Pastry

R. Himmelmann

Ferienakademie im Sarntal 2008 FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

October 12, 2008

э

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

IDs are numbers $\in \mathbb{N}/(2^{128}\mathbb{N}) \equiv \{0,...,2^{128}-1\} := \mathit{ID}$

■ $\forall b \in ID.|b| := \min(b, 2^{128} - 1 - b)$

- Every node p in the network has an ID $id(p) \in ID$.
- Every piece of data d has an ID id(d)
- ... and is associated with the node p with |id(p) id(d)| = min.

- IDs are numbers $\in \mathbb{N}/(2^{128}\mathbb{N}) \equiv \{0,...,2^{128}-1\} := \mathit{ID}$
- $\forall b \in ID.|b| := \min(b, 2^{128} 1 b)$
- Every node p in the network has an ID $id(p) \in ID$.
- Every piece of data d has an ID id(d)
- ... and is associated with the node p with |id(p) id(d)| = min.

- IDs are numbers $\in \mathbb{N}/(2^{128}\mathbb{N}) \equiv \{0,...,2^{128}-1\} := \mathit{ID}$
- $\forall b \in ID.|b| := \min(b, 2^{128} 1 b)$
- Every node p in the network has an ID $id(p) \in ID$.
- Every piece of data d has an ID id(d)
- ... and is associated with the node p with |id(p) id(d)| = min.

- IDs are numbers $\in \mathbb{N}/(2^{128}\mathbb{N}) \equiv \{0,...,2^{128}-1\} := \mathit{ID}$
- $\forall b \in ID.|b| := \min(b, 2^{128} 1 b)$
- Every node p in the network has an ID $id(p) \in ID$.
- Every piece of data *d* has an ID *id*(*d*)

• ... and is associated with the node p with |id(p) - id(d)| = min.

- IDs are numbers $\in \mathbb{N}/(2^{128}\mathbb{N}) \equiv \{0,...,2^{128}-1\} := \mathit{ID}$
- $\forall b \in ID.|b| := \min(b, 2^{128} 1 b)$
- Every node p in the network has an ID $id(p) \in ID$.
- Every piece of data d has an ID id(d)
- ... and is associated with the node p with |id(p) id(d)| = min.

• Interpret IDs as numbers with base $|B| = 2^{b}$

- Let $m = \log_{|B|} |ID|$
- pfxl(x, y) is the length of the greatest common prefix of x and y.
 - pfxl(p,q) := pfxl(id(p), id(q)) for nodes p and q.

- Interpret IDs as numbers with base $|B| = 2^{b}$
- Let $m = \log_{|B|} |ID|$
- pfxl(x, y) is the length of the greatest common prefix of x and y.
 pfxl(p,q) := pfxl(id(p), id(q)) for nodes p and q.

- Interpret IDs as numbers with base $|B| = 2^{b}$
- Let $m = \log_{|B|} |ID|$
- pfxl(x, y) is the length of the greatest common prefix of x and y.
 - pfxl(p,q) := pfxl(id(p), id(q)) for nodes p and q.

- Interpret IDs as numbers with base $|B| = 2^{b}$
- Let $m = \log_{|B|} |ID|$
- pfxl(x, y) is the length of the greatest common prefix of x and y.
 - pfxl(p,q) := pfxl(id(p), id(q)) for nodes p and q.

Assumption: The cost for sending a message from p to q may be measured by a metric d.

■ d(p,q) = d(q,p)■ $d(p,q) \le d(p,p') + d(p',q)$ Assumption: The cost for sending a message from p to q may be measured by a metric d.

•
$$d(p,q) = d(q,p)$$

• $d(p,q) \le d(p,p') + d(p',q)$

э

Assumption: The cost for sending a message from p to q may be measured by a metric d.

•
$$d(p,q) = d(q,p)$$

• $d(p,q) \le d(p,p') + d(p',q)$

э

Every operation should need as few messages as possible.

The overall distance a message travels should be minimal.

- A greedy algorithm is used.
- Fill the routing tables of nodes only with near nodes.

- Every operation should need as few messages as possible.
- The overall distance a message travels should be minimal.
 - A greedy algorithm is used.
 - Fill the routing tables of nodes only with near nodes.

- Every operation should need as few messages as possible.
- The overall distance a message travels should be minimal.
 - A greedy algorithm is used.
 - Fill the routing tables of nodes only with near nodes.

- Every operation should need as few messages as possible.
- The overall distance a message travels should be minimal.
 - A greedy algorithm is used.
 - Fill the routing tables of nodes only with near nodes.

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

Let p be a node.

$\blacksquare R_{p} =: R \text{ is a matrix } (R[i,j])_{0 \le i < m, 0 \le j < |B|}.$

- R[i,j] =: q is a node with
 - *pfxl(p,q) = i id(q)[i] = j*
- If there is no such q or if j = id(p)[i] then R[i, j] = null.
- If possible choose a q near to p.

- Let p be a node.
- $R_p =: R$ is a matrix $(R[i,j])_{0 \le i < m, 0 \le j < |B|}$
- $\blacksquare R[i,j] =: q \text{ is a node with}$
 - pfxl(p,q) = i
 id(q)[i] = j
- If there is no such q or if j = id(p)[i] then R[i, j] = null.
- If possible choose a *q* near to *p*.

- Let p be a node.
- $R_p =: R$ is a matrix $(R[i,j])_{0 \le i < m, 0 \le j < |B|}$
- R[i,j] =: q is a node with
 - *pfxl(p,q) = i id(q)[i] = j*
- If there is no such q or if j = id(p)[i] then R[i, j] = null.
- If possible choose a *q* near to *p*.

- Let p be a node.
- $R_p =: R$ is a matrix $(R[i,j])_{0 \le i < m, 0 \le j < |B|}$
- R[i,j] =: q is a node with
 - pfxl(p,q) = i
 - $\bullet id(q)[i] = j$
- If there is no such q or if j = id(p)[i] then R[i, j] = null.
- If possible choose a *q* near to *p*.

- Let p be a node.
- $R_p =: R$ is a matrix $(R[i,j])_{0 \le i < m, 0 \le j < |B|}$
- R[i,j] =: q is a node with
 - pfxl(p,q) = i
 - id(q)[i] = j
- If there is no such q or if j = id(p)[i] then R[i, j] = null.
- If possible choose a q near to p.

