
Pastry

R. Himmelmann

Ferienakademie im Sarntal 2008

FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

October 12, 2008

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 1 / 70

Table of Contents

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 2 / 70

Table of Contents

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 2 / 70

Table of Contents

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 2 / 70

Table of Contents

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 2 / 70

Data Structures Overview

IDs

IDs are numbers ∈ N/(2128N) ≡ {0, ..., 2128 − 1} := ID

∀b ∈ ID.|b| := min(b, 2128 − 1− b)

Every node p in the network has an ID id(p) ∈ ID.

Every piece of data d has an ID id(d)

... and is associated with the node p with |id(p)− id(d)| = min.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 3 / 70

Data Structures Overview

IDs

IDs are numbers ∈ N/(2128N) ≡ {0, ..., 2128 − 1} := ID

∀b ∈ ID.|b| := min(b, 2128 − 1− b)

Every node p in the network has an ID id(p) ∈ ID.

Every piece of data d has an ID id(d)

... and is associated with the node p with |id(p)− id(d)| = min.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 3 / 70

Data Structures Overview

IDs

IDs are numbers ∈ N/(2128N) ≡ {0, ..., 2128 − 1} := ID

∀b ∈ ID.|b| := min(b, 2128 − 1− b)

Every node p in the network has an ID id(p) ∈ ID.

Every piece of data d has an ID id(d)

... and is associated with the node p with |id(p)− id(d)| = min.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 3 / 70

Data Structures Overview

IDs

IDs are numbers ∈ N/(2128N) ≡ {0, ..., 2128 − 1} := ID

∀b ∈ ID.|b| := min(b, 2128 − 1− b)

Every node p in the network has an ID id(p) ∈ ID.

Every piece of data d has an ID id(d)

... and is associated with the node p with |id(p)− id(d)| = min.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 3 / 70

Data Structures Overview

IDs

IDs are numbers ∈ N/(2128N) ≡ {0, ..., 2128 − 1} := ID

∀b ∈ ID.|b| := min(b, 2128 − 1− b)

Every node p in the network has an ID id(p) ∈ ID.

Every piece of data d has an ID id(d)

... and is associated with the node p with |id(p)− id(d)| = min.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 3 / 70

Data Structures Overview

IDs

Interpret IDs as numbers with base |B| = 2b

Let m = log|B| |ID|
pfxl(x , y) is the length of the greatest common pre�x of x and y .

pfxl(p, q) := pfxl(id(p), id(q)) for nodes p and q.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 4 / 70

Data Structures Overview

IDs

Interpret IDs as numbers with base |B| = 2b

Let m = log|B| |ID|
pfxl(x , y) is the length of the greatest common pre�x of x and y .

pfxl(p, q) := pfxl(id(p), id(q)) for nodes p and q.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 4 / 70

Data Structures Overview

IDs

Interpret IDs as numbers with base |B| = 2b

Let m = log|B| |ID|
pfxl(x , y) is the length of the greatest common pre�x of x and y .

pfxl(p, q) := pfxl(id(p), id(q)) for nodes p and q.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 4 / 70

Data Structures Overview

IDs

Interpret IDs as numbers with base |B| = 2b

Let m = log|B| |ID|
pfxl(x , y) is the length of the greatest common pre�x of x and y .

pfxl(p, q) := pfxl(id(p), id(q)) for nodes p and q.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 4 / 70

Data Structures Overview

Proximity

Assumption: The cost for sending a message from p to q may be measured
by a metric d .

d(p, q) = d(q, p)

d(p, q) ≤ d(p, p′) + d(p′, q)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 5 / 70

Data Structures Overview

Proximity

Assumption: The cost for sending a message from p to q may be measured
by a metric d .

d(p, q) = d(q, p)

d(p, q) ≤ d(p, p′) + d(p′, q)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 5 / 70

Data Structures Overview

Proximity

Assumption: The cost for sending a message from p to q may be measured
by a metric d .

d(p, q) = d(q, p)

d(p, q) ≤ d(p, p′) + d(p′, q)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 5 / 70

Data Structures Overview

What do we want to optimize?

Every operation should need as few messages as possible.

The overall distance a message travels should be minimal.

A greedy algorithm is used.

Fill the routing tables of nodes only with near nodes.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 6 / 70

Data Structures Overview

What do we want to optimize?

Every operation should need as few messages as possible.

The overall distance a message travels should be minimal.

A greedy algorithm is used.

Fill the routing tables of nodes only with near nodes.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 6 / 70

Data Structures Overview

What do we want to optimize?

Every operation should need as few messages as possible.

The overall distance a message travels should be minimal.

A greedy algorithm is used.

Fill the routing tables of nodes only with near nodes.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 6 / 70

Data Structures Overview

What do we want to optimize?

Every operation should need as few messages as possible.

The overall distance a message travels should be minimal.

A greedy algorithm is used.

Fill the routing tables of nodes only with near nodes.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 6 / 70

Data Structures Routing Table

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 7 / 70

Data Structures Routing Table

The Routing Table

Let p be a node.

Rp =: R is a matrix (R[i , j])0≤i<m,0≤j<|B|.

R[i , j] =: q is a node with

pfxl(p, q) = i

id(q)[i] = j

If there is no such q or if j = id(p)[i] then R[i , j] = null .

If possible choose a q near to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 8 / 70

Data Structures Routing Table

The Routing Table

Let p be a node.

Rp =: R is a matrix (R[i , j])0≤i<m,0≤j<|B|.

R[i , j] =: q is a node with

pfxl(p, q) = i

id(q)[i] = j

If there is no such q or if j = id(p)[i] then R[i , j] = null .

