## Pastry

## R. Himmelmann

Ferienakademie im Sarntal 2008
FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

October 12, 2008

## Table of Contents

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers
- Locality
- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Table of Contents

1 Data Structures

- Routing Table
- Leaf Set

■ Neighbourhood Set
2 Operations
■ Routing

- Insertion of peers
- Locality
- Locality in Routing
- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Table of Contents

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations
■ Routing

- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set

■ Routing Table
■ Experimental Results

- FreePastry
- PAST


## Table of Contents

1 Data Structures

- Routing Table
- Leaf Set

■ Neighbourhood Set
2 Operations
■ Routing

- Insertion of peers

■ Locality

- Locality in Routing

3 Stability
■ Leaf Set

- Routing Table

■ Experimental Results
4 Conclusion and Outlook

- FreePastry
- PAST

Scribe and SolitStream

- IDs are numbers $\in \mathbb{N} /\left(2^{128} \mathbb{N}\right) \equiv\left\{0, \ldots, 2^{128}-1\right\}:=I D$
- $\forall b \in\left|D .|b|:=\min \left(b, 2^{128}-1-b\right)\right.$
- Every node $p$ in the network has an ID $i d(p) \in I D$.
- Every piece of data $d$ has an ID $i d(d)$
- ... and is associated with the node $p$ with $|i d(p)-i d(d)|=$ min.

■ IDs are numbers $\in \mathbb{N} /\left(2^{128} \mathbb{N}\right) \equiv\left\{0, \ldots, 2^{128}-1\right\}:=I D$

- $\forall b \in I D .|b|:=\min \left(b, 2^{128}-1-b\right)$
- Every node $p$ in the network has an ID id $(p) \in I D$.
- Every piece of data $d$ has an ID id (d)
and is associated with the node $p$ with $|i d(p)-i d(d)|=\min$.

■ IDs are numbers $\in \mathbb{N} /\left(2^{128} \mathbb{N}\right) \equiv\left\{0, \ldots, 2^{128}-1\right\}:=I D$

- $\forall b \in I D .|b|:=\min \left(b, 2^{128}-1-b\right)$
- Every node $p$ in the network has an ID $\operatorname{id}(p) \in I D$.
- Every piece of data $d$ has an ID id (d)
and is associated with the node $p$ with $|i d(p)-i d(d)|=\min$.

■ IDs are numbers $\in \mathbb{N} /\left(2^{128} \mathbb{N}\right) \equiv\left\{0, \ldots, 2^{128}-1\right\}:=I D$

- $\forall b \in I D .|b|:=\min \left(b, 2^{128}-1-b\right)$
- Every node $p$ in the network has an ID $i d(p) \in I D$.
- Every piece of data $d$ has an ID id ( $d$ )


## and is associated with the node $p$ with $|i d(p)-i d(d)|=\min$.

■ IDs are numbers $\in \mathbb{N} /\left(2^{128} \mathbb{N}\right) \equiv\left\{0, \ldots, 2^{128}-1\right\}:=I D$

- $\forall b \in I D .|b|:=\min \left(b, 2^{128}-1-b\right)$
- Every node $p$ in the network has an ID $i d(p) \in I D$.
- Every piece of data $d$ has an ID id(d)

■ ... and is associated with the node $p$ with $|i d(p)-i d(d)|=m i n$.

- Interpret IDs as numbers with base $|B|=2^{b}$
- Let $m=\log _{|B|}|I D|$
- $p f_{x}(x, y)$ is the length of the greatest common prefix of $x$ and $y$.
- Interpret IDs as numbers with base $|B|=2^{b}$
- Let $m=\log _{|B|}|I D|$
- $p f x l(x, y)$ is the length of the greatest common prefix of $x$ and $y$.
- Interpret IDs as numbers with base $|B|=2^{b}$

■ Let $m=\log _{|B|}|I D|$

- $\operatorname{pfx}(x, y)$ is the length of the greatest common prefix of $x$ and $y$. - $p f x l(p, q):=p f x l(i d(p), i d(q))$ for nodes $p$ and $q$.
- Interpret IDs as numbers with base $|B|=2^{b}$

■ Let $m=\log _{|B|}|I D|$

- $p f x /(x, y)$ is the length of the greatest common prefix of $x$ and $y$.
- $p f x l(p, q):=p f x l(i d(p), i d(q))$ for nodes $p$ and $q$.


## Proximity

Assumption: The cost for sending a message from $p$ to $q$ may be measured by a metric $d$.


## Proximity

Assumption: The cost for sending a message from $p$ to $q$ may be measured by a metric $d$.

■ $d(p, q)=d(q, p)$


## Proximity

Assumption: The cost for sending a message from $p$ to $q$ may be measured by a metric $d$.
$\square d(p, q)=d(q, p)$
■ $d(p, q) \leq d\left(p, p^{\prime}\right)+d\left(p^{\prime}, q\right)$

## What do we want to optimize?

- Every operation should need as few messages as possible. - The overall distance a message travels should be minimal.


## What do we want to optimize?

- Every operation should need as few messages as possible.

■ The overall distance a message travels should be minimal.

- A greedy algorithm is used
- Fill the routing tables of nodes only with near nodes.


## What do we want to optimize?

- Every operation should need as few messages as possible.

■ The overall distance a message travels should be minimal.

- A greedy algorithm is used.
- Fill the routing tables of nodes only with near nodes


## What do we want to optimize?

- Every operation should need as few messages as possible.

■ The overall distance a message travels should be minimal.

- A greedy algorithm is used.
- Fill the routing tables of nodes only with near nodes.


## Overview

1 Data Structures

- Routing Table
- Leaf Set

■ Neighbourhood Set
2 Operations

- Routing
- Insertion of peers

■ Locality

- Locality in Routing

3 Stability
■ Leaf Set

- Routing Table

■ Experimental Results
4 Conclusion and Outlook

- FreePastry
- PAST


## The Routing Table

■ Let $p$ be a node.

- $R_{p}=: R$ is a matrix $(R[i, j])_{0 \leq i<m, 0 \leq j<|B|}$.
- $R[i, j]=: q$ is a node with
- If there is no such $q$ or if $j=i d(p)[i]$ then $R[i, j]=n u l l$.

■ If possible choose a $q$ near to $p$.

## The Routing Table

- Let $p$ be a node.
- $R_{p}=: R$ is a matrix $(R[i, j])_{0 \leq i<m, 0 \leq j<|B|}$.
- $R[i, j]=: q$ is a node with
- If there is no such $q$ or if $j=i d(p)[i]$ then $R[i, j]=n u l l$.
- If possible choose a $q$ near to $p$.


## The Routing Table

- Let $p$ be a node.
- $R_{p}=: R$ is a matrix $(R[i, j])_{0 \leq i<m, 0 \leq j<|B|}$.
- $R[i, j]=: q$ is a node with
- pfxl $(p, q)=i$
- $i d(q)[i]=j$
- If there is no such $q$ or if $j=i d(p)[i]$ then $R[i, j]=$ null.
- If possible choose a $q$ near to $p$.


## The Routing Table

- Let $p$ be a node.
- $R_{p}=: R$ is a matrix $(R[i, j])_{0 \leq i<m, 0 \leq j<|B|}$.
- $R[i, j]=: q$ is a node with
- $p f x l(p, q)=i$
- If there is no such $q$ or if $j=i d(p)[i]$ then $R[i, j]=n u l l$.
- If possible choose a $q$ near to $p$.


