# Online-routing on the butterfly network 

Probabilistic analysis

Andrey Gubichev

Ferienakademie im Sarntal 2008
Saint-Petersburg State University
September 2008

## Overview

1 Introduction
■ Useful definitions
■ Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time

3 Conclusion

## Overview

## 1 Introduction <br> ■ Useful definitions

- Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time

3 Conclusion

## The Butterfly

The r-dimensional butterfly consists of
■ $(r+1) 2^{r}$ nodes and
■ $r^{r+1}$ edges

## The Butterfly

The r-dimensional butterfly consists of
■ $(r+1) 2^{r}$ nodes and
■ $r 2^{r+1}$ edges
such that
$\square$ node is $\langle w, i\rangle$ : $i$ is a level, $w-r$-bit number of row
$\square\langle w, i\rangle$ and $\left\langle w^{\prime}, i^{\prime}\right\rangle$ are linked $\Leftrightarrow\left(\mathrm{w}=\mathrm{w}^{\prime}\right.$ OR w and $\mathrm{w}^{\prime}$ differ in $i$ th bit) AND $i^{\prime}=\mathrm{i}+1$

## Example: three-dimensional butterfly



## Routing Problem

- routing $N$ packets

■ start — node $\langle u, 0\rangle$ on level 0
$\square$ destination - node $\langle\pi(u), \log N\rangle$ on level $\log N$
$\square \pi:[1, N] \longrightarrow[1, N]$ is a permutation
■ on-line algorithms: no global controller

## Greedy algorithm

■ the unique path of length $\log N$ from $\langle u, 0\rangle$ to $\langle\pi(u), \log N\rangle$ greedy path
■ greedy routing algorithm: each packet follows its greedy path

## Greedy algorithm

■ the unique path of length $\log N$ from $\langle u, 0\rangle$ to $\langle\pi(u), \log N\rangle-$ greedy path

- greedy routing algorithm: each packet follows its greedy path

■ main problem: routing many packets in parallel $\Rightarrow$ many greedy paths might pass through a single node or edge: Congestion!

## Overview

1 Introduction

- Useful definitions

■ Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time

3 Conclusion

ITII

## Fact: greedy algorithm efficiency

The algorithm that chooses greedy paths, can solve any routing problem in $O(\sqrt{N})$

## Overview: worst-case behavior

■ if $\pi$ is the bit-reversal permutation:

$$
\pi\left(u_{1} \cdots u_{\log N}\right)=u_{\log N} \cdots u_{1}
$$

then the greedy algorithm will take $O(\sqrt{N})$ steps (and congestion
$C \geq \sqrt{N} / 2$ )

## Overview: worst-case behavior

■ if $\pi$ is the bit-reversal permutation:

$$
\pi\left(u_{1} \cdots u_{\log N}\right)=u_{\log N} \cdots u_{1}
$$

then the greedy algorithm will take $O(\sqrt{N})$ steps (and congestion $C \geq \sqrt{N} / 2$ )
$\square$ the same result holds for transpose permutation

$$
\pi\left(u_{1} \cdots u_{\frac{\log N}{2}} u_{\frac{\log N}{2}+1} \cdots u_{\log N}\right)=u_{\frac{\log N}{2}+1} \cdots u_{\log N} u_{1} \cdots u_{\frac{\log N}{2}}
$$

## Example: bit-reversal permutation



## Average-case behavior: problem statement

■ we need to route packets in the butterfly
■ all packets start at level 0
■ each packet has a destination at level $\log N$,considered as random

## Average-case behavior: problem statement

- we need to route packets in the butterfly

■ all packets start at level 0
■ each packet has a destination at level $\log N$,considered as random

- $p$ is the number of packets at each input

■ if $p=1$ : standard $N$-packet routing problem
■ if $p=\log N$ : network is more heavily loaded

## Plan of analysis

■ obtain bounds on congestion
■ obtain bounds on running time

## Overview

## 1 Introduction <br> ■ Useful definitions <br> - Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time

3 Conclusion

III

## Upper bound on $P_{r}(v)$

■ $P_{r}(v)=\operatorname{Probability}(r$ or more packet paths pass through node $v$ on level $i$ ), $r>0,0 \leq i \leq \log N$

■ we are randomizing routing problems!

