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1 Introduction

In this section we will give some general information about parallel computation and also
some important definitions and notations.

1.1 Parallel computation models

A parallel machine consists of a set of processors P = {P0, ..., Pn−1} and communication
mechanism. Generally there are 3 types of communication mechanisms:

• shared memory
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• communication via bus

• communication via interconnection networks.

We will focus on machines with communication via interconnection networks.
In parallel machines with this type of communication processors are connected to pro-

cessor network (network) according to communication graph G = (P, E).
The number of possible links int n-processors network is (n

2 ). For instance, in network
of 1024 processors it will be 523776 possible links. It is obviously impossible to implement
such network, so real networks have constant degree.

We will also have to use generally wrong assumption, that all processors are syn-
chronous, i. e. all processors begin next step of calculation simultaneously.

1.2 Notation and definitions

The following lines describe the notation used in this paper.

• N := {0, 1, ...}, N+ := {1, ...}, [n] := {0, ..., n − 1}.

Z is the set of integers, R - the set of real numbers.

(a, b) := {x ∈ R|a < x < b}

• For a set X its power set is denoted as P(X).

• bind(n) denotes binary representation of n ∈ N using d bits, potentially with leading
zeros. For example bin4(3) = 0011.

• (a)n for a ∈ [n]d denotes natural number which is represented as a to base n. For
example (201)3 = 19.

• Let G = (V,E) be a graph. Then ΓG(v) := {u|{u, v} ∈ E}; U ⊆ V : ΓG(U) :=⋃
v∈U ΓG(v).

• Γk(U) is the k-neighborhood of U and is defined recursive as follows: Γ1(U) :=
ΓG(U); k > 1 : Γk(U) := Γk−1(U)

⋃
Γ1(Γk−1(U)).

• Let G be a graph and U a subset of vertices of G. G |U denotes a subgraph of G,
which consists of vertices included by U and all edges that join two vertices in U.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic if exists a
bijection between the vertex sets of G1 and G2: ϕ : V1 → V2, with {u, v} ∈ E1 ⇔
{ϕ(u), ϕ(v)} ∈ E2. This property is denoted as G1

∼= G2.

Now some common used definitions follows.

Definition 1 Let n, d ∈ N
+, a = (ad−1, ..., a0), b = (bd−1, ..., b0) ∈ [n]d. The Hamming

distance between a and b is defined as hamming(a, b) :=
∑d−1

i=0 |ai − bi|.
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Definition 2 For a graph G = (V,E) and x, y ∈ V is distG(x, y) the length of shortest
path between x and y, i. e. the number of edges in this path. The diameter of a graph is
diam(G) = max{distG(x, y)|x, y ∈ V }.

Now we will define what the routing is.

Definition 3 (Routing protocols) Let M = (P,E) be a network, where P = [N ] is
the set of processors, and f : [N ] × [p] → [N ] some function and let x0,0, ..., x0,p−1,

x1,0, ..., x1,p−1, ..., xN−1,0, ..., xN−1,p−1 be messages.
We say ”M is routing x0,0, ..., xN−1,p−1 according to f” when: if processor i saves

the package (i, f(i, k), xi,k) than the message xi,k becomes known for processor f(i, k). This
process is called function routing. Is p = 1 then f describes a permutation on [N ] so we
speak of permutation routing and leave the second parameter of f.

A routing protocol for M consists of protocols for all processors i. Each processor i
has a buffer to store packages.

In each routing step every processor i does following:

• i chooses one package from his buffer;

• i selects one of his neighbors j;

• i sends the package to j, it means that i saves the package in buffer of j and deletes
it from it’s own buffer.

M works synchronous, i. e. all processors 0, ..., N − 1 start the t-th routing step
simultaneously. The routing time is the number of routing steps, the buffer size is the
maximum amount of packages that can be stored in a buffer at the same time.

Routing with preprocessing (also off-line routing) is a routing protocol which
depends on f. At the beginning of routing some computation is performed depending on f
to generate protocols for processors i.

In routing without preprocessing (on-line routing) the routing protocol is inde-
pendent from f.

2 Permutation routing on the mesh networks

In this section we will consider grid networks family. This networks have regular structure
so they are inexpensive to build as long as their dimension is not too big.

Definition 4 Let a, b ∈ N
+. The (n,d)-grid M(n,d) is a network with set of pro-

cessors P = {a|a ∈ [n]d} and communication graph G = (P,E), E = {{a, b}|a, b ∈
[n]d, hamming(a, b) = 1} This network is called d-dimensional grid with edge length n.
The edge connecting two vertices a and b with |ai−bi| = 1 is called an edge in Dimension
i.