## The Routing Table

- Let $p$ be a node.
- $R_{p}=: R$ is a matrix $(R[i, j])_{0 \leq i<m, 0 \leq j<|B|}$.
- $R[i, j]=: q$ is a node with
- $p f_{x}(p, q)=i$
- $\operatorname{id}(q)[i]=j$
- If there is no such $q$ or if $j=i d(p)[i]$ then $R[i, j]=$ null.
- If possible choose a $q$ near to $p$.


## The Routing Table

- Let $p$ be a node.
- $R_{p}=: R$ is a matrix $(R[i, j])_{0 \leq i<m, 0 \leq j<|B|}$.
- $R[i, j]=: q$ is a node with
- $p f x l(p, q)=i$
- $\operatorname{id}(q)[i]=j$
- If there is no such $q$ or if $j=i d(p)[i]$ then $R[i, j]=$ null.
- If possible choose a $q$ near to $p$.


## The Routing Table

- Let $p$ be a node.
- $R_{p}=: R$ is a matrix $(R[i, j])_{0 \leq i<m, 0 \leq j<|B|}$.
- $R[i, j]=: q$ is a node with
- $p f x l(p, q)=i$
- $\operatorname{id}(q)[i]=j$
- If there is no such $q$ or if $j=i d(p)[i]$ then $R[i, j]=$ null.
- If possible choose a $q$ near to $p$.


## Example

|  | $. .1 .$. | $. .2 .$. | ..3.. | ..4.. |
| :---: | :---: | :---: | :---: | :---: |
| $x \mathrm{xxx}$ | null | 2 xxx | 3 xxx | 4 xxx |
| 1 xxx | 11 xx | null | 13 xx | 14 xx |
| 12 xx | 121 x | 122 x | null | 124 x |
| 123 x | 1231 | null | 1233 | 1234 |

$R_{p}$ with $\operatorname{id}(p)=1232$

$$
|B|=4 .
$$

## Size of $R$

## Theorem

$R_{p}$ for node $p$ contains usually $\leq \mathcal{O}\left(\frac{\log n}{b} 2^{b}\right)$ entries.

## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations
■ Routing

- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## The Leaf Set

- The leaf set $L$ for a node $p$ is an array with
- |L|/2 nodes with next higher IDs and
- $|L| / 2$ nodes with next lower IDs.
- If $|L| / 2>n$ nodes may be on both sides of the leaf "set".


## The Leaf Set

- The leaf set $L$ for a node $p$ is an array with
- $|L| / 2$ nodes with next higher IDs and
- $|L| / 2$ nodes with next lower IDs.
- If $|L| / 2>n$ nodes may be on both sides of the leaf "set".


## The Leaf Set

- The leaf set $L$ for a node $p$ is an array with
- $|L| / 2$ nodes with next higher IDs and
- $|L| / 2$ nodes with next lower IDs.
- If $|L| / 2>n$ nodes may be on both sides of the leaf "set".


## Example



## Overview

1 Data Structures

- Routing Table
- Leaf Set

■ Neighbourhood Set
2 Operations
■ Routing

- Insertion of peers
- Locality
- Locality in Routing

3 Stability

- Leaf Set
- Routing Table

■ Experimental Results
4 Conclusion and Outlook
■ FreePastry

- PAST


## The Neighbourhood Set

- The Neighbourhood $M$ of a node $p$ contains $|M|=2^{b}$ nodes.
- For all $q \in M$ the distance $d(p, q)$ should be small.
- $M$ is used for repairs and insertion of peers.


## The Neighbourhood Set

- The Neighbourhood $M$ of a node $p$ contains $|M|=2^{b}$ nodes.

■ For all $q \in M$ the distance $d(p, q)$ should be small.

- $M$ is used for repairs and insertion of peers.


## The Neighbourhood Set

- The Neighbourhood $M$ of a node $p$ contains $|M|=2^{b}$ nodes.

■ For all $q \in M$ the distance $d(p, q)$ should be small.

- $M$ is used for repairs and insertion of peers.


## Example 2

| Nodeld 10233102 |  |  |  |
| :--- | :--- | :--- | :--- |
| Leaf set SMALLER LARGER |  |  |  |
| 10233033 | 10233021 | 10233120 | 10233122 |
| 10233001 | 10233000 | 10233230 | 10233232 |


$|$| Routing table |  |  |  |
| :--- | :--- | :--- | :--- |
| $-0-2212102$ $\mathbf{1}$ $-2-2301203$ | $-3-1203203$ |  |  |
| $\mathbf{0}$ | $1-1-301233$ | $1-2-230203$ | $1-3-021022$ |
| $10-0-31203$ | $10-1-32102$ | $\mathbf{2}$ | $10-3-23302$ |
| $102-0-0230$ | $102-1-1302$ | $102-2-2302$ | $\mathbf{3}$ |
| $1023-0-322$ | $1023-1-000$ | $1023-2-121$ | $\mathbf{3}$ |
| $10233-0-01$ | $\mathbf{1}$ | $10233-2-32$ |  |
| $\mathbf{0}$ |  | $102331-2-0$ |  |
|  |  | $\mathbf{2}$ |  |

## Neighborhood set

| 13021022 | 10200230 | 11301233 | 31301233 |
| :--- | :--- | :--- | :--- |
| 02212102 | 22301203 | 31203203 | 33213321 |

## Overview

1 Data Structures

- Routing Table
- Leaf Set

■ Neighbourhood Set
2 Operations
■ Routing

- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Algorithm for Routing

■ For a given $r \in I D$ we want to find the node $n$ with $|i d(n)-r|=\min$.

- We start at a node $p$.
- If $n$ is in the leaf set we forward the message to it.
- Otherwise let $c=p f x /(i d(p), r)$
- If $R[c, r[c]] \neq$ null forward to that node.
- Otherwise route to the "best" node $p^{\prime}$ known to $p$ with $\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$ and $p f x l\left(i d\left(p^{\prime}\right), r\right) \geq r$.


## Algorithm for Routing

- For a given $r \in I D$ we want to find the node $n$ with $|i d(n)-r|=\min$.
- We start at a node $p$.
- If $n$ is in the leaf set we forward the message to it.
- Otherwise let $c=p f x l(i d(p), r)$
- If $R[c, r[c]] \neq$ null forward to that node.
- Otherwise route to the "best" node $p^{\prime}$ known to $p$ with $\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$ and $p f x l\left(i d\left(p^{\prime}\right), r\right) \geq r$.


## Algorithm for Routing

- For a given $r \in I D$ we want to find the node $n$ with $|i d(n)-r|=\min$.
- We start at a node $p$.

■ If $n$ is in the leaf set we forward the message to it.

- Otherwise let $c=p f x l(i d(p), r)$
- If $R[c, r[c]] \neq$ null forward to that node.
- Otherwise route to the "best" node $p^{\prime}$ known to $p$ with $\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$ and $p f x l\left(i d\left(p^{\prime}\right), r\right) \geq r$.


## Algorithm for Routing

- For a given $r \in I D$ we want to find the node $n$ with $|i d(n)-r|=\min$.
- We start at a node $p$.
- If $n$ is in the leaf set we forward the message to it.
- Otherwise let $c=p f x /(i d(p), r)$
- If $R[c, r[c]] \neq$ null forward to that node.
- Otherwise route to the "best" node $p^{\prime}$ known to $p$ with $\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$ and $p f x l\left(i d\left(p^{\prime}\right), r\right) \geq r$.