- Let p be a node.
- $R_p =: R$ is a matrix $(R[i,j])_{0 \le i < m, 0 \le j < |B|}$
- R[i,j] =: q is a node with
 - pfxl(p,q) = i
 - id(q)[i] = j
- If there is no such q or if j = id(p)[i] then R[i, j] = null.

If possible choose a q near to p.

- Let p be a node.
- $R_p =: R$ is a matrix $(R[i,j])_{0 \le i < m, 0 \le j < |B|}$
- R[i,j] =: q is a node with
 - *pfxl(p,q) = i id(q)[i] = i*
- If there is no such q or if j = id(p)[i] then R[i, j] = null.
- If possible choose a q near to p.

	1	2	3	4
XXXX	null	2xxx	3xxx	4xxx
1xxx	11xx	null	13xx	14xx
12xx	121x	122x	null	124x
123x	1231	null	1233	1234

 R_p with id(p) = 1232

|B| = 4.

æ

Image: A math black

Size of R

Theorem

 R_p for node p contains usually $\leq \mathcal{O}(rac{\log n}{b}2^b)$ entries.

3

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

The Leaf Set

• The leaf set *L* for a node *p* is an array with

- |L|/2 nodes with next higher IDs and
- |L|/2 nodes with next lower IDs.

If |L|/2 > n nodes may be on both sides of the leaf "set".

The Leaf Set

The leaf set *L* for a node *p* is an array with

- |L|/2 nodes with next higher IDs and
- |L|/2 nodes with next lower IDs.

If |L|/2 > n nodes may be on both sides of the leaf "set".

The Leaf Set

- The leaf set *L* for a node *p* is an array with
 - |L|/2 nodes with next higher IDs and
 - |L|/2 nodes with next lower IDs.
- If |L|/2 > n nodes may be on both sides of the leaf "set".

Example

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・
Overview

1 Data Structures

- Routing Table
- Leaf Set

Neighbourhood Set

- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

The Neighbourhood Set

The Neighbourhood M of a node p contains $|M| = 2^b$ nodes.

- For all $q \in M$ the distance d(p,q) should be small.
- *M* is used for repairs and insertion of peers.

The Neighbourhood Set

- The Neighbourhood M of a node p contains $|M| = 2^b$ nodes.
- For all $q \in M$ the distance d(p,q) should be small.
- *M* is used for repairs and insertion of peers.

The Neighbourhood Set

- The Neighbourhood M of a node p contains $|M| = 2^b$ nodes.
- For all $q \in M$ the distance d(p,q) should be small.
- *M* is used for repairs and insertion of peers.

Example 2

Nodeld 10233102			
Leaf set	SMALLER	LARGER	
10233033	10233021	10233120	10233122
10233001	10233000	10233230	10233232
Routing table			
-0-2212102	1	-2-2301203	-3-1203203
0	1-1-301233	1-2-230203	1-3-021022
10-0-31203	10-1-32102	2	10-3-23302
102-0-0230	102-1-1302	102-2-2302	3
1023-0-322	1023-1-000	1023-2-121	3
10233-0-01	1	10233-2-32	
0		102331-2-0	
		2	
Neighborhood set			
13021022	10200230	11301233	31301233
02212102	22301203	31203203	33213321

Image: A math black

æ

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

- For a given r ∈ ID we want to find the node n with |id(n) r| = min.
 We start at a node p.
- If *n* is in the leaf set we forward the message to it.
- Otherwise let c = pfxl(id(p), r)
- If $R[c, r[c]] \neq null$ forward to that node.
- Otherwise route to the "best" node p' known to p with |r id(p')| < |r id(p)| and $pfxl(id(p'), r) \ge r$.

- For a given r ∈ ID we want to find the node n with |id(n) r| = min.
 We start at a node p.
- If n is in the leaf set we forward the message to it.
- Otherwise let c = pfxl(id(p), r)
- If $R[c, r[c]] \neq null$ forward to that node.
- Otherwise route to the "best" node p' known to p with |r id(p')| < |r id(p)| and $pfxl(id(p'), r) \ge r$.

- For a given r ∈ ID we want to find the node n with |id(n) r| = min.
 We start at a node p.
- If *n* is in the leaf set we forward the message to it.
- Otherwise let c = pfxl(id(p), r)
- If $R[c, r[c]] \neq null$ forward to that node.
- Otherwise route to the "best" node p' known to p with |r id(p')| < |r id(p)| and $pfxl(id(p'), r) \ge r$.

- For a given r ∈ ID we want to find the node n with |id(n) r| = min.
 We start at a node p.
- If *n* is in the leaf set we forward the message to it.
- Otherwise let c = pfxl(id(p), r)
- If $R[c, r[c]] \neq null$ forward to that node.
- Otherwise route to the "best" node p' known to p with |r id(p')| < |r id(p)| and $pfxl(id(p'), r) \ge r$.

- For a given r ∈ ID we want to find the node n with |id(n) r| = min.
 We start at a node p.
- If *n* is in the leaf set we forward the message to it.
- Otherwise let c = pfxl(id(p), r)
- If $R[c, r[c]] \neq null$ forward to that node.
- Otherwise route to the "best" node p' known to p with |r id(p')| < |r id(p)| and $pfxl(id(p'), r) \ge r$.

- For a given $r \in ID$ we want to find the node *n* with $|id(n) r| = \min$.
- We start at a node p.
- If *n* is in the leaf set we forward the message to it.
- Otherwise let c = pfxl(id(p), r)
- If $R[c, r[c]] \neq null$ forward to that node.
- Otherwise route to the "best" node p' known to p with |r id(p')| < |r id(p)| and $pfxl(id(p'), r) \ge r$.

Correctness

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

(Assume correct routing tables and leaf sets)

∃ ▶ ∢

Correctness

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

• (Assume correct routing tables and leaf sets)

Theorem

The expected value is $\mathcal{O}(\log_{2^b} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

э

3 × 4 3 ×

Correctness

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

• (Assume correct routing tables and leaf sets)

Theorem

The expected value is $\mathcal{O}(\log_{2^{b}} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

• Usually not the node p with $|id(p) - r| = \min$. is needed.

- One of the *k* nodes nearest to *r* in the ID-space is sufficient.
- E.g. in Past, a file storage protocol layered atop pastry:
 - At least k copies of a file are stored in the k nodes with the closest IDs to p.