## Upper bound on $P_{r}(v)$

■ $P_{r}(v)=\operatorname{Probability}(r$ or more packet paths pass through node $v$ on level $i$ ), $r>0,0 \leq i \leq \log N$

■ we are randomizing routing problems!
$■$ at most $p 2^{i}$ packets pass through $v$
$\square$ there are $2^{\log N-i}$ choices of destinations that will cause these packets to pass through $v$
$\Longrightarrow$ each of $p 2^{i}$ pass through $v$ with probability $2^{-i}$

## Example: choices of inputs and outputs



## Upper bound on $P_{r}(v)$

$$
P_{r}(v) \leq\binom{ p 2^{i}}{r}\left(2^{-i}\right)^{r} \leq\left(\frac{p 2^{i} e}{r}\right)^{r} 2^{-i r}=\left(\frac{p e}{r}\right)^{r}
$$

## Notes about upper bound on $P_{r}(v)$

$P_{r}(v) \leq\left(\frac{p e}{r}\right)^{r}$
■ The bound does not depend on $v$ or on $i$

## Notes about upper bound on $P_{r}(v)$

$P_{r}(v) \leq\left(\frac{p e}{r}\right)^{r}$
■ The bound does not depend on $v$ or on $i \Longrightarrow$ for any random routing problem $r$ or more packets pass through any node with probability $\leq N \log N\left(\frac{p e}{r}\right)^{r}$

## Notes about upper bound on $P_{r}(v)$

$P_{r}(v) \leq\left(\frac{p e}{r}\right)^{r}$
■ The bound does not depend on $v$ or on $i \Longrightarrow$ for any random routing problem $r$ or more packets pass through any node with probability $\leq N \log N\left(\frac{p e}{r}\right)^{r}$
■ we can make this probability be very low by choosing large $r$

## Two particular cases of upper bound on $P_{r}(v)$ : case 1

■ if $p \geq \frac{\log N}{2}$, we choose $r=2 e p=O(p)$ :

$$
N \log N\left(\frac{p e}{r}\right)^{r} \leq N \log N\left(\frac{1}{2}\right)^{e \log N}=N^{1-e} \log N \leq 1 / N^{3 / 2}
$$

## Two particular cases of upper bound on $P_{r}(v)$ : case 2

■ if $p \leq \frac{\log N}{2}$, we choose $r=\frac{2 e \log N}{\log \left(\frac{\log N}{\rho}\right)}$ and omit technical details:

$$
N \log N\left(\frac{p e}{r}\right)^{r} \leq 1 / N^{2}
$$

## Result: outline of the analysis

$\square$ bound for $P_{r}(v)$
$\square$ it does not depend on $v$ and $i \Rightarrow$ bound for all nodes
■ it decreases when $r$ increases
$\square$ choose $r$ (for different $p$ ) large enough to make the bound small: $1 / N^{3 / 2}$

## Result: bound on congestion

For all but at most a $1 / N^{3 / 2}$ fraction of the possible routing problems at most $C$ packets pass through each node during a greedy routing where

$$
C=\left\{\begin{array}{rl}
2 e p, & \text { if } p
\end{array} \frac{\log N}{2}, ~\left(\frac{\log N}{p}\right), \text { if } p \leq \frac{\log N}{2}\right.
$$

## Result: simple form of a bound

With high probability the congestion in a random problem is at most

$$
C=O(p)+o(\log N)
$$

## Generalization of the result

Corollary. For any $\alpha>0$, the congestion of all but $1 / N^{\alpha}$ of the possible routing problems with $p$ packets per input in a $\log N$-dimensional butterfly is at most $O(\alpha p)+o(\alpha \log N)$