## Algorithm for Routing

- For a given $r \in I D$ we want to find the node $n$ with $|i d(n)-r|=\min$.
- We start at a node $p$.
- If $n$ is in the leaf set we forward the message to it.
- Otherwise let $c=p f x /(i d(p), r)$
- If $R[c, r[c]] \neq$ null forward to that node.
- Otherwise route to the "best" node $p^{\prime}$ known to $p$ with $\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$ and $p f x l\left(i d\left(p^{\prime}\right), r\right) \geq r$.


## Algorithm for Routing

- For a given $r \in I D$ we want to find the node $n$ with $|i d(n)-r|=\min$.
- We start at a node $p$.
- If $n$ is in the leaf set we forward the message to it.
- Otherwise let $c=p f x /(i d(p), r)$

■ If $R[c, r[c]] \neq$ null forward to that node.

- Otherwise route to the "best" node $p^{\prime}$ known to $p$ with $\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$ and $p f x l\left(i d\left(p^{\prime}\right), r\right) \geq r$.


## Correctness

## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

- (Assume correct routing tables and leaf sets)


## Theorem

The expected value is $\mathcal{O}\left(\log _{2^{b}} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Correctness

## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

- (Assume correct routing tables and leaf sets)


## Theorem

The expected value is $O\left(\log _{2 b} n\right)=O\left(\frac{\log _{b} n}{b}\right)$ messages.

## Correctness

## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

- (Assume correct routing tables and leaf sets)


## Theorem

The expected value is $\mathcal{O}\left(\log _{2^{b}} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Notes

■ Usually not the node $p$ with $|i d(p)-r|=\min$. is needed.

- One of the $k$ nodes nearest to $r$ in the ID-space is sufficient. - E.g. in Past, a file storage protocol layered atop pastry:


## Notes

■ Usually not the node $p$ with $|i d(p)-r|=\min$. is needed.

- One of the $k$ nodes nearest to $r$ in the ID-space is sufficient.
- E.g. in Past, a file storage protocol layered atop pastry:


## Notes

■ Usually not the node $p$ with $|i d(p)-r|=\min$. is needed.
■ One of the $k$ nodes nearest to $r$ in the ID-space is sufficient.
■ E.g. in Past, a file storage protocol layered atop pastry:

- At least $k$ copies of a file are stored in the $k$ nodes with the closest IDs to $p$.


## Notes

■ Usually not the node $p$ with $|i d(p)-r|=\min$. is needed.

- One of the $k$ nodes nearest to $r$ in the ID-space is sufficient.

■ E.g. in Past, a file storage protocol layered atop pastry:

- At least $k$ copies of a file are stored in the $k$ nodes with the closest IDs to $p$.


## Overview

1
Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations

## - Routing

- Insertion of peers
- Locality

■ Locality in Routing
3 Stability

- Leaf Set
- Routing Table

■ Experimental Results
4 Conclusion and Outlook
■ FreePastry

- PAST


## Insertion of a peer

- Let $p$ be a new peer with tables $R, L$ and $M$.
- Try to choose values for the routing table so, that distances are minimal.


## Insertion of a peer

- Let $p$ be a new peer with tables $R, L$ and $M$.
- Try to choose values for the routing table so, that distances are minimal.


## Insertion of a peer



## Insertion of a peer

■ Request $R_{q}$ from all $q \in M$ and look for better entries for $R$. - Notify every peer in $M, L$ and $R$ about our arrival.

## Insertion of a peer

■ Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.
■ Notify every peer in $M, L$ and $R$ about our arrival.

## Overview

1 Data Structures

- Routing Table
- Leaf Set

■ Neighbourhood Set
2 Operations

- Routing
- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table

■ Experimental Results
4 Conclusion and Outlook

- FreePastry
- PAST


## Locality

- IDs are distributed randomly through the underlying network. - It is unlikely that $|L| / 2$ nodes with consecutive IDs fail.
- Routing is stable.


## Locality

- IDs are distributed randomly through the underlying network.
- It is unlikely that $|L| / 2$ nodes with consecutive IDs fail.
- Routing is stable.


## Locality

- IDs are distributed randomly through the underlying network.
- It is unlikely that $|L| / 2$ nodes with consecutive IDs fail.
- Routing is stable.


## Locality in insertion

- The cost of routing operations depends on good choices for $R[i, j]$.


## Fact <br> The algorithm for inserting peers generates good $R[i, j]$

## Locality in insertion

- The cost of routing operations depends on good choices for $R[i, j]$.


## Fact

The algorithm for inserting peers generates good $R[i, j]$.

## Overview

1
Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Locality in Routing



## Locality in Routing

- $p_{1}, \ldots, p_{a}, p_{b}, p_{c}, \ldots, p_{z}$ with $p_{b} \in R_{a}$ and $p_{c} \in R_{b}$
- $d\left(p_{a}, p_{b}\right)<d\left(p_{a}, p_{c}\right)$
- $p_{i}$ is taken from a set $S$ with $|S| \approx n / 2^{b i}$.
- The most expensive step is usually the last step in the leaf set. - ... which can often be avoided depending on the protocol.


## Locality in Routing

- $p_{1}, \ldots, p_{a}, p_{b}, p_{c}, \ldots, p_{z}$ with $p_{b} \in R_{a}$ and $p_{c} \in R_{b}$
- $d\left(p_{a}, p_{b}\right)<d\left(p_{a}, p_{c}\right)$

Otherwise ..., $p_{a}, p_{c}, \ldots$ would be used.

- $p_{i}$ is taken from a set $S$ with $|S| \approx n / 2^{b i}$
- The most expensive step is usually the last step in the leaf set. - ... which can often be avoided depending on the protocol.


## Locality in Routing

- $p_{1}, \ldots, p_{a}, p_{b}, p_{c}, \ldots, p_{z}$ with $p_{b} \in R_{a}$ and $p_{c} \in R_{b}$
- $d\left(p_{a}, p_{b}\right)<d\left(p_{a}, p_{c}\right)$

Otherwise ..., $p_{a}, p_{c}, \ldots$ would be used.

- $p_{i}$ is taken from a set $S$ with $|S| \approx n / 2^{b i}$

■ The most expensive step is usually the last step in the leaf set. which can often be avoided depending on the protocol.

## Locality in Routing

■ $p_{1}, \ldots, p_{a}, p_{b}, p_{c}, \ldots, p_{z}$ with $p_{b} \in R_{a}$ and $p_{c} \in R_{b}$

- $d\left(p_{a}, p_{b}\right)<d\left(p_{a}, p_{c}\right)$

Otherwise ..., $p_{a}, p_{c}, \ldots$ would be used.

- $p_{i}$ is taken from a set $S$ with $|S| \approx n / 2^{b i}$.
- The most expensive step is usually the last step in the leaf set. which can often be avoided depending on the protocol.


## Locality in Routing

■ $p_{1}, \ldots, p_{a}, p_{b}, p_{c}, \ldots, p_{z}$ with $p_{b} \in R_{a}$ and $p_{c} \in R_{b}$

- $d\left(p_{a}, p_{b}\right)<d\left(p_{a}, p_{c}\right)$

Otherwise ..., $p_{a}, p_{c}, \ldots$ would be used.

- $p_{i}$ is taken from a set $S$ with $|S| \approx n / 2^{b i}$.
- The most expensive step is usually the last step in the leaf set.
which can often be avoided depending on the protocol.


## Locality in Routing

- $p_{1}, \ldots, p_{a}, p_{b}, p_{c}, \ldots, p_{z}$ with $p_{b} \in R_{a}$ and $p_{c} \in R_{b}$
- $d\left(p_{a}, p_{b}\right)<d\left(p_{a}, p_{c}\right)$

Otherwise ..., $p_{a}, p_{c}, \ldots$ would be used.