- Usually not the node p with $|id(p) r| = \min$. is needed.
- One of the k nodes nearest to r in the ID-space is sufficient.
- E.g. in Past, a file storage protocol layered atop pastry:
 - At least k copies of a file are stored in the k nodes with the closest IDs to p.

- Usually not the node p with $|id(p) r| = \min$. is needed.
- One of the k nodes nearest to r in the ID-space is sufficient.
- E.g. in Past, a file storage protocol layered atop pastry:
 - At least k copies of a file are stored in the k nodes with the closest IDs to p.

- Usually not the node p with $|id(p) r| = \min$. is needed.
- One of the k nodes nearest to r in the ID-space is sufficient.
- E.g. in Past, a file storage protocol layered atop pastry:
 - At least k copies of a file are stored in the k nodes with the closest IDs to p.

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set

2 Operations

- Routing
- Insertion of peers
- Locality
- Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

• Let p be a new peer with tables R, L and M.

Try to choose values for the routing table so, that distances are minimal.

- Let *p* be a new peer with tables *R*, *L* and *M*.
- Try to choose values for the routing table so, that distances are minimal.

æ

3

æ

Insertion of a peer

3

Request R_q from all $q \in M$ and look for better entries for R.

■ Notify every peer in *M*, *L* and *R* about our arrival.

- Request R_q from all $q \in M$ and look for better entries for R.
- Notify every peer in *M*, *L* and *R* about our arrival.

Locality

Overview

- Routing Table
- Leaf Set
- Neighbourhood Set

2 Operations

- Routing
- Insertion of peers
- Locality
- Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- - FreePastry
 - PAST

R. Himmelmann (Ferienakademie '08)

IDs are distributed randomly through the underlying network.

It is unlikely that |L|/2 nodes with consecutive IDs fail.

Routing is stable.

- IDs are distributed randomly through the underlying network.
- It is unlikely that |L|/2 nodes with consecutive IDs fail.
- Routing is stable.

- IDs are distributed randomly through the underlying network.
- It is unlikely that |L|/2 nodes with consecutive IDs fail.
- Routing is stable.

Locality in insertion

• The cost of routing operations depends on good choices for R[i, j].

Fact

The algorithm for inserting peers generates good R[i, j].

Image: A matrix

Locality in insertion

• The cost of routing operations depends on good choices for R[i, j].

Fact

The algorithm for inserting peers generates good R[i, j].

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set

2 Operations

- Routing
- Insertion of peers
- Locality
- Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

Locality in Routing

æ

3 × 4 3 ×
• $p_1, ..., p_a, p_b, p_c, ..., p_z$ with $p_b \in R_a$ and $p_c \in R_b$

■ d(p_a, p_b) < d(p_a, p_c) Otherwise ..., p_a, p_c, ... would be used.

- p_i is taken from a set S with $|S| \approx n/2^{bi}$.
- The most expensive step is usually the last step in the leaf set.
- ... which can often be avoided depending on the protocol.

■ $p_1, ..., p_a, p_b, p_c, ..., p_z$ with $p_b \in R_a$ and $p_c \in R_b$ ■ $d(p_a, p_b) < d(p_a, p_c)$

Otherwise ..., p_a , p_c , ... would be used.

- p_i is taken from a set S with $|S| \approx n/2^{bi}$.
- The most expensive step is usually the last step in the leaf set.
- ... which can often be avoided depending on the protocol.

- p_i is taken from a set S with $|S| \approx n/2^{bi}$.
- The most expensive step is usually the last step in the leaf set.
- ... which can often be avoided depending on the protocol.

- *p*₁,..., *p*_a, *p*_b, *p*_c, ..., *p*_z with *p*_b ∈ *R*_a and *p*_c ∈ *R*_b
 d(*p*_a, *p*_b) < *d*(*p*_a, *p*_c) Otherwise ..., *p*_a, *p*_c, ... would be used.
- p_i is taken from a set S with $|S| \approx n/2^{bi}$.
- The most expensive step is usually the last step in the leaf set.
- ... which can often be avoided depending on the protocol.

■ $p_1, ..., p_a, p_b, p_c, ..., p_z$ with $p_b \in R_a$ and $p_c \in R_b$ ■ $d(p_a, p_b) < d(p_a, p_c)$

Otherwise ..., p_a , p_c , ... would be used.

- p_i is taken from a set S with $|S| \approx n/2^{bi}$.
- The most expensive step is usually the last step in the leaf set.

... which can often be avoided depending on the protocol.

■ $p_1, ..., p_a, p_b, p_c, ..., p_z$ with $p_b \in R_a$ and $p_c \in R_b$ ■ $d(p_a, p_b) < d(p_a, p_c)$

Otherwise ..., p_a , p_c , ... would be used.

- p_i is taken from a set S with $|S| \approx n/2^{bi}$.
- The most expensive step is usually the last step in the leaf set.
- ... which can often be avoided depending on the protocol.

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

Dead nodes

A peer may leave the network without warning.

- The underlying network supports pinging.
- The protocol atop pastry may include keep-alive messages.

Dead nodes

- A peer may leave the network without warning.
- The underlying network supports pinging.
- The protocol atop pastry may include keep-alive messages.

Dead nodes

- A peer may leave the network without warning.
- The underlying network supports pinging.
- The protocol atop pastry may include keep-alive messages.

• A peer p notices that a node $p' \in L_p$ is dead.

- p requests the leaf sets from other nodes in L_p .
- With them p can fill L_p and reconstruct $L_{p'}$.
- All nodes in $L_{p'}$ are notified by p.

- A peer p notices that a node $p' \in L_p$ is dead.
- p requests the leaf sets from other nodes in L_p .
- With them p can fill L_p and reconstruct $L_{p'}$.
- All nodes in $L_{p'}$ are notified by p.

- A peer p notices that a node $p' \in L_p$ is dead.
- p requests the leaf sets from other nodes in L_p .
- With them p can fill L_p and reconstruct $L_{p'}$.
- All nodes in $L_{p'}$ are notified by p.

- A peer p notices that a node $p' \in L_p$ is dead.
- p requests the leaf sets from other nodes in L_p .
- With them p can fill L_p and reconstruct $L_{p'}$.
- All nodes in $L_{p'}$ are notified by p.