Properties of M(n, d)
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Figure 1: Some examples of M(n,d)

1. M(n, d) has nd nodes and dnd − dnd−1 edges.

2. dist(a, b) = hamming(a, b);

3. diam(M(n, d)) = (n − 1) · d

4. M(n, d) |{a|ai=l}
∼= M(n, d − 1) for d > 0 and fixed i, l

5. M(n, d) |{ib|i∈[n]}
∼= M(n, 1) for fixed b ∈ [n]d−1

2.1 Online routing on linear array

Theorem 1 (Online routing on linear array) Permutation routing without preprocess-
ing in M(n, 1) can be performed with routing time 2(n − 1) and buffer size 3.

Proof:
Let π be any permutation on [n]. The following pseudo code describes an algorithm

that in first phase sends packages which destination is located to the left hand from start,
and int second phase all another packages.

for all processors i ∈ [n] do

PHASE 1:
for t:=1 to n-1 do

for all packages (j, π(j), xj) do
if i ≤ π(j) then do nothing
else send package to processor i-1

done
done

{Result: all packages with π(j) ≤ j have reached their destination.}

PHASE 2:
for t:=1 to n-1 do
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for all packages (j, π(j), xj) do
if i ≥ π(j) then do nothing
else send package to processor i+1

done
done

{Result: all packages have reached their destination}
done

In both phases any processor i stores in it’s buffer at most 3 packages: package i,
package j with π(j) = i and some other package that must be transferred. It means that
needed buffer size is 3.

The routing time is obvious.
2

2.2 Online routing on 2D array

Theorem 2 (Online routing on 2D array) Permutation routing without preprocessing
in M(n, 2) can be performed with routing time at most 4(n− 1) and buffer size at most n.

Proof:
The idea is that we route in 2 phases: first ”horizontal” and then ”vertical”. Packages

with farthermost destination have higher priority, so each node sends forward that package,
whose destination node is located farthermost from this node. Due to this is routing time
for each dimension at most 2(n − 1).

The maximum buffer size is validated as follows. The most buffer size is needed in case,
when during first phase of routing all n packages of one row are concentrated in one node
to be then distributed between nodes of a row. In that case the node must be able to store
in buffer n packages at the same time.

2

3 Digression: graph theory

In next sections we will use some theorems of graph theory. So we will present them in
this section. First, we need some new definitions.

Definition 5 (Bipartite graph) A graph G = (V,E) is a bipartite graph with vertex
classes V1 and V2 if V = V1

⋃
V2, V1

⋂
V2 = ∅ and every edge joins a vertex of V1 to a

vertex of V2.

Definition 6 (Hypergraph) A hypergraph H is a pair (V,E) such that V
⋂

E = ∅ and
E ⊂ P(V ). V is a set of nodes and E is a set of hyperedges.
H is r-uniform if all hyperedges connect exact r vertices.
H is r-regular if all vertices are connected to exact r hyperedges.
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Definition 7 (Matching) Given a graph G = (V,E), a matching M in G is a set of
pairwise non-adjacent edges; that is, no two edges share a common vertex. A perfect
matching is a matching which covers all vertices of the graph. That is, every vertex of
the graph is incident to exactly one edge of the matching.

3.1 Marriage theorem

Theorem 3 (Frobenius/Hall, marriage theorem) Let G = (V,E) be a bipartite graph
with V = V1

⋃
V2 and |V1| = |V2|, then

G contains a perfect matching ⇔ ∀S ⊂ V1 : |S| ≤ |ΓG(S)|(∗)

Proof:
”⇒”:
this is obvious.

”⇐”:
In this proof we shall use the matchmaking terminology, so let V1 be a set of girls and

V2 a set of boys. We shall apply induction on m = |V1| = |V2|.
For m = 1 the condition is clearly sufficient, so we assume that m ≥ 2 and the condition

is sufficient for smaller values of m.
Suppose first that any k girls (1 ≤ k < m) know at least k+1 boys. Then we arrange

one marriage arbitrarily. The remaining (sets of) girls and boys still satisfy the condition
(*), so the other m-1 girls can be married off by induction.

Suppose now that for some k, 1 ≤ k < m, there are k girls who know exactly k boys
altogether. These girls can clearly be married of by induction. What about the other
girls? We can marry them off (again by induction) if they also satisfy the condition (*),
provided that we do not count the boys who are already married. But the condition is
satisfied, since if some l girls to be married know fewer than l remaining boys, than these
girls together with the first k girls would know fewer than k+l boys.

2

3.2 Coloring theorem

Using marriage theorem we can prove following theorem.

Theorem 4 (Coloring theorem) Every bipartite n-regular graph can be decomposed into
n perfect matchings, that is this graph is n-edge-colorable.

