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Abstract. Pastry provides a versatile fault-tolerant and e�cient framework for devel-

oping various kinds of peer to peer networks.

1. Network Structure

1.1. Overview. Pastry is a distributed hash table. The computers which are participat-
ing in the network are called peers or nodes. They are connected through a network called
underlying network. This is usually the internet with TCP/IP. Pastry provides methods
that allow peers to exchange messages in an e�cient manner and computers not yet partic-
ipating in the overlay to join it. Using these two methods applications can be developed.

1.2. Proximity. We assume that messages can be sent from a peer p to a peer q if p has
su�cient information about q, for example its IP-address. We assume further that the
cost for sending such a message may be measured by a metric d. That means especially
d(p, q) = d(q, p) and d(p, q) ≤ d(p, p′) + d(p′, q) and that this cost can easily be calculated.
As an example for TCP/IP we would use the round trip time.
When we say that two nodes p and q are �near� we mean that d(p, q) is small.

1.3. What do we want to optimise? Every operation should need as few messages as
possible. If we still have the choice between multiple routes for a message we try to �nd
one where the nodes are close to each other. Focusing primarily on the number of nodes
for a message also has good implications for stability and security: If there are less nodes
on the path of a message the probability that one of them is faulty is smaller.
We will see that good results concerning proximity by using a greedy algorithm: We

�rst de�ne an algorithm for routing which will have a certain degree of freedom for �nding
the next node for routing. With this freedom we will choose a node that is near to the
current node. We will see that this can be achieved by �lling the routing tables of nodes
with nearby nodes.

1.4. IDs. IDs are numbers ∈ N/(2128N) ≡ {0, ..., 2128} := ID. We de�ne a norm |.| on
ID trough ∀b ∈ ID.|b| := min(b, 2128 − b). Every peer has an ID id(p) ∈ ID. These
IDs are randomly generated or computed as the value of a cryptographic hash-function on
the node's public key, if a node has a public key. This way we can assume that IDs are
randomly distributed through the underlying network.
Every piece of data d also has an ID id(d) and is associated with the peer p such that
|id(p)−id(d)| = min. What exactly is meant by �a piece of data� depends on the application
that is run on pastry.
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We interpret IDs as numbers with base |B| = 2b. Also we set m = log|B| |ID|. We
de�ne a function pfxl : ID → ID that which computes the longest pre�x between two
IDs written as strings: For two numbers x = x0 ◦ x1 ◦ ... ◦ xm−1 and y = y0 ◦ y1 ◦ ... ◦ ym−1

where ◦ is the concatenation pfxl(x, y) is the i with ∀j < i + 1 : xj = yj and xi 6= yi. For
convenience we set pfxl(p, q) := pfxl(id(p), id(q)) for nodes p and q.

1.5. The Routing Table. Let p be a node. The routing table Rp =: R of p is a matrix
(R[i, j])0≤i<m,0≤j<|B|. Here R[i, j] =: q is a node with pfxl(p, q) = i and id(q)[i] = j. If
there is no such node in the network (that we now of) or if j = id(p)[i] we set R[i, j] = null.
If possible we choose a q near to p. A schematic example of Rp with id(p) = 1232 and
|B| = 4 follows:

..1.. ..2.. ..3.. ..4..

xxxx null 2xxx 3xxx 4xxx
1xxx 11xx null 13xx 14xx
12xx 121x 122x null 124x
123x 1231 null 1233 1234

Theorem 1.1. Rp for node p contains ≤ O( log n
b

2b) entries.