- $p_{i}$ is taken from a set $S$ with $|S| \approx n / 2^{b i}$.
- The most expensive step is usually the last step in the leaf set.

■ ... which can often be avoided depending on the protocol.

## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
$\boxed{2}$ Operations
- Routing
- Insertion of peers

■ Locality

- Locality in Routing

3 Stability
■ Leaf Set

- Routing Table

■ Experimental Results
4 Conclusion and Outlook

- FreePastry
- PAST


## Dead nodes

- A peer may leave the network without warning. - The underlying network supports pinging. - The protocol atop pastry may include keep-alive messages.


## Dead nodes

- A peer may leave the network without warning.
- The underlying network supports pinging.
- The protocol atop pastry may include keep-alive messages.


## Dead nodes

- A peer may leave the network without warning.
- The underlying network supports pinging.
- The protocol atop pastry may include keep-alive messages.


## Repairing the Leaf Set

- A peer $p$ notices that a node $p^{\prime} \in L_{p}$ is dead.
- $p$ requests the leaf sets from other nodes in $L_{p}$.
- With them $p$ can fill $L_{p}$ and reconstruct $L_{p^{\prime}}$.
- All nodes in $L_{p^{\prime}}$ are notified by $p$.


## Repairing the Leaf Set

- A peer $p$ notices that a node $p^{\prime} \in L_{p}$ is dead.
- $p$ requests the leaf sets from other nodes in $L_{p}$.
- With them $p$ can fill $L_{p}$ and reconstruct $L_{p^{\prime}}$. - All nodes in $L_{p^{\prime}}$ are notified by $p$.


## Repairing the Leaf Set

- A peer $p$ notices that a node $p^{\prime} \in L_{p}$ is dead.
- $p$ requests the leaf sets from other nodes in $L_{p}$.
- With them $p$ can fill $L_{p}$ and reconstruct $L_{p^{\prime}}$.
- All nodes in $L_{p^{\prime}}$ are notified by $p$.


## Repairing the Leaf Set

- A peer $p$ notices that a node $p^{\prime} \in L_{p}$ is dead.
- $p$ requests the leaf sets from other nodes in $L_{p}$.
- With them $p$ can fill $L_{p}$ and reconstruct $L_{p^{\prime}}$.
- All nodes in $L_{p^{\prime}}$ are notified by $p$.


## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
$\boxed{2}$ Operations
- Routing
- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook
■ FreePastry

- PAST


## Missing nodes after insertion

■ Before a message is routed to a node $p^{\prime}$ it is checked if $p^{\prime}$ is alive. - The algorithm for insertion does not gurantee that all nodes updated. - Consider a network with no node with an ID with prefix 1.

## Missing nodes after insertion

■ Before a message is routed to a node $p^{\prime}$ it is checked if $p^{\prime}$ is alive.
■ The algorithm for insertion does not gurantee that all nodes updated.

- Consider a network with no node with an ID with prefix 1.


## Missing nodes after insertion

■ Before a message is routed to a node $p^{\prime}$ it is checked if $p^{\prime}$ is alive.

- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
- If id (p) starts with 1 all nodes will need to be updated.
- However correct routing is still guarantied.


## Missing nodes after insertion

■ Before a message is routed to a node $p^{\prime}$ it is checked if $p^{\prime}$ is alive.

- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
- If id $(p)$ starts with 1 all nodes will need to be updated.


## Missing nodes after insertion

■ Before a message is routed to a node $p^{\prime}$ it is checked if $p^{\prime}$ is alive.

- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
- If id $(p)$ starts with 1 all nodes will need to be updated.
- However correct routing is still guarantied.


## Repairing the Routing Table II

Method from FreePastry:
■ A peer $p$ gets message $m$ routed from peer $p^{\prime}$.

## Let $I \leftarrow \operatorname{pflx}(i d(p), i d(m))$

## Repairing the Routing Table II

Method from FreePastry:

- A peer $p$ gets message $m$ routed from peer $p^{\prime}$.

Let $I \leftarrow \operatorname{pflx}(i d(p), i d(m))$


## Repairing the Routing Table II

Method from FreePastry:

- A peer $p$ gets message $m$ routed from peer $p^{\prime}$.

Let $I \leftarrow \operatorname{pflx}(i d(p), i d(m))$
if $p f x /\left(i d\left(p^{\prime}\right), i d(m)\right)=I$ and
$R[I, i d(m)[/]] \neq$ null do Send our $R[I, *]$ to $p^{\prime}$.

## Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.


## Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed


## Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.

■ No single node stores all copies of a piece of data.

- Nodes send replies when they store data etc.
- Messages are signed


## Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.


## Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.

■ No single node stores all copies of a piece of data.

- Nodes send replies when they store data etc.
- Messages are signed.
- id $(p)$ is the checksum of p's public key.


## Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.

■ No single node stores all copies of a piece of data.

- Nodes send replies when they store data etc.

■ Messages are signed.

- id $(p)$ is the checksum of $p$ 's public key.


## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations
■ Routing

- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table

■ Experimental Results
4 Conclusion and Outlook

- FreePastry

■ PAST

## Number of Hops



- Average number of hops for $b=4,|L|=16$ and $|M|=32$.


## Number of Hops



- Probability vs. Number of Hops.
- Again with $b=4,|L|=16$ and $|M|=32$ and $n=10^{6}$.


## Distances in Routing



Relative Distance vs. Number of Peers

- Pastry is realtively good.
- Finding short routes scales well.


## Distances in Routing



Relative Distance vs. Number of Peers

- Pastry is realtively good.
- Finding short routes scales well.


## Distances in Routing



Relative Distance vs. Number of Peers

- Pastry is realtively good.
- Finding short routes scales well.


## Number of Entries

■ $b=4,|L|=16$ and $|M|=32$ as before.

- Set $n$ to $10^{6}$
- $\forall p:\left|R_{p}\right| \gtrsim\left(2^{b}-1\right) \log _{2^{b}} n>60$

■ $\left|R_{p}\right|+\left|L_{p}\right|+\left|M_{p}\right| \gtrsim 108$

- This is more than most other networks.


## Number of Entries

■ $b=4,|L|=16$ and $|M|=32$ as before.

- Set $n$ to $10^{6}$
- $\forall p:\left|R_{p}\right| \gtrsim\left(2^{b}-1\right) \log _{2^{b}} n>60$

■ $\left|R_{p}\right|+\left|L_{p}\right|+\left|M_{p}\right| \gtrsim 108$

- This is more than most other networks.


## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers
- Locality

■ Locality in Routing
3 Stability
■ Leaf Set

- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## FreePastry

- Java-Implementation of Pastry. - Simultation or TCP/IP. - Can run Past or Scribe.


## FreePastry

- Java-Implementation of Pastry.
- Simultation or TCP/IP.
- Can run Past or Scribe.


## FreePastry

■ Java-Implementation of Pastry.

- Simultation or TCP/IP.
- Can run Past or Scribe.


## Other applications

Other applications build on Pastry include:

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- ... and many more.


## Other applications

Other applications build on Pastry include:

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- ... and many more.


## Other applications

Other applications build on Pastry include:

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream) and many more.


## Other applications

Other applications build on Pastry include:

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream) and many more.


## Other applications

Other applications build on Pastry include:

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)

■ a high-bandwidth contend istribution system (SplitStream)

## and many more.

## Other applications

Other applications build on Pastry include:

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- ... and many more.