Proof:
In this proof we will apply induction on n.
For n = 1 we have a graph with every node incident to exact one edge. This graph is

a matching and is obviously 1-edge-colorable.
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Now let n > 1. We will show, that for ∀X ⊂ V1: |Γ(S)| ≥ |S|. S is incident to
exact |S| · n edges. Each node of Γ(S) can be an endvertex of at most n of this edges, so
|Γ(S)| ≥ |S|.

According to marriage theorem G has a perfect matching M. We color all edges of this
matching in color n-1. Since G\M is a (n-1)-regular-graph, we can color it by induction
in n-1 colors.

2

We can also apply the marriage theorem on not regular graphs:

Corollary 1 Each bipartite graph with maximum grad c can be decomposed into n perfect
matchings and is c-edge-colorable.

4 Permutation networks

Now we can construct some special permutation networks.

Definition 8 (Permutation network) Let n, d ∈ N
+. The (n,d)-Permutation net-

work (n,d)-PN is a network with processors set P = {(l, a)|l ∈ {−d, ...,−1, 1, ..., d}, a ∈
[n]d} and communication graph (P,E),

E = {{(l, a), (l + 1, a′)}|l < −1, ai = a′
ifor∀i 6= |l| − 1}

⋃
{{(l, a), (l − 1, a′)}|l > 1, ai = a′

ifor∀i 6= l − 1}
⋃

{{(−1, a), (1, a′)}|ai = a′
ifor∀i 6= 0}

⋃
{{(l, a), (l + 1, a)}| − d ≤ l < d}

The sources are processors {Qa|Qa = (−d, a), a ∈ [n]d} and the sinks are processors
{Qa|Qa = (d, a), a ∈ [n]d}.

We call Qa a (a)n-th source, sinks are called analogical.
For l ∈ {−d, ...,−1, 1, ..., d} the processors {(l, a)|a ∈ [n]d} are called processors on

level l.

One of the most famous and frequently used networks is the butterfly network.

Definition 9 (Butterfly network) The d-dimensional butterfly network BF(d) comes
up from (2,d)-PN, if the set of processors is reduced to {(l, a)|l ∈ {−1, 1, ..., d}, a ∈ [n]d}.
The processor -1 is then renamed to 0. If the nodes of level 0 are identified with those of
level d, then such network is called a butterfly network with wrap-around-edges.

The (2,d)-PN is also called Beneš network or Waksman network.

Properties of (n,d)-PN and BF(d):
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Figure 2: (2,3)-PN

1. (n,d)-PN has 2d · nd processors;

2. (n,d)-PN has depth 2d-1;

3. let t < d, b ∈ [n]d−t and Pb = {(l, a)|l ∈ {−t, ...,−1, 1, ...t}, a = bcforc ∈ [n]t}. Then
is (n, d)−PN |P

b

∼= (n, t)−PN . This gives us a recursive decomposition of (n,d)-PN.
For i ∈ [n] and t = d − 1 denote Bi the subnetwork (n, d − 1) − PN |Pi

;

4. BF(d) has (d + 1) · 2d processors;

5. BF(d) has depth d;

6. for every processor (0, a) and (d, b) there is exact one shortest path from (0, a) to
(d, b).

In following subsections we will discuss some routing algorithms for butterfly and (n,d)
permutation networks.

4.1 Congestion in butterfly network

The bit-reversal permutation is a permutation that reverses the bits of a number: let
a = (ad−1, ...a1, a0), then π(a) = (a0, a1, ..., ad−1).
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Figure 3: BF(3).
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(n,d-1)-PN

B
(n-1)
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Figure 4: Recursive decomposition of PN

The routing of bit-reversal permutation as a good instance of worst case congestion
(figure 5).

Red lines mark paths of packages from processors 0000, 0001, 0010, 0011. The red num-
bers near nodes denote the amount of packages that will be transferred through this nodes.
The red marked node (2, 0000) is a ”hot spot”, i.e. node with maximum congestion.

4.2 Offline routing in general case permutation network

First we will show that for any permutation there is a set of disjoint paths from sources to
sinks, assuming that messages are to be transferred from sources to sinks.

Lemma 1 For any permutation π on [n]d there is in (n,d)-PN a set W of nd disjoint paths
Wa beginning in Qa and ending in Sπ(a), with length 2d − 1.

Proof:
Let π be any permutation on [n]d. The idea of this proof is that we construct a set of

paths recursively using decomposition of (n,d)-PN described in feature nr. 3 of PN.
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Figure 5: Routing of bit-reversal permutation on BF(4)

For d = 1 it is easy to find disjoint paths, because (n,1)-PN is a complete bipartite
graph with n nodes in both parts. In that case set of paths W = {{Qa, Sπ(a)}|a ∈ [n]d}.
The length of each path is obvious 1 = 2 · 1 − 1.

Suppose now d > 1. For every path Wa we have to choose a partition B(i), through
which this path will go, keeping in mind that following two conditions must be satisfied:

1. Any source of B(i) is incident to exact one path.

2. Any sink of B(i) is incident to exact one path.

If we could satisfy this conditions, then we can implement permutations on [n]d−1 by
induction.