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

Before a message is routed to a node p' it is checked if p' is alive.

- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
 - If id(p) starts with 1 all nodes will need to be updated.
 - However correct routing is still guarantied.

- Before a message is routed to a node p' it is checked if p' is alive.
- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
 - If id(p) starts with 1 all nodes will need to be updated.
 - However correct routing is still guarantied.

- Before a message is routed to a node p' it is checked if p' is alive.
- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
 - If *id(p)* starts with 1 all nodes will need to be updated.
 However correct routing is still guarantied.

R. Himmelmann (Ferienakademie '08)

- Before a message is routed to a node p' it is checked if p' is alive.
- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
 - If id(p) starts with 1 all nodes will need to be updated.
 - However correct routing is still guarantied.

- Before a message is routed to a node p' it is checked if p' is alive.
- The algorithm for insertion does not gurantee that all nodes updated.
- Consider a network with no node with an ID with prefix 1.
 - If id(p) starts with 1 all nodes will need to be updated.
 - However correct routing is still guarantied.

Repairing the Routing Table II

Method from FreePastry:

• A peer p gets message m routed from peer p'.

```
Let l \leftarrow pflx(id(p), id(m))
if pfxl(id(p'), id(m)) = l and
R[l, id(m)[l]] \neq null do
Send our R[l, *] to p'.
```

Repairing the Routing Table II

Method from FreePastry:

• A peer p gets message m routed from peer p'.

Let $I \leftarrow pflx(id(p), id(m))$ if pfxl(id(p'), id(m)) = l and $R[l, id(m)[l]] \neq null$ do Send our R[l, *] to p'.

Repairing the Routing Table II

Method from FreePastry:

• A peer p gets message m routed from peer p'.

Let
$$l \leftarrow pflx(id(p), id(m))$$

if $pfxl(id(p'), id(m)) = l$ and
 $R[l, id(m)[l]] \neq null$ do
Send our $R[l, *]$ to p' .

What happens if there are nodes in the network that do not do what they are supposed to do?

The algorithm discussed earlier is randomized.

- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id*(*p*) is the checksum of *p*'s public key.

October 12, 2008

37 / 70

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id(p)* is the checksum of *p*'s public key.

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - id(p) is the checksum of p's public key.

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id*(*p*) is the checksum of *p*'s public key.

October 12, 2008

37 / 70

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.

■ *id*(*p*) is the checksum of *p*'s public key.

What happens if there are nodes in the network that do not do what they are supposed to do?

- The algorithm discussed earlier is randomized.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - id(p) is the checksum of p's public key.

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

Number of Hops

• Average number of hops for b = 4, |L| = 16 and |M| = 32.

Number of Hops

Probability vs. Number of Hops.

• Again with b = 4, |L| = 16 and |M| = 32 and $n = 10^6$.

3

Distances in Routing

Relative Distance vs. Number of Peers

- Pastry is realtively good.
- Finding short routes scales well.

Distances in Routing

Relative Distance vs. Number of Peers

Pastry is realtively good.

Finding short routes scales well.

Distances in Routing

Relative Distance vs. Number of Peers

- Pastry is realtively good.
- Finding short routes scales well.

Number of Entries

- b = 4, |L| = 16 and |M| = 32 as before.
- Set n to 10⁶
- $\forall p: |R_p| \gtrsim (2^b 1) \log_{2^b} n > 60$
- $|R_p| + |L_p| + |M_p| \gtrsim 108$

This is more than most other networks.
Number of Entries

- b = 4, |L| = 16 and |M| = 32 as before.
- Set n to 10⁶
- $\forall p: |R_p| \gtrsim (2^b 1) \log_{2^b} n > 60$
- $|R_p| + |L_p| + |M_p| \gtrsim 108$
- This is more than most other networks.

Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results

4 Conclusion and Outlook

FreePastry

PAST

Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

FreePastry

Java-Implementation of Pastry.

- Simultation or TCP/IP.
- Can run Past or Scribe.

< A

э

- Java-Implementation of Pastry.
- Simultation or TCP/IP.
- Can run Past or Scribe.

э

- Java-Implementation of Pastry.
- Simultation or TCP/IP.
- Can run Past or Scribe.

э

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- ... and many more.

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- and many more.

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- ... and many more.

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- and many more.

Other applications build on Pastry include:

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)

and many more.

- a pubish/subscribe system. (SCRIBE)
- a caching system (SQUIRREL)
- a messaging infrastructure (POST)
- a high-bandwidth contend istribution system (SplitStream)
- ... and many more.

Overview

- - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST

R. Himmelmann (Ferienakademie '08)

A distributed file storage system.

- IDs of files are the checksum of the filename.
- Files are stored in the k nodes with nearest IDs to the ID of a file.
- Mechanisms for maintaining this invariant are added to the protocol.

- A distributed file storage system.
- IDs of files are the checksum of the filename.
- Files are stored in the k nodes with nearest IDs to the ID of a file.
- Mechanisms for maintaining this invariant are added to the protocol.

- A distributed file storage system.
- IDs of files are the checksum of the filename.
- Files are stored in the k nodes with nearest IDs to the ID of a file.
- Mechanisms for maintaining this invariant are added to the protocol.

- A distributed file storage system.
- IDs of files are the checksum of the filename.
- Files are stored in the k nodes with nearest IDs to the ID of a file.
- Mechanisms for maintaining this invariant are added to the protocol.

- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.

- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space.
- Caching

If a node has a relatively high capacity it is split.

- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.

- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space.
- Caching

- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.

- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space
- Caching

- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.

- Replica diversion to balance among near nodes
- File diversion to avoid a imbalance between regions of the ID-space.
 Caching
- Cachin

- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.