## Overview

1 Data Structures
■ Routing Table

- Leaf Set
- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers
- Locality
$■$ Locality in Routing
3 Stability
■ Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## PAST

- A distributed file storage system.
- IDs of files are the checksum of the filename.
- Files are stored in the $k$ nodes with nearest IDs to the ID of a file.
- Mechanisms for maintaining this invariant are added to the protocol.


## PAST

■ A distributed file storage system.

- IDs of files are the checksum of the filename.
- Files are stored in the $k$ nodes with nearest IDs to the ID of a file. - Mechanisms for maintaining this invariant are added to the protocol.


## PAST

- A distributed file storage system.
- IDs of files are the checksum of the filename.

■ Files are stored in the $k$ nodes with nearest IDs to the ID of a file. - Mechanisms for maintaining this invariant are added to the protocol.

## PAST

- A distributed file storage system.
- IDs of files are the checksum of the filename.

■ Files are stored in the $k$ nodes with nearest IDs to the ID of a file.
■ Mechanisms for maintaining this invariant are added to the protocol.

## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:


## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network. - Nodes may also join the network as observers.
- For optimisation the following techniques are used:


## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:


## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:


## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:
- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space.
- Caching


## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:
- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space.
- Caching


## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:
- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space.
- Caching


## PAST

- Every node has a capacity.
- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:
- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space.
- Caching


## Overview

1
Data Structures

- Routing Table

■ Leaf Set

- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers
- Locality

■ Locality in Routing
3 Stability
■ Leaf Set

- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST
- Scribe and SolitStream


## Scribe

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.


## Scribe

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.


## Scribe

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.


## Scribe

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.


## Scribe

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.


## Scribe

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.

■ Distribute messages from the root to the leafs of the tree.

## SplitStream




## Questions?



## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations
■ Routing

- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Algorithm for Routing

## Search(r)


Route to peer $p^{\prime} \in$

return;
$c \leftarrow p f x l(r, i d(p))$
if $\quad(R[c, r[c]] \neq n u l l)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L U M$ with

$$
\begin{aligned}
& p f \times l\left(r, i d\left(p^{\prime}\right)\right) \geq c \text { and } \\
& \left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|
\end{aligned}
$$

## Algorithm for Routing

Search (r)
if $(i d(L[-|L| / 2]) \leq r \leq i d(L[|L| / 2]))$
Route to peer $p^{\prime} \in$
$L$, so that $\left|r-i d(p)^{\prime}\right|$ is minimal.
return;
$c \leftarrow \operatorname{pfx}(\mathrm{r}, \mathrm{id}(\mathrm{p}))$
if $\quad(R[c, r[c]] \neq n u l l)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L \cup M$ with
$p f x /\left(r, i d\left(p^{\prime}\right)\right) \geq c$ and


## Algorithm for Routing

Search (r)
if $(i d(L[-|L| / 2]) \leq r \leq i d(L[|L| / 2]))$
Route to peer $p^{\prime} \in$
$L$, so that $\left|r-i d(p)^{\prime}\right|$ is minimal.
return;
$c \leftarrow \operatorname{pfx}(\mathrm{r}, \mathrm{id}(p))$
if $\quad(R[c, r[c]] \neq n u l l)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L \cup M$ with
$p f x l\left(r, i d\left(p^{\prime}\right)\right) \geq c$ and
$\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$

## Algorithm for Routing

Search (r)
if $(i d(L[-|L| / 2]) \leq r \leq i d(L[|L| / 2]))$
Route to peer $p^{\prime} \in$
$L$, so that $\left|r-i d(p)^{\prime}\right|$ is minimal.
return;
$c \leftarrow p f x l(r, i d(p))$
if $(R[c, r[c]] \neq n u l l)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L \cup M$ with
$p f x l\left(r, i d\left(p^{\prime}\right)\right) \geq c$ and
$\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$

## Algorithm for Routing

Search (r)
if $(i d(L[-|L| / 2]) \leq r \leq i d(L[|L| / 2]))$
Route to peer $p^{\prime} \in$
$L$, so that $\left|r-i d(p)^{\prime}\right|$ is minimal.
return;
$c \leftarrow p f x l(r, i d(p))$
if $\quad(R[c, r[c]] \neq n u l l)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L U M$ with
$p f x l\left(r, i d\left(p^{\prime}\right)\right) \geq c$ and
$\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$

## Algorithm for Routing

Search (r)
if $(i d(L[-|L| / 2]) \leq r \leq i d(L[|L| / 2]))$
Route to peer $p^{\prime} \in$
$L$, so that $\left|r-i d(p)^{\prime}\right|$ is minimal.
return;
$c \leftarrow p f x l(r, i d(p))$
if $\quad(R[c, r[c]] \neq n u l l)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L \cup M$ with
$p f x /\left(r, i d\left(p^{\prime}\right)\right) \geq c$ and
$\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$

## Algorithm for Routing

Search (r)
if $(i d(L[-|L| / 2]) \leq r \leq i d(L[|L| / 2]))$
Route to peer $p^{\prime} \in$
$L$, so that $\left|r-i d(p)^{\prime}\right|$ is minimal.
return;
$c \leftarrow p f x l(r, i d(p))$
if $\quad(R[c, r[c]] \neq n u l l)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L \cup M$ with


## Algorithm for Routing

Search (r)
if $(i d(L[-|L| / 2]) \leq r \leq i d(L[|L| / 2]))$
Route to peer $p^{\prime} \in$
$L$, so that $\left|r-i d(p)^{\prime}\right|$ is minimal.
return;
$c \leftarrow p f x l(r, i d(p))$
if $\quad(R[c, r[c]] \neq n u l /)$
Route to peer $R[c, r[c]]$
return
Route to a $p^{\prime} \in R \cup L \cup M$ with
$p f x l\left(r, i d\left(p^{\prime}\right)\right) \geq c$ and
$\left|r-i d\left(p^{\prime}\right)\right|<|r-i d(p)|$

## Size of $R$

## Theorem

$R_{p}$ for node $p$ contains $\leq \mathcal{O}\left(\frac{\log n}{b} 2^{b}\right)$ entries.

## Proof.

- $\forall m \cdot \mathrm{P}(\exists q: \operatorname{pfxI}(p, q) \geq m \wedge p \neq q)=(n-1) \cdot\left(2^{-b}\right)^{m}$
- Let $m=(c+2) \frac{\log n}{b}$ for constant $c>0$.
- $P(\ldots)=\ldots \approx n^{-c-1} \longrightarrow 0$
- It is probable that $a_{i, j}=$ null for $i>(c+2) \frac{\log n}{b}$.


## Size of $R$

## Theorem

$R_{p}$ for node $p$ contains $\leq \mathcal{O}\left(\frac{\log n}{b} 2^{b}\right)$ entries.

## Proof.

- $\forall m \cdot \mathrm{P}(\exists q: p \neq x(p, q) \geq m \wedge p \neq q)=(n-1) \cdot\left(2^{-b}\right)^{m}$
- Let $m=(c+2)^{\frac{\log n}{b}}$ for constant $c>0$
- $P(\ldots)=\ldots \approx n^{-c-1} \underset{n \rightarrow \infty}{\longrightarrow} 0$
- It is probable that $a_{i, j}=$ null $\mathrm{fo} i>(c+2) \frac{\log n}{b}$


## Size of $R$

## Theorem

$R_{p}$ for node $p$ contains $\leq \mathcal{O}\left(\frac{\log n}{b} 2^{b}\right)$ entries.