Proof. First we observe that the probability that there is another node q in the network
with pfxl(p, q) ≥ m is (n − 1) ∗ (2−b)m = O(n ∗ 2−bm). m digits of id(q) need to be the
same as for id(p) for each of which there are 2b possible values. We now set m = (c+2) log n

b

for a constant c > 0. Now the probability can be rewritten as n ∗ 2−bm = n ∗ 2−(c+2) log n =
n ∗ n−c−2 = n−c−1 which is small for large n. Therefore it is probable that ai,j = null for

i > (c + 2) log n
b
. �

1.6. The Leaf Set. The leaf set L for a node p is an array with |L|/2 nodes with next
higher IDs and |L|/2 nodes with next lower IDs. If |L|/2 > n nodes may be on both sides
of the leaf-�set�. This will always happen when the network is initialised.

1.7. The Neighbourhood Set. The neighbourhood set M of a node p contains |M | = 2b

nodes near p. It is used for repairs and insertion of peers. It is not strictly necessary for
the operation of pastry as there are implementations that do not use it at all.

2. Operations

2.1. Routing. We now present the algorithm for routing in pastry:
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Search(r)
if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))

Route to peer p′ ∈ L, so that |r − id(p)′|is minimal.

return;

c← pfxl(r, id(p))
if (R[c, r[c]] 6= null)

Route to peer R[c, r[c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r, id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|
Usually messages are �rst routed with the routing table and if that is not possible

anymore the leaf set is used. The third part of the algorithm, routing to any node that
decreases the distance to the destination, is used especially if there have been recent node
failures.
The routing table is used to make routing fast. With it nodes may be selected in such

a way that the distance to the target decreases exponentially, thus making routing in
logarithmic time possible. The leaf set on the other hand is used for maintaining reliability
in the network. The following proofs will illustrate this. In both we assume that all entries
in the leaf sets and routing tables are �lled with appropriate nodes, if possible.

Theorem 2.1. Routing takes no more than O(n/|L|) steps.

Proof. We only use the leaf set. Let p0, p1, ..., pm+1 be the nodes along the route. For all
but the last step we will use L[|L|/2] or L[−|L|/2]. On average |id(Lpi

[±|L|/2])− id(pi)| is
|ID|/n∗ |L|/2 because the average distance between the IDs of two nodes with consecutive

IDs is |ID|/n. With |id(p0)−id(pm+1)| ≤ |ID|
2

and a division we get the required value. �

Note that messages can always be routed if there is at least one node alive on each side
of the leaf set of every node.

Theorem 2.2. The expected value is O(log2b n) = O( log n
b

) messages.

Proof. We now use the routing table. Each time a pi+1 is found in the routing table
pfxl(id(pi+1), r) > pfxl(id(pi), r). After each step we have to look one row deeper into
the routing table. With high probability only the �rst O( log n

b
) rows in the routing table

of any node are �lled. So we will, with high probability, only make O( log n
b

) steps in the
routing table. After that the �nal node is in the leaf set with a probability of 0.98. The
probability that no more than two steps in the leaf set are needed is 0.9994. This last part
we will not proof. �

The last step or steps in the leaf set can often be avoided altogether. The routing
algorithm assumes that we need to �nd the nearest node to a given ID. In most protocols
data is not stored on a single node but on the k nearest nodes to that node to maintain
reliable operation even in the case of failure of nodes.
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2.2. Insertion of Peers. Suppose a new computer p wants to enter the network. Let R,
L and M be its routing table, leaf set and neighbourhood set which will be �lled using
the following algorithm: p begins by generating its ID id(p) and then contacting a peer p0

already in the network. We assume that it is possible for p to do this and we assume that
d(p, p0) is small. Now p0 routes a join-message with recipient id(p) along the standard
routing mechanism of pastry. This message carries the address of p in the underlying
network, e.g. its IP. Every peer that receives the message sends its routing table, leaf set
and neighbourhood set to p. Let p0, p1, ..., pz be the path of the message. We assume that
z ≥ m and pfxl(pi, p) ≥ i for i < m− 1. If this is not the case we include peers multiple
times.