- Replica diversion to balance among near nodes.
- File diversion to avoid a imbalance between regions of the ID-space.
- Caching

- If a node has a relatively high capacity it is split.
- If a node has a relatively low capacity it is asked to leave the network.
- Nodes may also join the network as observers.
- For optimisation the following techniques are used:
 - Replica diversion to balance among near nodes.
 - File diversion to avoid a imbalance between regions of the ID-space.Caching

- Every node has a capacity.
 - If a node has a relatively high capacity it is split.
 - If a node has a relatively low capacity it is asked to leave the network.
 - Nodes may also join the network as observers.
- For optimisation the following techniques are used:
 - Replica diversion to balance among near nodes.
 - File diversion to avoid a imbalance between regions of the ID-space.Caching

- Every node has a capacity.
 - If a node has a relatively high capacity it is split.
 - If a node has a relatively low capacity it is asked to leave the network.
 - Nodes may also join the network as observers.
- For optimisation the following techniques are used:
 - Replica diversion to balance among near nodes.
 - File diversion to avoid a imbalance between regions of the ID-space.
 - Caching

Overview

1 Data Structures

- Routing Table
- Leaf Set
- Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results

4 Conclusion and Outlook

- FreePastry
- PAST

Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

Scribe

Distribute data to many nodes.

- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.

Distribute data to many nodes.

- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.

- Distribute data to many nodes.
- There are topics.
- Each topic has an ID.
- One node is the root of the topic.
- Build trees using the routing procedure of pastry.
- Distribute messages from the root to the leafs of the tree.

SplitStream

Image: Image:

æ

SplitStream

Questions?

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

R. Himmelmann (Ferienakademie '08)

Algorithm for Routing

```
Search(r)
```
```
Search(r)
if (id(L[-|L|/2]) \le r \le id(L[|L|/2]))
```

```
Search(r)
if (id(L[-|L|/2]) \le r \le id(L[|L|/2]))
    Route to peer p' \in
    L, so that |r - id(p)'| is minimal.
    return:
```

```
Search(r)
if (id(L[-|L|/2]) \le r \le id(L[|L|/2]))
     Route to peer p' \in
     L, so that |r - id(p)'| is minimal.
     return:
c \leftarrow pfxl(r, id(p))
```

```
Search(r)
if (id(L[-|L|/2]) \le r \le id(L[|L|/2]))
     Route to peer p' \in
     L, so that |r - id(p)'| is minimal.
     return:
c \leftarrow pfxl(r, id(p))
if (R[c, r[c]] \neq null)
```

```
Search(r)
if (id(L[-|L|/2]) \le r \le id(L[|L|/2]))
    Route to peer p' \in
     L, so that |r - id(p)'| is minimal.
     return:
c \leftarrow pfxl(r, id(p))
if (R[c, r[c]] \neq null)
    Route to peer R[c, r[c]]
     return
```

```
Search(r)
if (id(L[-|L|/2]) \le r \le id(L[|L|/2]))
     Route to peer p' \in
     L, so that |r - id(p)'| is minimal.
     return:
c \leftarrow pfxl(r, id(p))
if (R[c, r[c]] \neq null)
     Route to peer R[c, r[c]]
     return
Route to a p' \in R \cup L \cup M with
```

```
Search(r)
if (id(L[-|L|/2]) \le r \le id(L[|L|/2]))
     Route to peer p' \in
     L, so that |r - id(p)'| is minimal.
     return:
c \leftarrow pfxl(r, id(p))
if (R[c, r[c]] \neq null)
     Route to peer R[c, r[c]]
     return
Route to a p' \in R \cup L \cup M with
     pfxl(r, id(p')) > c and
     |r - id(p')| < |r - id(p)|
```

Theorem

$$R_p$$
 for node p contains $\leq \mathcal{O}(rac{\log n}{b}2^b)$ entries.

Proof.

$$\forall m. P(\exists q: pfxl(p,q) \ge m \land p \ne q) = (n-1) \cdot (2^{-b})^m$$

• Let
$$m = (c+2)\frac{\log n}{b}$$
 for constant $c > 0$

$$P(...) = ... \approx n^{-c-1} \xrightarrow[n \to \infty]{} 0$$

It is probable that $a_{i,j} = null$ for $i > (c+2)\frac{\log n}{b}$.

3

イロン 不聞と 不同と 不同と

Theorem

$$R_p$$
 for node p contains $\leq \mathcal{O}(rac{\log n}{b}2^b)$ entries.

Proof.

$$\forall m. P(\exists q: pfxl(p,q) \ge m \land p \neq q) = (n-1) \cdot (2^{-b})^m$$

• Let
$$m = (c+2) \frac{\log n}{b}$$
 for constant $c > 0$

$$P(...) = ... \approx n^{-c-1} \xrightarrow[n \to \infty]{} 0$$

It is probable that $a_{i,j} = null$ for $i > (c+2)\frac{\log n}{b}$.

3

イロト イロト イヨト イヨト

Theorem

$$R_p$$
 for node p contains $\leq \mathcal{O}(rac{\log n}{b}2^b)$ entries.

Proof.

$$\forall m. P(\exists q: pfxl(p,q) \ge m \land p \neq q) = (n-1) \cdot (2^{-b})^m$$

• Let
$$m = (c+2) rac{\log n}{b}$$
 for constant $c > 0$.

$$\blacksquare P(...) = ... \approx n^{-c-1} \xrightarrow[n \to \infty]{}$$

It is probable that $a_{i,j} = null$ for $i > (c+2)\frac{\log n}{b}$.

Ξ.

イロト イロト イヨト イヨト

Theorem

$$R_p$$
 for node p contains $\leq \mathcal{O}(rac{\log n}{b}2^b)$ entries.

Proof.

•
$$\forall m. P(\exists q : pfxl(p,q) \ge m \land p \ne q) = (n-1) \cdot (2^{-b})^m$$

• Let
$$m = (c+2) \frac{\log n}{b}$$
 for constant $c > 0$.

$$P(...) = ... \approx n^{-c-1} \xrightarrow[n \to \infty]{} 0$$

It is probable that $a_{i,j} = null$ for $i > (c+2)\frac{\log n}{b}$.

3

イロン 不聞と 不同と 不同と

Theorem

$$R_p$$
 for node p contains $\leq \mathcal{O}(rac{\log n}{b}2^b)$ entries.

Proof.

•
$$\forall m. P(\exists q : pfxl(p,q) \ge m \land p \ne q) = (n-1) \cdot (2^{-b})^m$$

• Let
$$m = (c+2) \frac{\log n}{b}$$
 for constant $c > 0$.

$$\bullet P(...) = ... \approx n^{-c-1} \xrightarrow[n \to \infty]{} 0$$

It is probable that $a_{i,j} = null$ for $i > (c+2)\frac{\log n}{b}$.

3

イロト イロト イヨト イヨト

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

Proof.