## Proof.

- $\forall m \cdot \mathrm{P}(\exists q: p \neq x(p, q) \geq m \wedge p \neq q)=(n-1) \cdot\left(2^{-b}\right)^{m}$
- Let $m=(c+2) \frac{\log n}{b}$ for constant $c>0$.
- $P(\ldots)=\ldots \approx n$
- It is probable that $a_{i, j}=n u l l$ for $i>(c+2) \frac{\log n}{b}$.


## Size of $R$

## Theorem

$R_{p}$ for node $p$ contains $\leq \mathcal{O}\left(\frac{\log n}{b} 2^{b}\right)$ entries.

## Proof.

- $\forall m \cdot \mathrm{P}(\exists q: p \neq x(p, q) \geq m \wedge p \neq q)=(n-1) \cdot\left(2^{-b}\right)^{m}$
- Let $m=(c+2) \frac{\log n}{b}$ for constant $c>0$.
- $P(\ldots)=\ldots \approx n^{-c-1} \underset{n \rightarrow \infty}{\longrightarrow} 0$
- It is probable that $a_{i, j}=$ null for $i>(c+2) \frac{\log n}{b}$.


## Size of $R$

## Theorem

$R_{p}$ for node $p$ contains $\leq \mathcal{O}\left(\frac{\log n}{b} 2^{b}\right)$ entries.

## Proof.

- $\forall m \cdot \mathrm{P}(\exists q: p f x I(p, q) \geq m \wedge p \neq q)=(n-1) \cdot\left(2^{-b}\right)^{m}$
- Let $m=(c+2) \frac{\log n}{b}$ for constant $c>0$.
- $P(\ldots)=\ldots \approx n^{-c-1} \underset{n \rightarrow \infty}{\longrightarrow} 0$
- It is probable that $a_{i, j}=n u l l$ for $i>(c+2) \frac{\log n}{b}$.


## Correctness

- (Assume correct routing tables and leaf sets)


## Theorem <br> Routing takes no more than $O(n /|L|)$ steps.

## Proof

## Correctness

- (Assume correct routing tables and leaf sets)


## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

## Correctness

- (Assume correct routing tables and leaf sets)


## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

## Proof.

- We only use the leaf set.
- Let $p_{0}, p_{1}, \ldots, p_{\nu}$ be the nodes along the route.



## Correctness

- (Assume correct routing tables and leaf sets)


## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

## Proof.

- We only use the leaf set.

■ Let $p_{0}, p_{1}, \ldots, p_{\nu}$ be the nodes along the route.


## Correctness

- (Assume correct routing tables and leaf sets)


## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

## Proof.

- We only use the leaf set.

■ Let $p_{0}, p_{1}, \ldots, p_{\nu}$ be the nodes along the route.

- $\forall i \in\{0, \ldots, \nu-1\}: p_{i+1}=L_{p_{i}}[ \pm|L| / 2]$
- $\left|i d\left(L_{p_{i}}[ \pm|L| / 2]\right)-i d\left(p_{i}\right)\right| \approx \frac{\mid I D}{n} * \frac{L L}{2}$



## Correctness

- (Assume correct routing tables and leaf sets)


## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

## Proof.

- We only use the leaf set.

■ Let $p_{0}, p_{1}, \ldots, p_{\nu}$ be the nodes along the route.

- $\forall i \in\{0, \ldots, \nu-1\}: p_{i+1}=L_{p_{i}}[ \pm|L| / 2]$
- $\left|i d\left(L_{p_{i}}[ \pm|L| / 2]\right)-i d\left(p_{i}\right)\right| \approx \frac{|I D|}{n} * \frac{|L|}{2}$
- $\left|i d\left(p_{0}\right)-i d\left(p_{\nu}\right)\right| \leq \frac{\mid I D}{2}$


## Correctness

- (Assume correct routing tables and leaf sets)


## Theorem

Routing takes no more than $\mathcal{O}(n /|L|)$ steps.

## Proof.

- We only use the leaf set.

■ Let $p_{0}, p_{1}, \ldots, p_{\nu}$ be the nodes along the route.

- $\forall i \in\{0, \ldots, \nu-1\}: p_{i+1}=L_{p_{i}}[ \pm|L| / 2]$
- $\left|i d\left(L_{p_{i}}[ \pm|L| / 2]\right)-i d\left(p_{i}\right)\right| \approx \frac{|I D|}{n} * \frac{|L|}{2}$
- $\left|i d\left(p_{0}\right)-i d\left(p_{\nu}\right)\right| \leq \frac{|I D|}{2}$


## Routing is fast.

## Theorem

The excpected value is $\mathcal{O}\left(\log _{2^{b}} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Proof.

## Routing is fast.

## Theorem

The excpected value is $\mathcal{O}\left(\log _{2 b} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Proof.

■ We use the routing table.

- Each time a $p_{i+1}$ is found in the routing table $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$
- There are only approx. $\mathcal{O}\left(\frac{\log n}{b}\right)$ rows in each routing table.
- Now we use the leaf set.
. The probability that two (three) hops in $L$ are needed is .02 (.0006)


## Routing is fast.

## Theorem

The excpected value is $\mathcal{O}\left(\log _{2 b} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Proof.

■ We use the routing table.
■ Each time a $p_{i+1}$ is found in the routing table $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$

- There are only approx. $\mathcal{O}\left(\frac{\log n}{b}\right)$ rows in each routing table.
- Now we use the leaf set.
. The probability that two (three) hops in $L$ are needed is . 02 (.0006)


## Routing is fast.

## Theorem

The excpected value is $\mathcal{O}\left(\log _{2 b} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Proof.

■ We use the routing table.

- Each time a $p_{i+1}$ is found in the routing table $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$
- There are only approx. $\mathcal{O}\left(\frac{\log n}{b}\right)$ rows in each routing table.
- Now we use the leaf set.
- The probability that two (three) hops in $L$ are needed is .02 (.0006)


## Routing is fast.

## Theorem

The excpected value is $\mathcal{O}\left(\log _{2 b} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Proof.

■ We use the routing table.

- Each time a $p_{i+1}$ is found in the routing table $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$
- There are only approx. $\mathcal{O}\left(\frac{\log n}{b}\right)$ rows in each routing table.
- Now we use the leaf set.
- The probability that two (three) hops in $L$ are needed is . 02 (.0006)


## Routing is fast.

## Theorem

The excpected value is $\mathcal{O}\left(\log _{2} n\right)=\mathcal{O}\left(\frac{\log n}{b}\right)$ messages.

## Proof.

■ We use the routing table.

- Each time a $p_{i+1}$ is found in the routing table $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$
- There are only approx. $\mathcal{O}\left(\frac{\log n}{b}\right)$ rows in each routing table.
- Now we use the leaf set.
- The probability that two (three) hops in $L$ are needed is $.02(.0006)$.


## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Insertion of a peer

■ Let $p$ be a new peer with tables $R, L$ and $M$.

- Try to choose values for the routing table so, that distances are minimal.


## Algorithm:

- $p$ contacts a peer $p_{0}$. Assume that $p$ is near to $p_{0}$.
- $p$ sends a join-Message with recepient id $(p)$.
- Every peer that gets the message sends its $R, L$ and $M$.

■ Let $p_{0}, p_{1}, \ldots, p_{z}$ be the path of the message.

- Assume $z>m$ and $p f x /\left(p, p_{i}\right) \geq i$ for $i<m-1$ (Otherwise include nodes more than once.)


## Insertion of a peer

■ Let $p$ be a new peer with tables $R, L$ and $M$.

- Try to choose values for the routing table so, that distances are minimal.