Now consider a hypergraph Hπ = ([n]d, E1

⋃
E2), also called a routing hypergraph

for π. Hπ has following hyperedges:

• for ∀b ∈ [n]d−1 is a set of vertices e1(b) = {(jb)|j ∈ [n]} a type-1 hyperedge e1(b) ∈ E1.

• for ∀b ∈ [n]d−1 is a set of vertices e2(b) = {a ∈ [n]d|(jb) = π(a), j ∈ [n]} a type-2
hyperedge e2(b) ∈ E2.

This hypergraph has paths Wa as nodes. Type-1 hyperedge contains the paths Wa

whose sources Qa are connected to the same sources of B(i). And type-2 hyperedge connects
all the paths whose sinks are connected to the same sinks of partitions B(i). So what we
need is to make sure that no two paths connected by type-1 or type-2 hyperedge are going
through the same partition B(i). We can assign to each of n partitions B(i) one of n colors.
If we could color the vertices of Hπ in n colors, then we could lay any path through partition
of same color, so both conditions would be satisfied.

Note that Hπ can have multiple edges, because same vertices can be connected with
both type-1 and type-2 hyperedges. Hπ is n-uniform and 2-regular.
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Let us show that Hπ is n-colorable.
First we construct for Hπ = ([n]d, E1

⋃
E2) a bipartite graph Gπ = (E1

⋃
E2, EG). Note,

that due to multiple edges of Hπ some vertices in Gπ can appear ”double”, as vertices from
E1 and as vertices from E2. The nodes e1 ∈ E1 and e2 ∈ E2 are connected via one edge for
every v ∈ e1

⋂
e2 thus there are also multiple edges. Each vertex e of Gπ has degree n, so

Gπ is n-regular. Now let e ∈ E1, then there is for ∀v ∈ e exact one e(v) ∈ E2 with v ∈ e(v).
The same argumentation pertains to E2.

Gπ is bipartite and n-regular, and according to coloring theorem is n-edge-colorable. It
means that Hπ n-vertex-colorable is, because each edge in Gπ corresponds to some vertex
of Hπ.

Let φ be some such n-coloring. We lay the path Wa through partition network B(φ(a)).
The coloring is a guarantee that there are no collisions and B(φ(a)) have to implement only
one permutation on [n]d−1, what is possible by induction.

The length of path is 1 + 2(d − 1) − 1 + 1 = 2d − 1.
2
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Figure 6: Example of Hπ and Gπ

Example:

Consider following permutation π =( 0
4

1
1

2
0

3
3

4
2

5
6

6
5

7
7 )

which we want to route on (2,3)-PN. The corresponding graphs Hπ and Gπ are shown in
figure 7, and a possible set of disjoint paths in figure 8.

The only thing we are missing now is some coloring algorithm for routing hypergraph.
Such algorithms are expensive, if n is not a power of two.

Theorem 5 (n,d)-PN can route with preprocessing according to any permutation π on [n]d,
sending messages from Qa to Sπ(a) for ∀a ∈ [n]d. The routing time is (2d − 1) + (s − 1),
assuming that every message consists of s parts.

Proof:
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Figure 7: Concrete example of Hπ and Gπ

We construct the system of paths W according to proof of previous lemma. The s single
messages will be transferred from Qa to Sπ(a) through (n,d)-PN along the Wa. There will
be no congestion, because all pathes are disjoint, thus 2d + s− 2 routing steps are needed.
This process is called pipelining.

2

5 Conclusion

Unsolved problems
In theorem 6 we have proven that (2,d)-PN for all permutations π : [2]d → [2]d has a
system of disjoint paths. This network consists of two copies of BF(d) connected inverse
to each other. The question is, is it really necessary to connect BF networks in that way?
It is possible to show, that 4 consecutively connected butterfly networks can route any
permutation along disjoint paths. D. Parker has proven that also 3 copies are sufficient.
It is easy to see, that one copy not enough is, but whether 2 copies are sufficient is unknown.

Some other communication problems
There are few more essential problems of communication in networks, as:

• The distribution routing, in which input packages can be sent to many destina-
tions.
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Figure 8: Example of a set of disjoint paths

• The relation routing which is kind of fusion of distribution routing and function
routing.

• The broadcasting, where one of processors possesses a message which is to send
to all another processors, and gossipping, which is a generalization of this process,
so every processor has a message he must send to all another (”everyone becomes
everything”).

• The token distribution (also load balancing), where the packages (called token)
have no destination address and are transmitted equally through entire network.

The most important feature of permutation routing is that many of above mentioned
problems can be reduced on permutation routing or permutation routing is an important
part of their solutions.
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