- We only use the leaf set.
- Let *p*₀, *p*₁, ..., *p*_ν be the nodes along the route.
- $\forall i \in \{0, ..., \nu 1\} : p_{i+1} = L_{p_i}[\pm |L|/2]$
- $|id(L_{p_i}[\pm|L|/2]) id(p_i)| \approx \frac{|ID|}{n} * \frac{|L|}{2}$ $|id(p_i) id(p_i)| \leq \frac{|ID|}{n}$

э

・ロト ・聞ト ・ヨト ・ヨト

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

Proof

- We only use the leaf set.
- Let *p*₀, *p*₁, ..., *p*_ν be the nodes along the route.
- $\forall i \in \{0, ..., \nu 1\} : p_{i+1} = L_{p_i}[\pm |L|/2]$
- $|id(L_{p_i}[\pm|L|/2]) id(p_i)| \approx \frac{|ID|}{n} * \frac{|L|}{2}$

э

・ロト ・聞ト ・ヨト ・ヨト

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

Proof.

We only use the leaf set.

- Let $p_0, p_1, ..., p_{\nu}$ be the nodes along the route.
- $\forall i \in \{0, ..., \nu 1\} : p_{i+1} = L_{p_i}[\pm |L|/2]$

$$|id(L_{p_i}[\pm |L|/2]) - id(p_i)| \approx \frac{|D|}{n} * \frac{|L|}{2}$$

$$|id(p_0) - id(p_\nu)| \le \frac{|ID|}{2}$$

э

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

Proof.

- We only use the leaf set.
- Let $p_0, p_1, ..., p_{\nu}$ be the nodes along the route.
- $\forall i \in \{0, ..., \nu 1\}$: $p_{i+1} = L_{p_i}[\pm |L|/2]$ ■ $|id(L_{p_i}[\pm |L|/2]) - id(p_i)| \approx \frac{|D|}{p} * \frac{|L|}{2}$
- $|id(p_0) id(p_{ij})| < \frac{|ID|}{2}$

э

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

Proof.

- We only use the leaf set.
- Let $p_0, p_1, ..., p_{\nu}$ be the nodes along the route.
- $\forall i \in \{0, ..., \nu 1\} : p_{i+1} = L_{p_i}[\pm |L|/2]$
- $|id(L_{p_i}[\pm |L|/2]) id(p_i)| \approx \frac{|ID|}{n} * \frac{|L|}{2}$ $|id(p_0) - id(p_{\nu})| < \frac{|ID|}{2}$

э

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

Proof.

- We only use the leaf set.
- Let $p_0, p_1, ..., p_{\nu}$ be the nodes along the route.
- $\forall i \in \{0, ..., \nu 1\} : p_{i+1} = L_{p_i}[\pm |L|/2]$
- $|id(L_{p_i}[\pm |L|/2]) id(p_i)| \approx \frac{|D|}{n} * \frac{|L|}{2}$

 $|id(p_0) - id(p_\nu)| \le \frac{|ID|}{2}$

э

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than $\mathcal{O}(n/|L|)$ steps.

Proof.

- We only use the leaf set.
- Let $p_0, p_1, ..., p_{\nu}$ be the nodes along the route.

•
$$\forall i \in \{0, ..., \nu - 1\} : p_{i+1} = L_{p_i}[\pm |L|/2]$$

$$|id(L_{p_i}[\pm |L|/2]) - id(p_i)| \approx \frac{|D|}{n} * \frac{|L|}{2}$$

•
$$|id(p_0) - id(p_\nu)| \le \frac{|ID|}{2}$$

э

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

The excpected value is $\mathcal{O}(\log_{2^b} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

Proof.

- We use the routing table.
- Each time a p_{i+1} is found in the routing table pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)
- There are only approx. $\mathcal{O}(\frac{\log n}{b})$ rows in each routing table
- Now we use the leaf set.
- The probability that two (three) hops in L are needed is .02 (.0006)

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

The excpected value is $\mathcal{O}(\log_{2^b} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

Proof.

- We use the routing table.
- Each time a p_{i+1} is found in the routing table pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)
- There are only approx. $\mathcal{O}(\frac{\log n}{b})$ rows in each routing table.
- Now we use the leaf set.
- The probability that two (three) hops in *L* are needed is .02 (.0006).

Theorem

The excpected value is $\mathcal{O}(\log_{2^{b}} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

Proof.

- We use the routing table.
- Each time a p_{i+1} is found in the routing table pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)
- There are only approx. $\mathcal{O}(\frac{\log n}{b})$ rows in each routing table.
- Now we use the leaf set.
- The probability that two (three) hops in *L* are needed is .02 (.0006).

Theorem

The excpected value is $\mathcal{O}(\log_{2^{b}} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

Proof.

- We use the routing table.
- Each time a p_{i+1} is found in the routing table pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)
- There are only approx. $\mathcal{O}(\frac{\log n}{b})$ rows in each routing table.

Now we use the leaf set.

The probability that two (three) hops in *L* are needed is .02 (.0006).

Theorem

The excpected value is $\mathcal{O}(\log_{2^{b}} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

Proof.

- We use the routing table.
- Each time a p_{i+1} is found in the routing table pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)
- There are only approx. $\mathcal{O}(\frac{\log n}{b})$ rows in each routing table.
- Now we use the leaf set.

The probability that two (three) hops in *L* are needed is .02 (.0006).

Theorem

The excpected value is $\mathcal{O}(\log_{2^{b}} n) = \mathcal{O}(\frac{\log n}{b})$ messages.

Proof.

- We use the routing table.
- Each time a p_{i+1} is found in the routing table pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)
- There are only approx. $\mathcal{O}(\frac{\log n}{b})$ rows in each routing table.
- Now we use the leaf set.
- The probability that two (three) hops in L are needed is .02 (.0006).

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

Let *p* be a new peer with tables *R*, *L* and *M*.

Try to choose values for the routing table so, that distances are minimal.

- **p** contacts a peer p_0 . Assume that p is near to p_0 .
- *p* sends a *join*-Message with recepient *id*(*p*).
- Every peer that gets the message sends its R, L and M.
- Let $p_0, p_1, ..., p_z$ be the path of the message.
- Assume z ≥ m and pfxl(p, p_i) ≥ i for i < m 1 (Otherwise include nodes more than once.)