If possible choose a q near to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 8 / 70

Data Structures Routing Table

The Routing Table

Let p be a node.

Rp =: R is a matrix (R[i , j])0≤i<m,0≤j<|B|.

R[i , j] =: q is a node with

pfxl(p, q) = i

id(q)[i] = j

If there is no such q or if j = id(p)[i] then R[i , j] = null .

If possible choose a q near to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 8 / 70

Data Structures Routing Table

The Routing Table

Let p be a node.

Rp =: R is a matrix (R[i , j])0≤i<m,0≤j<|B|.

R[i , j] =: q is a node with

pfxl(p, q) = i

id(q)[i] = j

If there is no such q or if j = id(p)[i] then R[i , j] = null .

If possible choose a q near to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 8 / 70

Data Structures Routing Table

The Routing Table

Let p be a node.

Rp =: R is a matrix (R[i , j])0≤i<m,0≤j<|B|.

R[i , j] =: q is a node with

pfxl(p, q) = i

id(q)[i] = j

If there is no such q or if j = id(p)[i] then R[i , j] = null .

If possible choose a q near to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 8 / 70

Data Structures Routing Table

The Routing Table

Let p be a node.

Rp =: R is a matrix (R[i , j])0≤i<m,0≤j<|B|.

R[i , j] =: q is a node with

pfxl(p, q) = i

id(q)[i] = j

If there is no such q or if j = id(p)[i] then R[i , j] = null .

If possible choose a q near to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 8 / 70

Data Structures Routing Table

The Routing Table

Let p be a node.

Rp =: R is a matrix (R[i , j])0≤i<m,0≤j<|B|.

R[i , j] =: q is a node with

pfxl(p, q) = i

id(q)[i] = j

If there is no such q or if j = id(p)[i] then R[i , j] = null .

If possible choose a q near to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 8 / 70

Data Structures Routing Table

Example

..1.. ..2.. ..3.. ..4..

xxxx null 2xxx 3xxx 4xxx

1xxx 11xx null 13xx 14xx

12xx 121x 122x null 124x

123x 1231 null 1233 1234

Rp with id(p) = 1232

|B| = 4.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 9 / 70

Data Structures Routing Table

Size of R

Theorem

Rp for node p contains usually ≤ O(log n
b

2b) entries.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 10 / 70

Data Structures Leaf Set

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 11 / 70

Data Structures Leaf Set

The Leaf Set

The leaf set L for a node p is an array with

|L|/2 nodes with next higher IDs and

|L|/2 nodes with next lower IDs.

If |L|/2 > n nodes may be on both sides of the leaf �set�.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 12 / 70

Data Structures Leaf Set

The Leaf Set

The leaf set L for a node p is an array with

|L|/2 nodes with next higher IDs and

|L|/2 nodes with next lower IDs.

If |L|/2 > n nodes may be on both sides of the leaf �set�.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 12 / 70

Data Structures Leaf Set

The Leaf Set

The leaf set L for a node p is an array with

|L|/2 nodes with next higher IDs and

|L|/2 nodes with next lower IDs.

If |L|/2 > n nodes may be on both sides of the leaf �set�.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 12 / 70

Data Structures Leaf Set

Example

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 13 / 70

Data Structures Neighbourhood Set

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 14 / 70

Data Structures Neighbourhood Set

The Neighbourhood Set

The Neighbourhood M of a node p contains |M| = 2b nodes.

For all q ∈ M the distance d(p, q) should be small.

M is used for repairs and insertion of peers.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 15 / 70

Data Structures Neighbourhood Set

The Neighbourhood Set

The Neighbourhood M of a node p contains |M| = 2b nodes.

For all q ∈ M the distance d(p, q) should be small.

M is used for repairs and insertion of peers.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 15 / 70

Data Structures Neighbourhood Set

The Neighbourhood Set

The Neighbourhood M of a node p contains |M| = 2b nodes.

For all q ∈ M the distance d(p, q) should be small.

M is used for repairs and insertion of peers.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 15 / 70

Data Structures Neighbourhood Set

Example 2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 16 / 70

Operations Routing

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 17 / 70

Operations Routing

Algorithm for Routing

For a given r ∈ ID we want to �nd the node n with |id(n)− r | = min.

We start at a node p.

If n is in the leaf set we forward the message to it.

Otherwise let c = pfxl(id(p), r)

If R[c , r [c]] 6= null forward to that node.

Otherwise route to the �best� node p′ known to p with
|r − id(p′)| < |r − id(p)| and pfxl(id(p′), r) ≥ r .

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 18 / 70

Operations Routing

Algorithm for Routing

For a given r ∈ ID we want to �nd the node n with |id(n)− r | = min.

We start at a node p.

If n is in the leaf set we forward the message to it.

Otherwise let c = pfxl(id(p), r)

If R[c , r [c]] 6= null forward to that node.

Otherwise route to the �best� node p′ known to p with
|r − id(p′)| < |r − id(p)| and pfxl(id(p′), r) ≥ r .

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 18 / 70

Operations Routing

Algorithm for Routing

For a given r ∈ ID we want to �nd the node n with |id(n)− r | = min.

We start at a node p.

If n is in the leaf set we forward the message to it.

Otherwise let c = pfxl(id(p), r)

If R[c , r [c]] 6= null forward to that node.

Otherwise route to the �best� node p′ known to p with
|r − id(p′)| < |r − id(p)| and pfxl(id(p′), r) ≥ r .

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 18 / 70

Operations Routing

Algorithm for Routing

For a given r ∈ ID we want to �nd the node n with |id(n)− r | = min.

We start at a node p.

If n is in the leaf set we forward the message to it.