d(p, p0) is small and therefore for all q ∈ M0 : d(p, q) ≤ d(p, p0) + d(p0, q) is small. This
means that M0 is an appropriate choice for M . Because of the way how routing works
in pastry |id(p) − id(pz)| is minimal. Lz ∪ {pz} contains the peers with IDs numerically
closest to id(p). Therefore p can construct its leaf set using Lz and inserting pz at position
1 or −1. Let Ri be the routing table of pi. For p's routing table we copy the 0-th row
from R0, the �rst from R1 and so on. This works because pfxl(pi, p) ≥ i and therefore
∀q ∈ Ri[i, ∗] : pfxl(q, p) ≥ i∧pfxl(p, pi) ≥ i =⇒ pfxl(p, q) ≥ i. p now requests the routing
tables of all peers in M and searches for entries that are better in terms of the metric d.

p sends messages about its arrival to all nodes in M , L and R. They check if p is better
value for the appropriate entry in their routing table. The nodes in M may include p in
their neighbourhood set. Nodes in L need to insert p into their leaf sets.
Notifying other nodes about the arrival of p costs |M |+ |L|+2b/b log n messages. There

were O( log n
b

) replies to the join-message.

2.3. Locality. Normally (i.e. when using TCP/IP) to computers which are near in terms
of the proximity metric are also physically near. This means that they are, depending on
the size of the pastry-network, in the same building, city or country. This means that it is
not unlikely that they will go down simultaneously. The reverse is true for nodes that are
distant.
Because IDs are randomly chosen nodes in the leaf set of a node will be distributed

randomly in the physical world. Therefore it is unlikely that all nodes on one side of the
leaf set of a node will go down at the same time. But this is the only condition in which
routing in pastry can fail.

2.4. Optimisation of Locality. We will now show that routing in pastry is not only
e�cient in terms of the number of peers a message is routed through but also concerning
the proximity metric of the underlying network. If there were no recent node failure routing
is mostly done using the routing table. Also the constraints on the entries in the routing
table are lighter than those for the leaf set. Therefore routing can be optimised by �lling
Rp for a node p only with �good� values, meaning that d(q, p) is small for all q ∈ Rp.
We use the same names as two sections before. Assume that the routing tables of all

nodes already in the network are optimised. R[0, ∗] is taken from p0. d(p0, q) is small for all
q ∈ R[0, ∗]. With d(p0, p) being small we get that d(p, q) is also small. R[1, ∗] is taken from
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p1. Let q be now element of R[1, ∗]. d(p1, q) is optimal, but that does not imply that d(p, q)
is small. However d(p, q) is relatively small because q must be in the set{s|pflx(s, p) ≥ 1}.
Because distances are distributed randomly through the ID-space here a lower higher value
for d(p, q) is still good. And so on for all R[i, ∗].
The following picture illustrates this. (in the picture a = 0 and b = 1)

2.5. Locality in Routing. Let p1, ..., pa, pb, pc, ..., pnbe
the path a certain message travels in pas-
try, so that pb and pc are chosen from the
leaf sets of pa and pb respectively. We easily
see that d(pa, pb) < d(pb, pc) Otherwise ...,
pa, pc , ... would be used as both pb and
pc full�ll the requirements for the entry in
the routing table of pa where a reference to
pb is stored. Hence the distances increase
monotonically. They even grow exponen-
tially because every pi is taken from a set
with n/2bi entries. This means that any er-
ror we make on a low level will be far out-
weighed by the steps on the higher levels.
As seen in the picture from the previous
section we thereby get good results. Here
one can see that with even if p and pb are on opposite sites of the circle representing the
leaf set of pathe distance d(p, pb) is less than

1
8
of what a message has to travel two steps

later.
Note that the last steps are the most expensive ones. As the leaf set cannot be optimised

for locality the �nal step (or steps) there will have a cost of about half the maximum of
all distances. But this step can usually be avoided because we only need to reach one of
the k nodes with IDs close to r.
Again this is not a formal proof and we will present experimental results to verify it.