## Two special cases

■ $p=1$ : the maximum number of packets that pass through any node is $O(\log N / \log \log N)$ with high probability

- compare this bound with the worst case congestion: $O(\sqrt{N})$


## Two special cases

■ $p=1$ : the maximum number of packets that pass through any node is $O(\log N / \log \log N)$ with high probability

- compare this bound with the worst case congestion: $O(\sqrt{N})$
$\square p=\Theta(\log N)$ : at most $O(\log N)$ packets will pass through any node with high probability


## Conclusion: first bound on running time

The time needed to deliver every packet to its destination is at most $(C-1) \log N$ in most routing problems, where

$$
C=O(p)+o(\log N)
$$

## Conclusion: first bound on running time

The time needed to deliver every packet to its destination is at most $(C-1) \log N$ in most routing problems, where

$$
C=O(p)+o(\log N)
$$

Now we will show that the running time is $\log N+O(p)+o(\log N)$ for almost all routing problems.

## Overview

## 1 Introduction

- Useful definitions
- Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time


## 3 Conclusion

IIII

## Random-rank protocol: motivation

If two or more packets are waiting to exit a node, we need to specify a protocol for deciding which packet will move forward out of the node first.

## Random-rank protocol: details

■ random priority key $r(P) \in[1, K]$ for each packet $P$
$\square$ define total order on the packets: $t(P)$ is the rank of packet $P$

## Random-rank protocol: details

■ random priority key $r(P) \in[1, K]$ for each packet $P$
$\square$ define total order on the packets: $t(P)$ is the rank of packet $P$
■ define $w(P)=(r(P), t(P))$

- order $\mathrm{w}(\mathrm{P})$ :
if $P \neq P^{\prime}$ we say that $w(P)<w\left(P^{\prime}\right) \Leftrightarrow\left(r(P)<r\left(P^{\prime}\right)\right)$ OR $\left(r(P)=r\left(P^{\prime}\right)\right.$ AND $\left.t(P)<t\left(P^{\prime}\right)\right)$


## Random-rank protocol: details

■ random priority key $r(P) \in[1, K]$ for each packet $P$
$\square$ define total order on the packets: $t(P)$ is the rank of packet $P$
$\square$ define $w(P)=(r(P), t(P))$
■ order $\mathrm{w}(\mathrm{P})$ :
if $P \neq P^{\prime}$ we say that $w(P)<w\left(P^{\prime}\right) \Leftrightarrow\left(r(P)<r\left(P^{\prime}\right)\right)$ OR $\left(r(P)=r\left(P^{\prime}\right)\right.$ AND $\left.t(P)<t\left(P^{\prime}\right)\right)$
■ the packet with smallest $w$ exits the node first

## Random-rank protocol: naive question

## Why do we need both $r$ and $t$ ?

## Random-rank protocol: naive question

Why do we need both $r$ and $t$ ?
■ $r$ is random $\Rightarrow$ sometimes not unique

- $t$ is not random

■ $w(P)=(r(P), t(P))$ is random and unique

## Example: random-rank protocol



Figure: initial configuration: $\langle$ destination, name, randoney

## Example: random-rank protocol



Figure: after step 1

## Example: random-rank protocol



Figure: after step 2

## Example: random-rank protocol



Figure: after step 3

## Example: random-rank protocol



Figure: after step 4

## Theorem about running time

If we use random-rank protocol, the congestion equals $C$, then the running time is $T$ with probability at least $1-1 / N^{7}$, where

$$
T=\left\{\begin{array}{r}
O(C), \text { if } C \geq \frac{\log N}{2} \\
\log N+O\left(\log N / \log \left(\frac{\log N}{C}\right)\right), \text { if } C \leq \frac{\log N}{2}
\end{array}\right.
$$

## Proof: preliminaries

We consider routing problem with congestion number $C$, random keys $r(P)$ and running time $T$. We will show that $T$ satisfies the bound from the theorem.