Otherwise let c = pfxl(id(p), r)

If R[c , r [c]] 6= null forward to that node.

Otherwise route to the �best� node p′ known to p with
|r − id(p′)| < |r − id(p)| and pfxl(id(p′), r) ≥ r .

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 18 / 70

Operations Routing

Algorithm for Routing

For a given r ∈ ID we want to �nd the node n with |id(n)− r | = min.

We start at a node p.

If n is in the leaf set we forward the message to it.

Otherwise let c = pfxl(id(p), r)

If R[c , r [c]] 6= null forward to that node.

Otherwise route to the �best� node p′ known to p with
|r − id(p′)| < |r − id(p)| and pfxl(id(p′), r) ≥ r .

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 18 / 70

Operations Routing

Algorithm for Routing

For a given r ∈ ID we want to �nd the node n with |id(n)− r | = min.

We start at a node p.

If n is in the leaf set we forward the message to it.

Otherwise let c = pfxl(id(p), r)

If R[c , r [c]] 6= null forward to that node.

Otherwise route to the �best� node p′ known to p with
|r − id(p′)| < |r − id(p)| and pfxl(id(p′), r) ≥ r .

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 18 / 70

Operations Routing

Correctness

Theorem

Routing takes no more than O(n/|L|) steps.

(Assume correct routing tables and leaf sets)

Theorem

The expected value is O(log2b n) = O(log n
b

) messages.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 19 / 70

Operations Routing

Correctness

Theorem

Routing takes no more than O(n/|L|) steps.

(Assume correct routing tables and leaf sets)

Theorem

The expected value is O(log2b n) = O(log n
b

) messages.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 19 / 70

Operations Routing

Correctness

Theorem

Routing takes no more than O(n/|L|) steps.

(Assume correct routing tables and leaf sets)

Theorem

The expected value is O(log2b n) = O(log n
b

) messages.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 19 / 70

Operations Routing

Notes

Usually not the node p with |id(p)− r | = min . is needed.

One of the k nodes nearest to r in the ID-space is su�cient.

E.g. in Past, a �le storage protocol layered atop pastry:

At least k copies of a �le are stored in the k nodes

with the closest IDs to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 20 / 70

Operations Routing

Notes

Usually not the node p with |id(p)− r | = min . is needed.

One of the k nodes nearest to r in the ID-space is su�cient.

E.g. in Past, a �le storage protocol layered atop pastry:

At least k copies of a �le are stored in the k nodes

with the closest IDs to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 20 / 70

Operations Routing

Notes

Usually not the node p with |id(p)− r | = min . is needed.

One of the k nodes nearest to r in the ID-space is su�cient.

E.g. in Past, a �le storage protocol layered atop pastry:

At least k copies of a �le are stored in the k nodes

with the closest IDs to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 20 / 70

Operations Routing

Notes

Usually not the node p with |id(p)− r | = min . is needed.

One of the k nodes nearest to r in the ID-space is su�cient.

E.g. in Past, a �le storage protocol layered atop pastry:

At least k copies of a �le are stored in the k nodes

with the closest IDs to p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 20 / 70

Operations Insertion of peers

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 21 / 70

Operations Insertion of peers

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 22 / 70

Operations Insertion of peers

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 22 / 70

Operations Insertion of peers

Insertion of a peer

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 23 / 70

Operations Insertion of peers

Insertion of a peer

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 23 / 70

Operations Insertion of peers

Insertion of a peer

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 23 / 70

Operations Insertion of peers

Insertion of a peer

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 23 / 70

Operations Insertion of peers

Insertion of a peer

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 24 / 70

Operations Insertion of peers

Insertion of a peer

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 24 / 70

Operations Locality

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 25 / 70

Operations Locality

Locality

IDs are distributed randomly through the underlying network.

It is unlikely that |L|/2 nodes with consecutive IDs fail.

Routing is stable.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 26 / 70

Operations Locality

Locality

IDs are distributed randomly through the underlying network.

It is unlikely that |L|/2 nodes with consecutive IDs fail.

Routing is stable.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 26 / 70

Operations Locality

Locality

IDs are distributed randomly through the underlying network.

It is unlikely that |L|/2 nodes with consecutive IDs fail.

Routing is stable.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 26 / 70

Operations Locality

Locality in insertion

The cost of routing operations depends on good choices for R[i , j].

Fact

The algorithm for inserting peers generates good R[i , j].

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 27 / 70

Operations Locality

Locality in insertion

The cost of routing operations depends on good choices for R[i , j].

Fact

The algorithm for inserting peers generates good R[i , j].

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 27 / 70

Operations Locality in Routing

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 28 / 70

Operations Locality in Routing

Locality in Routing

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 29 / 70

Operations Locality in Routing

Locality in Routing

p1, ..., pa, pb, pc , ..., pz with pb ∈ Ra and pc ∈ Rb

d(pa, pb) < d(pa, pc)
Otherwise ..., pa, pc , ... would be used.

pi is taken from a set S with |S | ≈ n/2bi .

The most expensive step is usually the last step in the leaf set.

... which can often be avoided depending on the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 30 / 70

Operations Locality in Routing

Locality in Routing

p1, ..., pa, pb, pc , ..., pz with pb ∈ Ra and pc ∈ Rb

d(pa, pb) < d(pa, pc)
Otherwise ..., pa, pc , ... would be used.

pi is taken from a set S with |S | ≈ n/2bi .

The most expensive step is usually the last step in the leaf set.

... which can often be avoided depending on the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 30 / 70

Operations Locality in Routing

Locality in Routing

p1, ..., pa, pb, pc , ..., pz with pb ∈ Ra and pc ∈ Rb

d(pa, pb) < d(pa, pc)
Otherwise ..., pa, pc , ... would be used.

pi is taken from a set S with |S | ≈ n/2bi .