3. Stability

3.1. Leaf Set. A peer may leave the network without warning leading to dead entries.
The underlying network supports an operation that checks if a node is alive. A node is
considered alive if the computer it is running on can still be contacted by all other peers
and it is still running pastry. The protocol atop pastry may include keep alive messages.
To reduce overhead they are only used when there was no recent normal message and only
to maintain the leaf set.
If a peer p′ fails to respond to pinging from another peer p, p′ is assumed to be dead. p

immediately tries to repair this. It requests the leaf sets from other nodes in its leaf set.
With them p can �ll its leaf set and reconstruct the leaf set of the now dead node. All
nodes in Lp′ are noti�ed by p and update their leaf sets appropriately.
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3.2. Routing Table. The algorithm for insertion does not guarantee that all nodes are
properly updated. Consider the insertion of a peer p. Only peers in Mp ∪ Lp ∪ Rp are
noti�ed. Only nodes in Lp need to have a reference to p in their leaf sets, so this part is
working as needed. However there may be peers that need to include p in their routing
table but are not noti�ed. As an example consider a network with no node with an ID
with pre�x 1. If id(p) starts with 1 all nodes will need to be updated.
However correct routing is still guarantied. Also it is not probable that many nodes

need to be updated. In the example the probability that there is no node with an ID with
pre�x 1 for a network with |B| = 16 and 15 nodes not including p is only .38 and here
every node is in every other nodes leaf set, so all routing tables will need to be updated.
As the number of nodes increases more nodes need to updated but at the same time the
probability that there is no node with a certain pre�x decreases.
If a peer notices that one of the entries in its routing table is null although there is an

appropriate node in the network it searches for an appropriate value to �ll the table. A
peer may notice that a node �tting into a certain place in its routing table exists when a
message to or from such a node is routed through p. If the protocol supports this p may
also check the full path along which the message has travelled.
An alternate method can be seen in FreePastry. A peer p gets a message m routed from

peer p′. Before routing m to the next peer p does the following:

Let l← pflx(id(p), id(m))
if pfxl(id(p′), id(m)) = l and

R[l, id(m)[l]] 6= null do

Send our R[l, ∗] to p′.

This second method has the advantage of performing better if there are a few routes which
are mostly used. For example when a big �le is transfered in multiple small parts the best
route will be used for all but the �rst parts. The �rst method will be used in the remaining
part of this paper.
Before a peer p routes a message to a node p′ it checks if p′ is alive. If it is not routing

continues as if the entry in p's routing table had been null. Then p tries to �nd a new
entry to �ll its routing table. To do this p asks all other q ∈ R[i, ∗] for their entry Rq[i, j].
If this does not succeed it tries its next row R[i + 1, ∗], R[i + 2, ∗] and so on.

3.3. Malicious Nodes. So far we have only discussed reliability in cases where a node
visibly fails. It may happen that a node still participates in the network but does not
act accordingly to the protocols. It may for example accept messages but fail to forward
them. This may be due to a faulty implementation of pastry or clients that try to interfere
with the normal operation of the network. We assume that most nodes in the network are
working properly.
To avoid faulty nodes the �rst step is to be able to determine if messages reach their

destination. To achieve this the protocol on top of pastry should include reply messages
that are for example send after storing or modifying data. These messages should be
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signed. Because the node IDs are the hash values of the nodes public keys in a big network
it is di�cult to forge k replies from the k nodes that need to store a single piece of data.
If no reply is received after sending some request, the request is resend. In the normal

implementation of pastry this new request will be routed along the same path as the original
one and will therefore fail. To avoid this routing can be randomised: The algorithm for
routing from a node p is only used in most cases, for example 95% of all routes. In the other
cases a node q is chosen randomly. Because we still have to ensure that routing completes in
�nite time the following q has to be chosen in such a way that pfxl(id(q), r) ≥ pfxl(id(p), r)
and|id(q)− r| > |id(p)− r| are true.