- Let p be a new peer with tables R, L and M.
- Try to choose values for the routing table so, that distances are minimal.

- **p** contacts a peer p_0 . Assume that p is near to p_0 .
- p sends a join-Message with recepient id(p).
- Every peer that gets the message sends its R, L and M.
- Let $p_0, p_1, ..., p_z$ be the path of the message.
- Assume z ≥ m and pfxl(p, p_i) ≥ i for i < m 1 (Otherwise include nodes more than once.)

- Let p be a new peer with tables R, L and M.
- Try to choose values for the routing table so, that distances are minimal.

- p contacts a peer p_0 . Assume that p is near to p_0 .
- *p* sends a *join*-Message with recepient *id*(*p*).
- Every peer that gets the message sends its R, L and M.
- Let $p_0, p_1, ..., p_z$ be the path of the message.
- Assume z ≥ m and pfxl(p, p_i) ≥ i for i < m 1 (Otherwise include nodes more than once.)

- Let p be a new peer with tables R, L and M.
- Try to choose values for the routing table so, that distances are minimal.

- p contacts a peer p_0 . Assume that p is near to p_0 .
- p sends a *join*-Message with recepient id(p).
- Every peer that gets the message sends its R, L and M.
- Let $p_0, p_1, ..., p_z$ be the path of the message.
- Assume z ≥ m and pfxl(p, p_i) ≥ i for i < m 1 (Otherwise include nodes more than once.)

- Let p be a new peer with tables R, L and M.
- Try to choose values for the routing table so, that distances are minimal.

- p contacts a peer p_0 . Assume that p is near to p_0 .
- p sends a *join*-Message with recepient id(p).
- Every peer that gets the message sends its R, L and M.
- Let $p_0, p_1, ..., p_z$ be the path of the message.
- Assume z ≥ m and pfxl(p, p_i) ≥ i for i < m 1 (Otherwise include nodes more than once.)

- Let p be a new peer with tables R, L and M.
- Try to choose values for the routing table so, that distances are minimal.

- p contacts a peer p_0 . Assume that p is near to p_0 .
- p sends a *join*-Message with recepient id(p).
- Every peer that gets the message sends its R, L and M.
- Let $p_0, p_1, ..., p_z$ be the path of the message.
- Assume z ≥ m and pfxl(p, p_i) ≥ i for i < m 1 (Otherwise include nodes more than once.)

- Let p be a new peer with tables R, L and M.
- Try to choose values for the routing table so, that distances are minimal.

- p contacts a peer p_0 . Assume that p is near to p_0 .
- p sends a *join*-Message with recepient id(p).
- Every peer that gets the message sends its R, L and M.
- Let $p_0, p_1, ..., p_z$ be the path of the message.
- Assume z ≥ m and pfxl(p, p_i) ≥ i for i < m 1 (Otherwise include nodes more than once.)

nsertion

Insertion of a peer (cont.)

Let $M = M_0$.

- $|id(p) id(p_z)|$ is minimal.
- Use L_7 for L and insert p_7 at position 1 or -1.
- Let $R[0,*] = R_0[0,*]; R[1,*] = R_1[1,*]; ...;$
- Notify every peer in M, L and R about our arrival.

Insertion of a peer (cont.)

- Let $M = M_0$.
- $|id(p) id(p_z)|$ is minimal.
- Use L_z for L and insert p_z at position 1 or -1.
- Let $R[0,*] = R_0[0,*]$; $R[1,*] = R_1[1,*]$; ...;
 - $\mathsf{pfxl}(\mathsf{p},\mathsf{p}_i) \geq i \Rightarrow \forall q \in R_i[i,*].\mathsf{pfxl}(q,\mathsf{p}) \geq i$
- Request R_q from all $q \in M$ and look for better entries for R.
- Notify every peer in *M*, *L* and *R* about our arrival.

Insertion of a peer (cont.)

- Let $M = M_0$.
- $|id(p) id(p_z)|$ is minimal.
- Use L_z for L and insert p_z at position 1 or -1.
- Let $R[0,*] = R_0[0,*]$; $R[1,*] = R_1[1,*]$; ... ;

 $\mathsf{pfxl}(\mathsf{p},\mathsf{p}_i) \geq i \Rightarrow \forall q \in \mathsf{R}_i[i,*].\mathsf{pfxl}(q,\mathsf{p}) \geq i$

- Request R_q from all $q \in M$ and look for better entries for R.
- Notify every peer in *M*, *L* and *R* about our arrival.
- Let $M = M_0$.
- $|id(p) id(p_z)|$ is minimal.
- Use L_z for L and insert p_z at position 1 or -1.
- Let $R[0,*] = R_0[0,*]$; $R[1,*] = R_1[1,*]$; ... ;

• $pfxl(p,p_i) \ge i \Rightarrow \forall q \in R_i[i,*].pfxl(q,p) \ge i$

- Request R_q from all $q \in M$ and look for better entries for R.
- Notify every peer in *M*, *L* and *R* about our arrival.

- Let $M = M_0$.
- $|id(p) id(p_z)|$ is minimal.
- Use L_z for L and insert p_z at position 1 or -1.
- Let $R[0,*] = R_0[0,*]$; $R[1,*] = R_1[1,*]$; ... ;
 - $pfxl(p,p_i) \ge i \Rightarrow \forall q \in R_i[i,*].pfxl(q,p) \ge i$
- Request R_q from all q ∈ M and look for better entries for R.
 Notify every peer in M, L and R about our arrival.

- Let $M = M_0$.
- $|id(p) id(p_z)|$ is minimal.
- Use L_z for L and insert p_z at position 1 or -1.
- Let $R[0,*] = R_0[0,*]$; $R[1,*] = R_1[1,*]$; ... ;
 - $pfxl(p,p_i) \ge i \Rightarrow \forall q \in R_i[i,*].pfxl(q,p) \ge i$
- Request R_q from all q ∈ M and look for better entries for R.
 Notify every peer in M, L and R about our arrival.

- Let $M = M_0$.
- $|id(p) id(p_z)|$ is minimal.
- Use L_z for L and insert p_z at position 1 or -1.
- Let $R[0,*] = R_0[0,*]$; $R[1,*] = R_1[1,*]$; ... ;
 - $pfxl(p,p_i) \ge i \Rightarrow \forall q \in R_i[i,*].pfxl(q,p) \ge i$
- Request R_q from all q ∈ M and look for better entries for R.
 Notify every peer in M, L and R about our arrival.