The most expensive step is usually the last step in the leaf set.

... which can often be avoided depending on the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 30 / 70

Operations Locality in Routing

Locality in Routing

p1, ..., pa, pb, pc , ..., pz with pb ∈ Ra and pc ∈ Rb

d(pa, pb) < d(pa, pc)
Otherwise ..., pa, pc , ... would be used.

pi is taken from a set S with |S | ≈ n/2bi .

The most expensive step is usually the last step in the leaf set.

... which can often be avoided depending on the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 30 / 70

Operations Locality in Routing

Locality in Routing

p1, ..., pa, pb, pc , ..., pz with pb ∈ Ra and pc ∈ Rb

d(pa, pb) < d(pa, pc)
Otherwise ..., pa, pc , ... would be used.

pi is taken from a set S with |S | ≈ n/2bi .

The most expensive step is usually the last step in the leaf set.

... which can often be avoided depending on the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 30 / 70

Operations Locality in Routing

Locality in Routing

p1, ..., pa, pb, pc , ..., pz with pb ∈ Ra and pc ∈ Rb

d(pa, pb) < d(pa, pc)
Otherwise ..., pa, pc , ... would be used.

pi is taken from a set S with |S | ≈ n/2bi .

The most expensive step is usually the last step in the leaf set.

... which can often be avoided depending on the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 30 / 70

Stability Leaf Set

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 31 / 70

Stability Leaf Set

Dead nodes

A peer may leave the network without warning.

The underlying network supports pinging.

The protocol atop pastry may include keep-alive messages.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 32 / 70

Stability Leaf Set

Dead nodes

A peer may leave the network without warning.

The underlying network supports pinging.

The protocol atop pastry may include keep-alive messages.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 32 / 70

Stability Leaf Set

Dead nodes

A peer may leave the network without warning.

The underlying network supports pinging.

The protocol atop pastry may include keep-alive messages.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 32 / 70

Stability Leaf Set

Repairing the Leaf Set

A peer p notices that a node p′ ∈ Lp is dead.

p requests the leaf sets from other nodes in Lp.

With them p can �ll Lp and reconstruct Lp′ .

All nodes in Lp′ are noti�ed by p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 33 / 70

Stability Leaf Set

Repairing the Leaf Set

A peer p notices that a node p′ ∈ Lp is dead.

p requests the leaf sets from other nodes in Lp.

With them p can �ll Lp and reconstruct Lp′ .

All nodes in Lp′ are noti�ed by p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 33 / 70

Stability Leaf Set

Repairing the Leaf Set

A peer p notices that a node p′ ∈ Lp is dead.

p requests the leaf sets from other nodes in Lp.

With them p can �ll Lp and reconstruct Lp′ .

All nodes in Lp′ are noti�ed by p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 33 / 70

Stability Leaf Set

Repairing the Leaf Set

A peer p notices that a node p′ ∈ Lp is dead.

p requests the leaf sets from other nodes in Lp.

With them p can �ll Lp and reconstruct Lp′ .

All nodes in Lp′ are noti�ed by p.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 33 / 70

Stability Routing Table

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 34 / 70

Stability Routing Table

Missing nodes after insertion

Before a message is routed to a node p′ it is checked if p′ is alive.

The algorithm for insertion does not gurantee that all nodes updated.

Consider a network with no node with an ID with pre�x 1.

If id(p) starts with 1 all nodes will need to be updated.

However correct routing is still guarantied.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 35 / 70

Stability Routing Table

Missing nodes after insertion

Before a message is routed to a node p′ it is checked if p′ is alive.

The algorithm for insertion does not gurantee that all nodes updated.

Consider a network with no node with an ID with pre�x 1.

If id(p) starts with 1 all nodes will need to be updated.

However correct routing is still guarantied.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 35 / 70

Stability Routing Table

Missing nodes after insertion

Before a message is routed to a node p′ it is checked if p′ is alive.

The algorithm for insertion does not gurantee that all nodes updated.

Consider a network with no node with an ID with pre�x 1.

If id(p) starts with 1 all nodes will need to be updated.

However correct routing is still guarantied.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 35 / 70

Stability Routing Table

Missing nodes after insertion

Before a message is routed to a node p′ it is checked if p′ is alive.

The algorithm for insertion does not gurantee that all nodes updated.

Consider a network with no node with an ID with pre�x 1.

If id(p) starts with 1 all nodes will need to be updated.

However correct routing is still guarantied.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 35 / 70

Stability Routing Table

Missing nodes after insertion

Before a message is routed to a node p′ it is checked if p′ is alive.

The algorithm for insertion does not gurantee that all nodes updated.

Consider a network with no node with an ID with pre�x 1.

If id(p) starts with 1 all nodes will need to be updated.

However correct routing is still guarantied.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 35 / 70

Stability Routing Table

Repairing the Routing Table II

Method from FreePastry:

A peer p gets message m routed from peer p′.

Let l ← p�x(id(p), id(m))
if pfxl(id(p′), id(m)) = l and

R[l , id(m)[l]] 6= null do

Send our R[l , ∗] to p′.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 36 / 70

Stability Routing Table

Repairing the Routing Table II

Method from FreePastry:

A peer p gets message m routed from peer p′.

Let l ← p�x(id(p), id(m))
if pfxl(id(p′), id(m)) = l and

R[l , id(m)[l]] 6= null do

Send our R[l , ∗] to p′.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 36 / 70

Stability Routing Table

Repairing the Routing Table II

Method from FreePastry:

A peer p gets message m routed from peer p′.