## Delay path

■ $P_{0}$ is the last packet to reach its destination $v_{0}$, it was last delayed at the node $v_{1}, l_{0}$ is the number of steps in the path $v_{1} \rightarrow v_{0}$

## Example: delay path



Figure: $P_{0}=F, v_{0}=\langle 11,2\rangle$

## Delay path

■ $P_{0}$ is the last packet to reach its destination $v_{0}$, it was last delayed at the node $v_{1}, l_{0}$ is the number of steps in the path $v_{1} \rightarrow v_{0}$
$\square P_{1}$ is the packet responsible for delaying $P_{0} . P_{1}$ itself was delayed at the node $v_{2}, l_{1}$ is the number of steps in the path $v_{2} \rightarrow v_{1}$

## Example: delay path



Figure: $P_{1}=B, v_{1}=\langle 10,1\rangle$

## Delay path

■ $P_{0}$ is the last packet to reach its destination $v_{0}$, it was last delayed at the node $v_{1}, l_{0}$ is the number of steps in the path $v_{1} \rightarrow v_{0}$
$\square P_{1}$ is the packet responsible for delaying $P_{0}$. $P_{1}$ itself was delayed at the node $v_{2}, l_{1}$ is the number of steps in the path $v_{2} \rightarrow v_{1}$
■ we proceed in a similar fashion until the sequence of delays ends at $v_{s}$

## Example: delay path



Figure: $P_{2}=A, v_{2}=\langle 00,0\rangle$

## Delay path

$\square P_{0}$ is the last packet to reach its destination $v_{0}$, it was last delayed at the node $v_{1}, l_{0}$ is the number of steps in the path $v_{1} \rightarrow v_{0}$
$\square P_{1}$ is the packet responsible for delaying $P_{0} . P_{1}$ itself was delayed at the node $v_{2}, l_{1}$ is the number of steps in the path $v_{2} \rightarrow v_{1}$
■ we proceed in a similar fashion until the sequence of delays ends at $v_{s} . P_{s}$ moves forward from $v_{s}$ during step 1.
$■ \mathbf{P}=v_{s} \rightarrow \ldots \rightarrow v_{1} \rightarrow v_{0}$ is the delay path

## Delay path and running time

$$
\begin{aligned}
& T-I_{0}-I_{1}-\ldots-I_{s-1}-(s-1)=1 \text { and } \\
& I_{0}+\ldots+I_{s-1}=\log N \Rightarrow s=T-\log N
\end{aligned}
$$

## Delay sequence

## A delay sequence consists of <br> $■$ a delay path $\mathbf{P}$

## Delay sequence

A delay sequence consists of
■ a delay path $\mathbf{P}$
$\square$ integers $I_{0} \geq 1, I_{1} \geq 0, \ldots, I_{s-1} \geq 0, I_{0}+\ldots+I_{s-1}=\log N$

## Delay sequence

A delay sequence consists of

- a delay path $\mathbf{P}$
$\square$ integers $I_{0} \geq 1, I_{1} \geq 0, \ldots, I_{s-1} \geq 0, I_{0}+\ldots+I_{s-1}=\log N$
$\square$ nodes $v_{0}, v_{1}, \ldots, v_{s}: v_{i}$ is the node of $\mathbf{P}$ on level $\log N-I_{0}-\ldots-I_{s-1}$


## Delay sequence

A delay sequence consists of

- a delay path $\mathbf{P}$

■ integers $I_{0} \geq 1, I_{1} \geq 0, \ldots, I_{s-1} \geq 0, I_{0}+\ldots+I_{s-1}=\log N$

- nodes $v_{0}, v_{1}, \ldots, v_{s}: v_{i}$ is the node of $\mathbf{P}$ on level $\log N-l_{0}-\ldots-I_{s-1}$
$■$ different packets $P_{0}, P_{1}, \ldots, P_{s}$ : the greedy path for $P_{i}$ contains $v_{i}$