## Algorithm:

- $p$ contacts a peer $p_{0}$. Assume that $p$ is near to $p_{0}$.
- $p$ sends a join-Message with recepient $i d(p)$.
- Every peer that gets the message sends its $R, L$ and $M$.
- Let $p_{0}, p_{1}, \ldots, p_{z}$ be the path of the message.
- Assume $z \geq m$ and $p f x /\left(p, p_{i}\right) \geq i$ for $i<m-1$ (Otherwise include nodes more than once.)


## Insertion of a peer

■ Let $p$ be a new peer with tables $R, L$ and $M$.

- Try to choose values for the routing table so, that distances are minimal.

Algorithm:
■ $p$ contacts a peer $p_{0}$. Assume that $p$ is near to $p_{0}$.

- $p$ sends a join-Message with recepient id( $p$ ).

■ Every peer that gets the message sends its $R, L$ and $M$.

- Let $p_{0}, p_{1}, \ldots, p_{z}$ be the path of the message.
- Assume $z \geq m$ and $\operatorname{pfxl}\left(p, p_{i}\right) \geq i$ for $i<m-1$ (Otherwise include nodes more than once.)


## Insertion of a peer

■ Let $p$ be a new peer with tables $R, L$ and $M$.

- Try to choose values for the routing table so, that distances are minimal.

Algorithm:

- $p$ contacts a peer $p_{0}$. Assume that $p$ is near to $p_{0}$.
- $p$ sends a join-Message with recepient id $(p)$.
- Every peer that gets the message sends its $R, L$ and $M$.
- Let $p_{0}, p_{1}, \ldots, p_{z}$ be the path of the message.
- Assume $z>m$ and $p f x /\left(p, p_{i}\right) \geq i$ for $i<m-$ : (Otherwise include nodes more than once.)


## Insertion of a peer

- Let $p$ be a new peer with tables $R, L$ and $M$.
- Try to choose values for the routing table so, that distances are minimal.

Algorithm:

- $p$ contacts a peer $p_{0}$. Assume that $p$ is near to $p_{0}$.
- $p$ sends a join-Message with recepient id $(p)$.

■ Every peer that gets the message sends its $R, L$ and $M$.

- Let $p_{0}, p_{1}, \ldots, p_{z}$ be the path of the message.
- Assume $z \geq m$ and $\operatorname{pfx}\left(p, p_{i}\right) \geq i$ for $i<m-1$ (Otherwise include nodes more than once.)


## Insertion of a peer

■ Let $p$ be a new peer with tables $R, L$ and $M$.
■ Try to choose values for the routing table so, that distances are minimal.

Algorithm:

- $p$ contacts a peer $p_{0}$. Assume that $p$ is near to $p_{0}$.
- $p$ sends a join-Message with recepient id $(p)$.

■ Every peer that gets the message sends its $R, L$ and $M$.
■ Let $p_{0}, p_{1}, \ldots, p_{z}$ be the path of the message.

- Assume $z \geq m$ and $\operatorname{pfxl}\left(p, p_{i}\right) \geq i$ for $i<m-1$ (Otherwise include nodes more than once.)


## Insertion of a peer

■ Let $p$ be a new peer with tables $R, L$ and $M$.

- Try to choose values for the routing table so, that distances are minimal.

Algorithm:

- $p$ contacts a peer $p_{0}$. Assume that $p$ is near to $p_{0}$.
- $p$ sends a join-Message with recepient id $(p)$.
$■$ Every peer that gets the message sends its $R, L$ and $M$.
■ Let $p_{0}, p_{1}, \ldots, p_{z}$ be the path of the message.
- Assume $z \geq m$ and $p f x /\left(p, p_{i}\right) \geq i$ for $i<m-1$ (Otherwise include nodes more than once.)


## Insertion of a peer (cont.)

- Let $M=M_{0}$.
- $\left|i d(p)-i d\left(p_{z}\right)\right|$ is minimal.
- Use $L_{z}$ for $L$ and insert $p_{z}$ at position 1 or -1 .
- Let $R[0, *]=R_{0}[0, *] ; R[1, *]=R_{1}[1, *] ; \ldots$;
- Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.

■ Notify every peer in $M, L$ and $R$ about our arrival.

## Insertion of a peer (cont.)

- Let $M=M_{0}$.
- $\left|i d(p)-i d\left(p_{z}\right)\right|$ is minimal.
- Use $L_{z}$ for $L$ and insert $p_{z}$ at position 1 or -1 .

Let $R[0, *]=R_{0}[0, *] ; R[1, *]=R_{1}[1, *] ; \ldots$;

- Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.
- Notify every peer in $M, L$ and $R$ about our arrival.


## Insertion of a peer (cont.)

- Let $M=M_{0}$.
- $\left|i d(p)-i d\left(p_{z}\right)\right|$ is minimal.
- Use $L_{z}$ for $L$ and insert $p_{z}$ at position 1 or -1 .
- Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.

■ Notify every peer in $M, L$ and $R$ about our arrival.

## Insertion of a peer (cont.)

- Let $M=M_{0}$.
- $\left|i d(p)-i d\left(p_{z}\right)\right|$ is minimal.
- Use $L_{z}$ for $L$ and insert $p_{z}$ at position 1 or -1 .

■ Let $R[0, *]=R_{0}[0, *] ; R[1, *]=R_{1}[1, *] ; \ldots$;

- Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.
- Notify every peer in $M, L$ and $R$ about our arrival.


## Insertion of a peer (cont.)

- Let $M=M_{0}$.
- $\left|i d(p)-i d\left(p_{z}\right)\right|$ is minimal.
- Use $L_{z}$ for $L$ and insert $p_{z}$ at position 1 or -1 .

■ Let $R[0, *]=R_{0}[0, *] ; R[1, *]=R_{1}[1, *] ; \ldots$;

- $\operatorname{pfxl}\left(p, p_{i}\right) \geq i \Rightarrow \forall q \in R_{i}[i, *] . p f x l(q, p) \geq i$
- Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.
- Notify every peer in $M, L$ and $R$ about our arrival.


## Insertion of a peer (cont.)

- Let $M=M_{0}$.
- $\left|i d(p)-i d\left(p_{z}\right)\right|$ is minimal.
- Use $L_{z}$ for $L$ and insert $p_{z}$ at position 1 or -1 .

■ Let $R[0, *]=R_{0}[0, *] ; R[1, *]=R_{1}[1, *] ; \ldots$;

- $\operatorname{pfxl}\left(p, p_{i}\right) \geq i \Rightarrow \forall q \in R_{i}[i, *] . p f x l(q, p) \geq i$

■ Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.

- Notify every peer in $M, L$ and $R$ about our arrival.


## Insertion of a peer (cont.)

- Let $M=M_{0}$.
- $\left|i d(p)-i d\left(p_{z}\right)\right|$ is minimal.
- Use $L_{z}$ for $L$ and insert $p_{z}$ at position 1 or -1 .
- Let $R[0, *]=R_{0}[0, *] ; R[1, *]=R_{1}[1, *] ; \ldots$;
- $\operatorname{pfxl}\left(p, p_{i}\right) \geq i \Rightarrow \forall q \in R_{i}[i, *] . p f x l(q, p) \geq i$

■ Request $R_{q}$ from all $q \in M$ and look for better entries for $R$.

- Notify every peer in $M, L$ and $R$ about our arrival.


## Locality in Insertion

## Fact

The algorithm for inserting peers generates good $R[i, j]$.