Let l ← p�x(id(p), id(m))
if pfxl(id(p′), id(m)) = l and

R[l , id(m)[l]] 6= null do

Send our R[l , ∗] to p′.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 36 / 70

Stability Malicious Nodes

Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they
are supposed to do?

The algorithm discussed earlier is randomized.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 37 / 70

Stability Malicious Nodes

Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they
are supposed to do?

The algorithm discussed earlier is randomized.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 37 / 70

Stability Malicious Nodes

Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they
are supposed to do?

The algorithm discussed earlier is randomized.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 37 / 70

Stability Malicious Nodes

Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they
are supposed to do?

The algorithm discussed earlier is randomized.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 37 / 70

Stability Malicious Nodes

Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they
are supposed to do?

The algorithm discussed earlier is randomized.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 37 / 70

Stability Malicious Nodes

Methods against Malicious Nodes

What happens if there are nodes in the network that do not do what they
are supposed to do?

The algorithm discussed earlier is randomized.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 37 / 70

Stability Experimental Results

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 38 / 70

Stability Experimental Results

Number of Hops

Average number of hops for b = 4, |L| = 16 and |M| = 32.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 39 / 70

Stability Experimental Results

Number of Hops

Probability vs. Number of Hops.

Again with b = 4, |L| = 16 and |M| = 32 and n = 106.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 40 / 70

Stability Experimental Results

Distances in Routing

Relative Distance vs. Number of Peers

Pastry is realtively good.

Finding short routes scales well.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 41 / 70

Stability Experimental Results

Distances in Routing

Relative Distance vs. Number of Peers

Pastry is realtively good.

Finding short routes scales well.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 41 / 70

Stability Experimental Results

Distances in Routing

Relative Distance vs. Number of Peers

Pastry is realtively good.

Finding short routes scales well.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 41 / 70

Stability Experimental Results

Number of Entries

b = 4, |L| = 16 and |M| = 32 as before.

Set n to 106

∀p : |Rp| & (2b − 1) log2b n > 60

|Rp|+ |Lp|+ |Mp| & 108

This is more than most other networks.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 42 / 70

Stability Experimental Results

Number of Entries

b = 4, |L| = 16 and |M| = 32 as before.

Set n to 106

∀p : |Rp| & (2b − 1) log2b n > 60

|Rp|+ |Lp|+ |Mp| & 108

This is more than most other networks.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 42 / 70

Conclusion and Outlook FreePastry

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 43 / 70

Conclusion and Outlook FreePastry

FreePastry

Java-Implementation of Pastry.

Simultation or TCP/IP.

Can run Past or Scribe.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 44 / 70

Conclusion and Outlook FreePastry

FreePastry

Java-Implementation of Pastry.

Simultation or TCP/IP.

Can run Past or Scribe.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 44 / 70

Conclusion and Outlook FreePastry

FreePastry

Java-Implementation of Pastry.

Simultation or TCP/IP.

Can run Past or Scribe.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 44 / 70

Conclusion and Outlook Other applications

Other applications

Other applications build on Pastry include:

a pubish/subscribe system. (SCRIBE)

a caching system (SQUIRREL)

a messaging infrastructure (POST)

a high-bandwidth contend istribution system (SplitStream)

... and many more.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 45 / 70

Conclusion and Outlook Other applications

Other applications

Other applications build on Pastry include:

a pubish/subscribe system. (SCRIBE)

a caching system (SQUIRREL)

a messaging infrastructure (POST)

a high-bandwidth contend istribution system (SplitStream)

... and many more.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 45 / 70

Conclusion and Outlook Other applications

Other applications

Other applications build on Pastry include:

a pubish/subscribe system. (SCRIBE)

a caching system (SQUIRREL)

a messaging infrastructure (POST)

a high-bandwidth contend istribution system (SplitStream)

... and many more.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 45 / 70

Conclusion and Outlook Other applications

Other applications

Other applications build on Pastry include:

a pubish/subscribe system. (SCRIBE)

a caching system (SQUIRREL)

a messaging infrastructure (POST)

a high-bandwidth contend istribution system (SplitStream)

... and many more.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 45 / 70

Conclusion and Outlook Other applications

Other applications

Other applications build on Pastry include:

a pubish/subscribe system. (SCRIBE)

a caching system (SQUIRREL)

a messaging infrastructure (POST)

a high-bandwidth contend istribution system (SplitStream)

... and many more.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 45 / 70

Conclusion and Outlook Other applications

Other applications

Other applications build on Pastry include:

a pubish/subscribe system. (SCRIBE)

a caching system (SQUIRREL)

a messaging infrastructure (POST)

a high-bandwidth contend istribution system (SplitStream)

... and many more.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 45 / 70

Conclusion and Outlook PAST

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 46 / 70

Conclusion and Outlook PAST

PAST

A distributed �le storage system.

IDs of �les are the checksum of the �lename.

Files are stored in the k nodes with nearest IDs to the ID of a �le.

Mechanisms for maintaining this invariant are added to the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 47 / 70

Conclusion and Outlook PAST

PAST

A distributed �le storage system.

IDs of �les are the checksum of the �lename.

Files are stored in the k nodes with nearest IDs to the ID of a �le.

Mechanisms for maintaining this invariant are added to the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 47 / 70

Conclusion and Outlook PAST

PAST

A distributed �le storage system.

IDs of �les are the checksum of the �lename.

Files are stored in the k nodes with nearest IDs to the ID of a �le.

Mechanisms for maintaining this invariant are added to the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 47 / 70

Conclusion and Outlook PAST

PAST

A distributed �le storage system.

IDs of �les are the checksum of the �lename.

Files are stored in the k nodes with nearest IDs to the ID of a �le.