## Delay sequence

A delay sequence consists of
$\square$ a delay path $\mathbf{P}$
$\square$ integers $I_{0} \geq 1, I_{1} \geq 0, \ldots, I_{s-1} \geq 0, I_{0}+\ldots+I_{s-1}=\log N$
$\square$ nodes $v_{0}, v_{1}, \ldots, v_{s}: v_{i}$ is the node of $\mathbf{P}$ on level $\log N-I_{0}-\ldots-l_{s-1}$
$\square$ different packets $P_{0}, P_{1}, \ldots, P_{s}$ : the greedy path for $P_{i}$ contains $v_{i}$
$\square$ keys $k_{0}, k_{1}, \ldots, k_{s}$ for the packets: $k_{s} \leq k_{s-1} \leq \ldots \leq k_{0}$, $k_{i} \in[0, K]$.
A delay sequence is active, if $r\left(P_{i}\right)=k_{i}$ for $0 \leq i \leq s$.

## Example: active delay sequence



## Main property of an active delay sequence

$$
\operatorname{Pr}(T \leq s+\log N) \leq
$$

$\leq \operatorname{Pr}$ (there is an active delay sequence with $s+1$ packets)

## Number of possible delay sequences $N_{d}$

There are many possible delay sequences!
■ $N^{2}$ choices for delay path $\mathbf{P}$

## Number of possible delay sequences $N_{d}$

There are many possible delay sequences!

- $N^{2}$ choices for delay path $\mathbf{P}$
$\square\binom{s+\log N-2}{s-1}$ choices for $I_{0} \geq 1, I_{1} \geq 0 \ldots, I_{s} \geq 0, \sum I_{i}=\log N$


## Number of possible delay sequences $N_{d}$

There are many possible delay sequences!

- $N^{2}$ choices for delay path $\mathbf{P}$
$\square\binom{s+\log N-2}{s-1}$ choices for $I_{0} \geq 1, I_{1} \geq 0 \ldots, I_{s} \geq 0, \sum I_{i}=\log N$
- Why?


## Combinatorial explanation

There is one-to-one correspondence between choices for $l_{i}$ and $(s+\log N-2)$-bit binary string $t$ with $s-1$ zeros:
$\square I_{i}$ is the number of " 1 " between $(i+1)$ st and $(i+2)$ nd zeros in the string 01 t 0

## Combinatorial explanation

There is one-to-one correspondence between choices for $l_{i}$ and $(s+\log N-2)$-bit binary string $t$ with $s-1$ zeros:
$\square l_{i}$ is the number of " 1 " between $(i+1)$ st and $(i+2)$ nd zeros in the string 01 t 0
$\square$ if $\log N=3, s=5, t=001100$, then

$$
01 t 0=010011000
$$

$$
\text { and } l_{0}=1, l_{1}=0, l_{2}=2, l_{3}=0, l_{4}=0
$$

## Number of possible delay sequences $N_{d}$

There are many possible delay sequences!

- $N^{2}$ choices for delay path $\mathbf{P}$
$\square\binom{s+\log N-2}{s-1}$ choices for $I_{0}, \ldots, I_{s}$


## Number of possible delay sequences $N_{d}$

There are many possible delay sequences!

- $N^{2}$ choices for delay path $\mathbf{P}$

■ $\binom{s+\log N-2}{s-1}$ choices for $I_{0}, \ldots, I_{s}$
■ after that $v_{0}, \ldots, v_{s}$ are completely determined and there are at most $C$ choices for each $P_{i}$. Hence, at most $C^{s+1}$ ways to choose $P_{0}, \ldots, P_{s}$.

## Number of possible delay sequences $N_{d}$

There are many possible delay sequences!