## Locality in Insertion

## Proof.

(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.
- $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ smal $\Longrightarrow d(p, q)$ small.
- $R[1, *]$ is taken from $p_{1}$.
- $\forall q \in R[1, *]$ : $d\left(p_{1}, q\right)$ is $\operatorname{good}, d\left(p, p_{1}\right)$ is good.
- The following is needed: $q \in\{s \mid p f l x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

Proof.
(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.
- $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.
- $R[1, *]$ is taken from $p_{1}$
- $\forall q \in R[1, *]$ : $d\left(p_{1}, q\right)$ is good, $d\left(p, p_{1}\right)$ is good.
- The following is needed: $q \in\{s|p f| x(s, p) \geq 1\}$
- Thus $\forall a \in R[1, *]$ : $d(p, a)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

Proof.
(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.
- $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.
- $R[1, *]$ is taken from $p_{1}$
- $\forall a \in R[1, *] \cdot d\left(n_{1}, a\right)$ is $\operatorname{good}, d\left(p, p_{1}\right)$ is good
- The following is needed: $q \in\{s|p f| x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

## Proof.

(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.

■ $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.

- $R[1, *]$ is taken from $p_{1}$
- $\forall q \in R[1, *]$ : $d\left(p_{1}, q\right)$ is $\operatorname{good}, d\left(p, p_{1}\right)$ is good.
- The following is needed: $q \in\{s \mid p f l x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

## Proof.

(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.

■ $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.

- $R[1, *]$ is taken from $p_{1}$.
- $\forall q \in R[1, *]$ : $d\left(p_{1}, q\right)$ is $\operatorname{good}, d\left(p, p_{1}\right)$ is good
- The following is needed: $q \in\{s \mid p f l x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

## Proof.

(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.
- $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.
- $R[1, *]$ is taken from $p_{1}$.
- $\forall q \in R[1, *]: d\left(p_{1}, q\right)$ is $\operatorname{good}, d\left(p, p_{1}\right)$ is good.
- The following is needed: $q \in\{s|p f| x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

## Proof.

(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.
- $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.
- $R[1, *]$ is taken from $p_{1}$.
- $\forall q \in R[1, *]: d\left(p_{1}, q\right)$ is good, $d\left(p, p_{1}\right)$ is good.
- The following is needed: $q \in\{s|p f| x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

## Proof.

(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.
- $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.
- $R[1, *]$ is taken from $p_{1}$.

■ $\forall q \in R[1, *]$ : $d\left(p_{1}, q\right)$ is $\operatorname{good}, d\left(p, p_{1}\right)$ is good.

- The following is needed: $q \in\{s|p f| x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Locality in Insertion

## Proof.

(Outline)

- Assume that the routing tables are optimized.
- $R[0, *]$ is taken from $p_{0}$.
- $\forall q \in R[0, *] . d\left(p_{0}, q\right)$ small $\Longrightarrow d(p, q)$ small.
- $R[1, *]$ is taken from $p_{1}$.

■ $\forall q \in R[1, *]$ : $d\left(p_{1}, q\right)$ is $\operatorname{good}, d\left(p, p_{1}\right)$ is good.

- The following is needed: $q \in\{s \mid p f l x(s, p) \geq 1\}$
- Thus $\forall q \in R[1, *]: d(p, q)$ is relatively small.
- And so on for all $R[i, *]$


## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations
■ Routing

- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Repairing the Routing Table

- How are missing entries in $R$ filled?
- Algorithm:


## Repairing the Routing Table

- How are missing entries in $R$ filled?
- Algorithm:
- A peer notices that it is missing an entry $R[i, j]$.



## Repairing the Routing Table

- How are missing entries in $R$ filled?
- Algorithm:
- A peer notices that it is missing an entry $R[i, j]$.
- It asks all other $q \in R[i, *]$ for their entry $R_{q}[i, j]$
- If this does not succeed it tries its next row $R[i+1, *]$,


## Repairing the Routing Table

- How are missing entries in $R$ filled?
- Algorithm:
- A peer notices that it is missing an entry $R[i, j]$.
- It asks all other $q \in R[i, *]$ for their entry $R_{q}[i, j]$
- If this does not succeed it tries its next row $R[i+1, *], \ldots$


## Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers

■ Locality

- Locality in Routing

3 Stability

- Leaf Set
- Routing Table
- Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST


## Malicious Nodes

- There may be faulty implemtations of pastry.
- There may be nodes that try to interfer with the network.


## Malicious Nodes

- There may be faulty implemtations of pastry.
- There may be nodes that try to interfer with the network.


## Assumtions

- Routing in pastry is deterministic.
- Invariant: In routing through ...pi, $p_{i+1}, \ldots$ to ID r:
- Assumption: Most nodes in the network are working properly


## Assumtions

- Routing in pastry is deterministic.

■ Invariant: In routing through ... $p_{i}, p_{i+1}, \ldots$ to ID $r$ :


- Assumption: Most nodes in the network are working properly


## Assumtions

- Routing in pastry is deterministic.

■ Invariant: In routing through ... $p_{i}, p_{i+1}, \ldots$ to ID $r$ :

- $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$ or at least
- Assumption: Most nodes in the network are working properly


## Assumtions

- Routing in pastry is deterministic.

■ Invariant: In routing through $\ldots p_{i}, p_{i+1}, \ldots$ to ID $r$ :

- $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$ or at least
- $\left|i d\left(p_{i+1}\right)-r\right|>\left|i d\left(p_{i}\right)-r\right|$
- Assumption: Most nodes in the network are working properly


## Assumtions

- Routing in pastry is deterministic.

■ Invariant: In routing through ... $p_{i}, p_{i+1}, \ldots$ to ID $r$ :

- $p f x l\left(i d\left(p_{i+1}\right), r\right)>p f x l\left(i d\left(p_{i}\right), r\right)$ or at least
- $\left|i d\left(p_{i+1}\right)-r\right|>\left|i d\left(p_{i}\right)-r\right|$

■ Assumption: Most nodes in the network are working properly

## Methods against Malicious Nodes

- The algorithm discussed earlier is randomized.
- The invariant is maintaied.
- A strong bias towards using $R$ is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.


## Methods against Malicious Nodes

- The algorithm discussed earlier is randomized.
- The invariant is maintaied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.


## Methods against Malicious Nodes

- The algorithm discussed earlier is randomized.
- The invariant is maintaied.
- A strong bias towards using $R$ is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed


## Methods against Malicious Nodes

- The algorithm discussed earlier is randomized.
- The invariant is maintaied.
- A strong bias towards using $R$ is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed


## Methods against Malicious Nodes

- The algorithm discussed earlier is randomized.
- The invariant is maintaied.
- A strong bias towards using $R$ is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.


## Methods against Malicious Nodes

- The algorithm discussed earlier is randomized.
- The invariant is maintaied.
- A strong bias towards using $R$ is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
- id $(p)$ is the checksum of $p$ 's public key.


## Methods against Malicious Nodes

- The algorithm discussed earlier is randomized.
- The invariant is maintaied.
- A strong bias towards using $R$ is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
- id $(p)$ is the checksum of $p$ 's public key.


## Robustness



- Remove $10 \%$ of all peers from the network.
- Then repair:


## Robustness



■ Remove $10 \%$ of all peers from the network.

- Then repair:


## Robustness



- Remove $10 \%$ of all peers from the network.
- Then repair:
- Randomly choose two peers $p$ and $q$ and an ID $d$.
- Send a message from $p$ and from $q$ to $d$.
- Repeat 100.000 times.


## Robustness



- Remove $10 \%$ of all peers from the network.
- Then repair:
- Randomly choose two peers $p$ and $q$ and an ID $d$.
- Send a message from $p$ and from $q$ to $d$.
- Repeat 100.000 times.