Mechanisms for maintaining this invariant are added to the protocol.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 47 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook PAST

PAST

Every node has a capacity.

If a node has a relatively high capacity it is split.

If a node has a relatively low capacity it is asked to leave the network.

Nodes may also join the network as observers.

For optimisation the following techniques are used:

Replica diversion to balance among near nodes.

File diversion to avoid a imbalance between regions of the ID-space.

Caching

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 48 / 70

Conclusion and Outlook Scribe and SplitStream

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 49 / 70

Conclusion and Outlook Scribe and SplitStream

Scribe

Distribute data to many nodes.

There are topics.

Each topic has an ID.

One node is the root of the topic.

Build trees using the routing procedure of pastry.

Distribute messages from the root to the leafs of the tree.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 50 / 70

Conclusion and Outlook Scribe and SplitStream

Scribe

Distribute data to many nodes.

There are topics.

Each topic has an ID.

One node is the root of the topic.

Build trees using the routing procedure of pastry.

Distribute messages from the root to the leafs of the tree.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 50 / 70

Conclusion and Outlook Scribe and SplitStream

Scribe

Distribute data to many nodes.

There are topics.

Each topic has an ID.

One node is the root of the topic.

Build trees using the routing procedure of pastry.

Distribute messages from the root to the leafs of the tree.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 50 / 70

Conclusion and Outlook Scribe and SplitStream

Scribe

Distribute data to many nodes.

There are topics.

Each topic has an ID.

One node is the root of the topic.

Build trees using the routing procedure of pastry.

Distribute messages from the root to the leafs of the tree.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 50 / 70

Conclusion and Outlook Scribe and SplitStream

Scribe

Distribute data to many nodes.

There are topics.

Each topic has an ID.

One node is the root of the topic.

Build trees using the routing procedure of pastry.

Distribute messages from the root to the leafs of the tree.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 50 / 70

Conclusion and Outlook Scribe and SplitStream

Scribe

Distribute data to many nodes.

There are topics.

Each topic has an ID.

One node is the root of the topic.

Build trees using the routing procedure of pastry.

Distribute messages from the root to the leafs of the tree.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 50 / 70

Conclusion and Outlook Scribe and SplitStream

SplitStream

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 51 / 70

Conclusion and Outlook Scribe and SplitStream

SplitStream

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 52 / 70

Questions?

Appendix E�ciency

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 54 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c, r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c, r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c, r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c , r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c , r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c , r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c , r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Algorithm for Routing

Search(r)

if (id(L[−|L|/2]) ≤ r ≤ id(L[|L|/2]))
Route to peer p′ ∈
L, so that |r − id(p)′|is minimal.

return;

c ← pfxl(r , id(p))
if (R[c , r [c]] 6= null)

Route to peer R[c , r [c]]
return

Route to a p′ ∈ R ∪ L ∪M with

pfxl(r , id(p′)) ≥ c and

|r − id(p′)| < |r − id(p)|

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 55 / 70

Appendix E�ciency

Size of R

Theorem

Rp for node p contains ≤ O(log n
b

2b) entries.

Proof.

∀m.P(∃q : pfxl(p, q) ≥ m ∧ p 6= q) = (n − 1) · (2−b)m

Let m = (c + 2) log n
b

for constant c > 0.

P(...) = ... ≈ n−c−1 −→
n→∞

0

It is probable that ai ,j = null for i > (c + 2) log n
b

.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 56 / 70

Appendix E�ciency

Size of R

Theorem

Rp for node p contains ≤ O(log n
b

2b) entries.

Proof.

∀m.P(∃q : pfxl(p, q) ≥ m ∧ p 6= q) = (n − 1) · (2−b)m

Let m = (c + 2) log n
b

for constant c > 0.

P(...) = ... ≈ n−c−1 −→
n→∞

0

It is probable that ai ,j = null for i > (c + 2) log n
b

.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 56 / 70

Appendix E�ciency

Size of R

Theorem

Rp for node p contains ≤ O(log n
b

2b) entries.

Proof.

∀m.P(∃q : pfxl(p, q) ≥ m ∧ p 6= q) = (n − 1) · (2−b)m

Let m = (c + 2) log n
b

for constant c > 0.

P(...) = ... ≈ n−c−1 −→
n→∞

0

It is probable that ai ,j = null for i > (c + 2) log n
b

.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 56 / 70

Appendix E�ciency

Size of R

Theorem

Rp for node p contains ≤ O(log n
b

2b) entries.

Proof.

∀m.P(∃q : pfxl(p, q) ≥ m ∧ p 6= q) = (n − 1) · (2−b)m

Let m = (c + 2) log n
b

for constant c > 0.

P(...) = ... ≈ n−c−1 −→
n→∞

0

It is probable that ai ,j = null for i > (c + 2) log n
b

.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 56 / 70

Appendix E�ciency

Size of R

Theorem

Rp for node p contains ≤ O(log n
b

2b) entries.

Proof.

∀m.P(∃q : pfxl(p, q) ≥ m ∧ p 6= q) = (n − 1) · (2−b)m

Let m = (c + 2) log n
b

for constant c > 0.

P(...) = ... ≈ n−c−1 −→
n→∞

0

It is probable that ai ,j = null for i > (c + 2) log n
b

.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 56 / 70

Appendix E�ciency

Correctness

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than O(n/|L|) steps.

Proof.

We only use the leaf set.

Let p0, p1, ..., pν be the nodes along the route.

∀i ∈ {0, ..., ν − 1} : pi+1 = Lpi
[±|L|/2]

|id(Lpi
[±|L|/2])− id(pi)| ≈ |ID|n ∗

|L|
2

|id(p0)− id(pν)| ≤ |ID|2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 57 / 70

Appendix E�ciency

Correctness

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than O(n/|L|) steps.