Fact

The algorithm for inserting peers generates good R[i, j].

< A

æ

Proof.

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\blacksquare \ \forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}.$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all *R*[*i*, *]

Proof.

- Assume that the routing tables are optimized.
- R[0, *] is taken from p_0 .
- $\blacksquare \forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}.$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all R[i, *]

Proof.

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}.$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all *R*[*i*,*]

Proof.

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}.$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all *R*[*i*,*]

Proof.

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}.$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) ext{ is good, } d(p,p_1) ext{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all *R*[*i*,*]

Proof.

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}.$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all *R*[*i*,*]

Proof.

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}.$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all R[i, *]

Proof.

(Outline)

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $orall q \in R[1,*]: d(p,q)$ is relatively small.

And so on for all R[i,*]

Proof.

- Assume that the routing tables are optimized.
- R[0,*] is taken from p_0 .
- $\forall q \in R[0,*]. \ d(p_0,q) \text{ small} \Longrightarrow d(p,q) \text{ small}$
- R[1,*] is taken from p_1 .
- $\forall q \in R[1,*]: d(p_1,q) \text{ is good, } d(p,p_1) \text{ is good.}$
- The following is needed: $q \in \{s | pflx(s, p) \ge 1\}$
- Thus $\forall q \in R[1,*]: d(p,q)$ is relatively small.
- And so on for all R[i,*]

Overview

- - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- - FreePastry
 - PAST

R. Himmelmann (Ferienakademie '08)

How are missing entries in R filled?

Algorithm:

- A peer notices that it is missing an entry R[i, j].
- It asks all other $q \in R[i,*]$ for their entry $R_q[i,j]$
- If this does not succeed it tries its next row $R[i+1,*], \dots$

- How are missing entries in R filled?
- Algorithm:
 - A peer notices that it is missing an entry R[i, j].
 - It asks all other $q \in R[i, *]$ for their entry $R_q[i, j]$
 - If this does not succeed it tries its next row R[i+1,*], ...

- How are missing entries in R filled?
- Algorithm:
 - A peer notices that it is missing an entry R[i, j].
 - It asks all other $q \in R[i,*]$ for their entry $R_q[i,j]$
 - If this does not succeed it tries its next row R[i+1,*], ...

- How are missing entries in R filled?
- Algorithm:
 - A peer notices that it is missing an entry R[i, j].
 - It asks all other $q \in R[i,*]$ for their entry $R_q[i,j]$
 - If this does not succeed it tries its next row R[i+1,*], ...

Overview

- 1 Data Structures
 - Routing Table
 - Leaf Set
 - Neighbourhood Set
- 2 Operations
 - Routing
 - Insertion of peers
 - Locality
 - Locality in Routing
- 3 Stability
 - Leaf Set
 - Routing Table
 - Experimental Results
- 4 Conclusion and Outlook
 - FreePastry
 - PAST
 - Scribe and SplitStream

Malicious Nodes

• There may be faulty implemtations of pastry.

There may be nodes that try to interfer with the network.

Malicious Nodes

- There may be faulty implemtations of pastry.
- There may be nodes that try to interfer with the network.

Assumtions

Routing in pastry is deterministic.

Invariant: In routing through $...p_i, p_{i+1}, ...$ to ID r:

- $pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)$ or at least
- $|id(\rho_{i+1}) r| > |id(\rho_i) r|$

- Routing in pastry is deterministic.
- Invariant: In routing through $...p_i, p_{i+1}, ...$ to ID r:
 - pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r) or at least |id(p_{i+1}) - r| > |id(p_i) - r|
 - $|Ia(p_{i+1}) r| > |Ia(p_i) r|$
- Assumption: Most nodes in the network are working properly

- Routing in pastry is deterministic.
- Invariant: In routing through $...p_i, p_{i+1}, ...$ to ID r:
 - $pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)$ or at least • $|id(p_{i+1}) - r| > |id(p_i) - r|$

- Routing in pastry is deterministic.
- Invariant: In routing through $\dots p_i, p_{i+1}, \dots$ to ID r:
 - $pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)$ or at least
 - $|id(p_{i+1}) r| > |id(p_i) r|$

- Routing in pastry is deterministic.
- Invariant: In routing through $...p_i, p_{i+1}, ...$ to ID r:
 - $pfxl(id(p_{i+1}), r) > pfxl(id(p_i), r)$ or at least
 - $|id(p_{i+1}) r| > |id(p_i) r|$

- The invariant is maintaied.
- A strong bias towards using *R* is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id(p)* is the checksum of *p*'s public key.

- The invariant is maintaied.
- A strong bias towards using *R* is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id(p)* is the checksum of *p*'s public key.

- The invariant is maintaied.
- A strong bias towards using *R* is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - id(p) is the checksum of p's public key.

- The invariant is maintaied.
- A strong bias towards using R is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id(p)* is the checksum of *p*'s public key.

- The algorithm discussed earlier is randomized.
 - The invariant is maintaied.
 - A strong bias towards using R is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id(p)* is the checksum of *p*'s public key.

- The algorithm discussed earlier is randomized.
 - The invariant is maintaied.
 - A strong bias towards using R is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id*(*p*) is the checksum of *p*'s public key.

- The algorithm discussed earlier is randomized.
 - The invariant is maintaied.
 - A strong bias towards using R is applied.
- No single node stores all copies of a piece of data.
- Nodes send replies when they store data etc.
- Messages are signed.
 - *id*(*p*) is the checksum of *p*'s public key.

Robustness

Remove 10% of all peers from the network.

Then repair:

- Randomly choose two peers p and q and an ID d.
- Send a message from p and from q to d.
- Repeat 100.000 times.

Robustness

Remove 10% of all peers from the network.

Then repair:

- Randomly choose two peers p and q and an ID d.
- Send a message from p and from q to d.
- Repeat 100.000 times.
Robustness

- Remove 10% of all peers from the network.
- Then repair:
 - Randomly choose two peers p and q and an ID d.
 - Send a message from p and from q to d.
 - Repeat 100.000 times.

Robustness

Remove 10% of all peers from the network.

Then repair:

- Randomly choose two peers p and q and an ID d.
- Send a message from p and from q to d.
- Repeat 100.000 times.