 1− i)th zero in the string 1u.

Put it all together: the probability that there is an active delay sequence with s + 1 packets is
at most

N2

(
s + log N − 2

s− 1

)
Cs+1

(
s + K

s + 1

)
K−(s+1)

We can show that if K = s + 1 = 8eC, and C ≥ log N
2

, this probability is at most

N3

(
4eC

K

)K

≤ N3−4e = o(N−7),

and if K = s + 1 = 8e log N/ log
(

log N
C

)
, and C ≤ log N

2
, this probability is at most

N3

(
4eC

K

)K

≤ o(N−12)

Our result is that with high probability there is no active delay path with s+1 packets, where

6

s + 1 =

8eC, if C ≥ log N

2

8e log N/ log

(
log N

C

)
, if C ≤ log N

2

Since T = log N + s, we get

T =

O(C) + log N, if C ≥ log N

2

O(log N/ log

(
log N

C

)
), if C ≤ log N

2

This fact completes the analysis.

3 Conclusion
"Typical" routing problem in practice are not at all the same as "typical" routing problems in a
mathematical sense: while the latter are likely to have a reasonable running time, the former have
very bad estimation of running time.

4 Bibliography
1 F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hy-

percubes. Morgan Kaufmann Publ., 1992

2 Friedhelm Meyer auf der Heide. Kommunikation in Parallelen Rechenmodellen.

7