Proof.

We only use the leaf set.

Let p0, p1, ..., pν be the nodes along the route.

∀i ∈ {0, ..., ν − 1} : pi+1 = Lpi
[±|L|/2]

|id(Lpi
[±|L|/2])− id(pi)| ≈ |ID|n ∗

|L|
2

|id(p0)− id(pν)| ≤ |ID|2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 57 / 70

Appendix E�ciency

Correctness

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than O(n/|L|) steps.

Proof.

We only use the leaf set.

Let p0, p1, ..., pν be the nodes along the route.

∀i ∈ {0, ..., ν − 1} : pi+1 = Lpi
[±|L|/2]

|id(Lpi
[±|L|/2])− id(pi)| ≈ |ID|n ∗

|L|
2

|id(p0)− id(pν)| ≤ |ID|2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 57 / 70

Appendix E�ciency

Correctness

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than O(n/|L|) steps.

Proof.

We only use the leaf set.

Let p0, p1, ..., pν be the nodes along the route.

∀i ∈ {0, ..., ν − 1} : pi+1 = Lpi
[±|L|/2]

|id(Lpi
[±|L|/2])− id(pi)| ≈ |ID|n ∗

|L|
2

|id(p0)− id(pν)| ≤ |ID|2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 57 / 70

Appendix E�ciency

Correctness

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than O(n/|L|) steps.

Proof.

We only use the leaf set.

Let p0, p1, ..., pν be the nodes along the route.

∀i ∈ {0, ..., ν − 1} : pi+1 = Lpi
[±|L|/2]

|id(Lpi
[±|L|/2])− id(pi)| ≈ |ID|n ∗

|L|
2

|id(p0)− id(pν)| ≤ |ID|2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 57 / 70

Appendix E�ciency

Correctness

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than O(n/|L|) steps.

Proof.

We only use the leaf set.

Let p0, p1, ..., pν be the nodes along the route.

∀i ∈ {0, ..., ν − 1} : pi+1 = Lpi
[±|L|/2]

|id(Lpi
[±|L|/2])− id(pi)| ≈ |ID|n ∗

|L|
2

|id(p0)− id(pν)| ≤ |ID|2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 57 / 70

Appendix E�ciency

Correctness

(Assume correct routing tables and leaf sets)

Theorem

Routing takes no more than O(n/|L|) steps.

Proof.

We only use the leaf set.

Let p0, p1, ..., pν be the nodes along the route.

∀i ∈ {0, ..., ν − 1} : pi+1 = Lpi
[±|L|/2]

|id(Lpi
[±|L|/2])− id(pi)| ≈ |ID|n ∗

|L|
2

|id(p0)− id(pν)| ≤ |ID|2

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 57 / 70

Appendix E�ciency

Routing is fast.

Theorem

The excpected value is O(log2b n) = O(log n
b

) messages.

Proof.

We use the routing table.

Each time a pi+1 is found in the routing table
pfxl(id(pi+1), r) > pfxl(id(pi), r)

There are only approx. O(log n
b

) rows in each routing table.

Now we use the leaf set.

The probability that two (three) hops in L are needed is .02 (.0006).

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 58 / 70

Appendix E�ciency

Routing is fast.

Theorem

The excpected value is O(log2b n) = O(log n
b

) messages.

Proof.

We use the routing table.

Each time a pi+1 is found in the routing table
pfxl(id(pi+1), r) > pfxl(id(pi), r)

There are only approx. O(log n
b

) rows in each routing table.

Now we use the leaf set.

The probability that two (three) hops in L are needed is .02 (.0006).

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 58 / 70

Appendix E�ciency

Routing is fast.

Theorem

The excpected value is O(log2b n) = O(log n
b

) messages.

Proof.

We use the routing table.

Each time a pi+1 is found in the routing table
pfxl(id(pi+1), r) > pfxl(id(pi), r)

There are only approx. O(log n
b

) rows in each routing table.

Now we use the leaf set.

The probability that two (three) hops in L are needed is .02 (.0006).

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 58 / 70

Appendix E�ciency

Routing is fast.

Theorem

The excpected value is O(log2b n) = O(log n
b

) messages.

Proof.

We use the routing table.

Each time a pi+1 is found in the routing table
pfxl(id(pi+1), r) > pfxl(id(pi), r)

There are only approx. O(log n
b

) rows in each routing table.

Now we use the leaf set.

The probability that two (three) hops in L are needed is .02 (.0006).

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 58 / 70

Appendix E�ciency

Routing is fast.

Theorem

The excpected value is O(log2b n) = O(log n
b

) messages.

Proof.

We use the routing table.

Each time a pi+1 is found in the routing table
pfxl(id(pi+1), r) > pfxl(id(pi), r)

There are only approx. O(log n
b

) rows in each routing table.

Now we use the leaf set.

The probability that two (three) hops in L are needed is .02 (.0006).

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 58 / 70

Appendix E�ciency

Routing is fast.

Theorem

The excpected value is O(log2b n) = O(log n
b

) messages.

Proof.

We use the routing table.

Each time a pi+1 is found in the routing table
pfxl(id(pi+1), r) > pfxl(id(pi), r)

There are only approx. O(log n
b

) rows in each routing table.

Now we use the leaf set.

The probability that two (three) hops in L are needed is .02 (.0006).

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 58 / 70

Appendix Insertion

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 59 / 70

Appendix Insertion

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

Algorithm:

p contacts a peer p0. Assume that p is near to p0.

p sends a join-Message with recepient id(p).

Every peer that gets the message sends its R , L and M.