3.4. Experimental Results. We now present experimental results about the e�ciency
of pastry. This data was obtained with a simulation running on a single computer in
one JVM. The nodes were uniformly distributed in [0; 1000]× [0; 1000] and distances were
computed using the euclidian metric. Of course these are not realistic assumptions but
they should provide results that will also apply to a certain degree to a network like the
internet. In the experiments b = 4, so there are 16 digits, the size of the leaf set is 16 and
the size of the neighbourhood set is set to 32. If not stated otherwise there are 100, 000
nodes in the network. In the �rst experiment we look at the number of hops needed for
routing. This is almost logarithmic as expected.

The next �gure shows the distribution of the number of hops. The maximum is 5 =⌈
log

2b 100, 000
⌉
.
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We now look at the distances in the metric of the underlying network. For this experi-
ment 200, 000 pairs of nodes are randomly selected and the distances are measured. They
are then compared to the direct distance between the two nodes. Note that pastry scales
very well in this respect.

4. Conclusion and Outlook

4.1. PAST. PAST is a distributed �le storage system using pastry. As such it supports
storing and retrieving �les in a distributed and fail safe fashion. Changing �les or deleting
them is not supported. Files have IDs which are computed as their hash value. As said
before a �le is stored in the k nodes with nearest IDs to its own ID. Nodes that store a �le
have to make sure that a new copy is stored in the network when one of the k nodes goes
down.
Also every node has a capacity that it contributes to the network. This capacity should

not di�er by a factor of more than 100. If a node that is about to join the network is too
big, it joins the network as multiple nodes as if multiple instances of pastry were running
on the computer. Usually the neighbourhood set and part of the routing table can be
shared between these nodes. If on the other hand the node has a very low capacity it
cannot join the network. Nodes may also join as observers in which case they can retrieve
but not store data.
If a node n is among the k nodes that need to store a �le but the node has already

reached its capacity or is close to the �le can be diverted. This means that n asks a node
in its leaf set to store the �le and then creates a link to this node. Nodes may store no
more than one copy of any �le. A request for storing a �le fails if at least one node has
reached its capacity and cannot divert the �le. This can happen if the nodes in a part of
the ID-space store relatively large amounts of data. In this case the �le may be tried to
be stored with a di�erent ID.
Whenever a �le is transfered through a node and that node has unused capacity the �le

is stored as cache. This may happen upon creation or retrieval of a �le.

4.2. Other Applications. There are many other applications build on top of pastry.
The list includes a publish/subscribe system (SCRIBE), a caching system (SQUIRREL),
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a messaging infrastructure (POST) and a a high-bandwidth content distribution system
(SplitStream) that in turn uses SCRIBE.
In SCRIBE nodes can create topics which other nodes can subscribe to. Each topic has

an ID that is computed as the hash value of its name. The node p with the ID nearest to
that of a topic becomes the root of the topic. It stores the ID and the public key of the
node which created the topic. k nodes with IDs nearest to that of p become back up roots
for the topic. If p goes down one of them becomes the new root for the topic. When a node
wants to subscribe to the topic it routes a subscribe-message to p. Let q = pm, pm−1, ..., p0

be the path of that message. Each node pi now stores a reference to pi+1. We call such
references children. If a subscribe-message is received by a node which already has children,
it only adds the node the message came from as a child but does not forward the message.
Using this procedure a tree with root p is generated. Whenever a new message arrives at
p, usually send from the node that created the topic, p passes the message to its children.
They in turn pass the message to their children and so on. Because routing takes into
account locality, the same will be true for the multicast trees. Procedures are added to
detect and repair failure of nodes in the tree.
In SplitStream this mechanism is generalised to provide better load balancing for large

amounts of data such as streaming high de�nition videos. The data is split into multiple
parts and each part is distributed among the nodes participating in the network using a
multicast tree. Outbound bandwidth of the single nodes can also be taken into account.
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