- $N^{2}$ choices for delay path $\mathbf{P}$

■ $\binom{s+\log N-2}{s-1}$ choices for $I_{0}, \ldots, I_{s}$
■ after that $v_{0}, \ldots, v_{s}$ are completely determined and there are at most $C$ choices for each $P_{i}$. Hence, at most $C^{s+1}$ ways to choose $P_{0}, \ldots, P_{s}$.
$\square\binom{s+K}{s+1}$ ways to choose $k_{0}, \ldots, k_{s}, k_{s} \leq k_{s-1} \leq \ldots \leq k_{0}, k_{i} \in[0, K]$

## Number of possible delay sequences $N_{d}$

There are many possible delay sequences!

- $N^{2}$ choices for delay path $\mathbf{P}$

■ $\binom{s+\log N-2}{s-1}$ choices for $I_{0}, \ldots, I_{s}$
■ after that $v_{0}, \ldots, v_{s}$ are completely determined and there are at most $C$ choices for each $P_{i}$. Hence, at most $C^{s+1}$ ways to choose $P_{0}, \ldots, P_{s}$.
$\square\binom{s+K}{s+1}$ ways to choose $k_{0}, \ldots, k_{s}, k_{s} \leq k_{s-1} \leq \ldots \leq k_{0}, k_{i} \in[0, K]$
■ Why?

## Combinatorial explanation

There is one-to-one correspondence between choices for $k_{i}$ and $(s+K)$-bit binary string $u$ with $s+1$ zeros:

■ $k_{i}$ is the number of " 1 " to the left of the $(s+1-i)$ th zero in the string $1 u$

## Combinatorial explanation

There is one-to-one correspondence between choices for $k_{i}$ and $(s+K)$-bit binary string $u$ with $s+1$ zeros:

■ $k_{i}$ is the number of " 1 " to the left of the $(s+1-i)$ th zero in the string $1 u$
$\square$ if $s+1=6, K=1, u=000110010$, then

$$
1 u=1000110010
$$

$$
\text { and } k_{0}=1, k_{1}=1, k_{2}=1, k_{3}=3, k_{4}=3, k_{5}=4
$$

## Number of possible delay sequences $N_{d}$

$$
N_{d}=N^{2}\binom{s+\log N-2}{s-1} C^{s+1}\binom{s+K}{s+1}
$$

## Probability to find an active delay sequence

$$
N_{d} \operatorname{Pr}\left(r\left(P_{i}\right)=k_{i} \text { for all } i\right)=N_{d} K^{-(s+1)}
$$

## Proof: results

This probability becomes smaller than $o\left(N^{-7}\right)$, when the number of packets is

$$
s+1=\left\{\begin{array}{r}
O(C), \text { if } C \geq \frac{\log N}{2} \\
O\left(\log N / \log \left(\frac{\log N}{C}\right)\right), \text { if } C \leq \frac{\log N}{2}
\end{array}\right.
$$

## Proof: final details

With probability $1-o\left(N^{-7}\right)$

$$
T \leq s+\log N=\left\{\begin{array}{r}
O(C)+\log N, \text { if } C \geq \frac{\log N}{2} \\
\log N+O\left(\log N / \log \left(\frac{\log N}{C}\right)\right), \text { if } C \leq \frac{\log N}{2}
\end{array}\right.
$$

## Can we use another contention-resolution protocol?

## Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on the history of contending packets, it doesn't depend on information about destinations.

## Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on the history of contending packets, it doesn't depend on information about destinations.

- FIFO


## Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on the history of contending packets, it doesn't depend on information about destinations.

- FIFO
- random-rank protocol is not non-predictive

■ if we use a specific setting for random keys in RRP, it is non-predictive

## History of edge activity

■ $R$ - routing problem
■ Q — non-predictive contention-resolution protocol
■ $H(R, Q)=\{(e, t) \mid$ packet traverses edge $e$ at step $t\}$

## Properties of $H(R, Q)(1 / 2)$

Lemma 1. $Q$; $R$ and $R^{\prime}$ with $p$ packets per input. $H(R, Q)=H\left(R^{\prime}, Q\right)$ for steps in $[1, T] \Rightarrow$ the location of packets after $T$ steps of $R$ is the same as the location of packets after $T$ steps of $R^{\prime}$ Proof.

## Properties of $H(R, Q)(1 / 2)$

Lemma 1. $Q$; $R$ and $R^{\prime}$ with $p$ packets per input. $H(R, Q)=H\left(R^{\prime}, Q\right)$ for steps in $[1, T] \Rightarrow$ the location of packets after $T$ steps of $R$ is the same as the location of packets after $T$ steps of $R^{\prime}$ Proof.

■ $T=0$ : done

## Properties of $H(R, Q)(1 / 2)$

Lemma 1. $Q$; $R$ and $R^{\prime}$ with $p$ packets per input. $H(R, Q)=H\left(R^{\prime}, Q\right)$ for steps in $[1, T] \Rightarrow$ the location of packets after $T$ steps of $R$ is the same as the location of packets after $T$ steps of $R^{\prime}$
Proof.

- $T=0$ : done
- $T-1 \mapsto T$ :the same packets move forward the same direction for $R$ and $R^{\prime}$
Corollary. $R \neq R^{\prime} \Rightarrow H(R, Q) \neq H\left(R^{\prime}, Q\right)$


## Properties of $H(R, Q)(2 / 2)$

Fact. $Q, Q^{\prime} ; R$ with $p$ packets per input $\Rightarrow \exists R^{\prime}$ with $p$ packets per input: $H(R, Q)=H\left(R^{\prime}, Q^{\prime}\right)$

## Running time of non-predictive protocol

Theorem. $n_{T}(Q)$ - number of problems for which the greedy algorithm runs in $T$ steps using $Q$. Then $n_{T}(Q)=n_{T}\left(Q^{\prime}\right)$ for any $T>0, Q, Q^{\prime}$.

## Proof.

- $N^{\rho N}$ different routing problems with $p$ packets per input


## Running time of non-predictive protocol

Theorem. $n_{T}(Q)$ - number of problems for which the greedy algorithm runs in $T$ steps using $Q$. Then $n_{T}(Q)=n_{T}\left(Q^{\prime}\right)$ for any $T>0, Q, Q^{\prime}$.

## Proof.

- $N^{p N}$ different routing problems with $p$ packets per input
- $N^{p N}$ different histories


## Running time of non-predictive protocol

Theorem. $n_{T}(Q)$ - number of problems for which the greedy algorithm runs in $T$ steps using $Q$. Then $n_{T}(Q)=n_{T}\left(Q^{\prime}\right)$ for any $T>0, Q, Q^{\prime}$.

## Proof.

- $N^{\rho N}$ different routing problems with $p$ packets per input
- $N^{\rho N}$ different histories

■ the set of all histories is the same for any $Q^{\prime}$ as it is for $Q$

## Running time of non-predictive protocol

Theorem. $n_{T}(Q)$ — number of problems for which the greedy algorithm runs in $T$ steps using $Q$. Then $n_{T}(Q)=n_{T}\left(Q^{\prime}\right)$ for any $T>0, Q, Q^{\prime}$.

## Proof.

■ $N^{p N}$ different routing problems with $p$ packets per input

- $N^{p N}$ different histories

■ the set of all histories is the same for any $Q^{\prime}$ as it is for $Q$
$\square$ each history defines the running time $\Rightarrow n_{T}(Q)=n_{T}\left(Q^{\prime}\right)$ for any $T>0$

## What does it mean?

$\square$ the distribution of running time $T$ is the same for any nonpredictive protocol
■ the average time is the same

## Can we use another protocol?

We can set priority keys in RRP such that $T$ will be at most $\log N+O(p)+o(\log N)$
$\Rightarrow$ greedy algorithm has the same average time $T$ for any nonpredictive protocol.

## Conclusion

■ "Typical" routing problem (in a mathematical sense) is likely to have reasonable running time
■ "Typical" routing problem (in practice: with bit-reversal and transpose permutations) has very bad estimation of running time