Let p0, p1, ..., pz be the path of the message.

Assume z ≥ m and pfxl(p, pi) ≥ i for i < m − 1
(Otherwise include nodes more than once.)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 60 / 70

Appendix Insertion

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

Algorithm:

p contacts a peer p0. Assume that p is near to p0.

p sends a join-Message with recepient id(p).

Every peer that gets the message sends its R , L and M.

Let p0, p1, ..., pz be the path of the message.

Assume z ≥ m and pfxl(p, pi) ≥ i for i < m − 1
(Otherwise include nodes more than once.)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 60 / 70

Appendix Insertion

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

Algorithm:

p contacts a peer p0. Assume that p is near to p0.

p sends a join-Message with recepient id(p).

Every peer that gets the message sends its R , L and M.

Let p0, p1, ..., pz be the path of the message.

Assume z ≥ m and pfxl(p, pi) ≥ i for i < m − 1
(Otherwise include nodes more than once.)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 60 / 70

Appendix Insertion

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

Algorithm:

p contacts a peer p0. Assume that p is near to p0.

p sends a join-Message with recepient id(p).

Every peer that gets the message sends its R , L and M.

Let p0, p1, ..., pz be the path of the message.

Assume z ≥ m and pfxl(p, pi) ≥ i for i < m − 1
(Otherwise include nodes more than once.)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 60 / 70

Appendix Insertion

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

Algorithm:

p contacts a peer p0. Assume that p is near to p0.

p sends a join-Message with recepient id(p).

Every peer that gets the message sends its R , L and M.

Let p0, p1, ..., pz be the path of the message.

Assume z ≥ m and pfxl(p, pi) ≥ i for i < m − 1
(Otherwise include nodes more than once.)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 60 / 70

Appendix Insertion

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

Algorithm:

p contacts a peer p0. Assume that p is near to p0.

p sends a join-Message with recepient id(p).

Every peer that gets the message sends its R , L and M.

Let p0, p1, ..., pz be the path of the message.

Assume z ≥ m and pfxl(p, pi) ≥ i for i < m − 1
(Otherwise include nodes more than once.)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 60 / 70

Appendix Insertion

Insertion of a peer

Let p be a new peer with tables R , L and M.

Try to choose values for the routing table so, that distances are
minimal.

Algorithm:

p contacts a peer p0. Assume that p is near to p0.

p sends a join-Message with recepient id(p).

Every peer that gets the message sends its R , L and M.

Let p0, p1, ..., pz be the path of the message.

Assume z ≥ m and pfxl(p, pi) ≥ i for i < m − 1
(Otherwise include nodes more than once.)

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 60 / 70

Appendix Insertion

Insertion of a peer (cont.)

Let M = M0.

|id(p)− id(pz)| is minimal.

Use Lz for L and insert pz at position 1 or −1.
Let R[0, ∗] = R0[0, ∗]; R[1, ∗] = R1[1, ∗]; ... ;

pfxl(p, pi) ≥ i ⇒ ∀q ∈ Ri [i , ∗].pfxl(q, p) ≥ i

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 61 / 70

Appendix Insertion

Insertion of a peer (cont.)

Let M = M0.

|id(p)− id(pz)| is minimal.

Use Lz for L and insert pz at position 1 or −1.
Let R[0, ∗] = R0[0, ∗]; R[1, ∗] = R1[1, ∗]; ... ;

pfxl(p, pi) ≥ i ⇒ ∀q ∈ Ri [i , ∗].pfxl(q, p) ≥ i

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 61 / 70

Appendix Insertion

Insertion of a peer (cont.)

Let M = M0.

|id(p)− id(pz)| is minimal.

Use Lz for L and insert pz at position 1 or −1.
Let R[0, ∗] = R0[0, ∗]; R[1, ∗] = R1[1, ∗]; ... ;

pfxl(p, pi) ≥ i ⇒ ∀q ∈ Ri [i , ∗].pfxl(q, p) ≥ i

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 61 / 70

Appendix Insertion

Insertion of a peer (cont.)

Let M = M0.

|id(p)− id(pz)| is minimal.

Use Lz for L and insert pz at position 1 or −1.
Let R[0, ∗] = R0[0, ∗]; R[1, ∗] = R1[1, ∗]; ... ;

pfxl(p, pi) ≥ i ⇒ ∀q ∈ Ri [i , ∗].pfxl(q, p) ≥ i

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 61 / 70

Appendix Insertion

Insertion of a peer (cont.)

Let M = M0.

|id(p)− id(pz)| is minimal.

Use Lz for L and insert pz at position 1 or −1.
Let R[0, ∗] = R0[0, ∗]; R[1, ∗] = R1[1, ∗]; ... ;

pfxl(p, pi) ≥ i ⇒ ∀q ∈ Ri [i , ∗].pfxl(q, p) ≥ i

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 61 / 70

Appendix Insertion

Insertion of a peer (cont.)

Let M = M0.

|id(p)− id(pz)| is minimal.

Use Lz for L and insert pz at position 1 or −1.
Let R[0, ∗] = R0[0, ∗]; R[1, ∗] = R1[1, ∗]; ... ;

pfxl(p, pi) ≥ i ⇒ ∀q ∈ Ri [i , ∗].pfxl(q, p) ≥ i

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 61 / 70

Appendix Insertion

Insertion of a peer (cont.)

Let M = M0.

|id(p)− id(pz)| is minimal.

Use Lz for L and insert pz at position 1 or −1.
Let R[0, ∗] = R0[0, ∗]; R[1, ∗] = R1[1, ∗]; ... ;

pfxl(p, pi) ≥ i ⇒ ∀q ∈ Ri [i , ∗].pfxl(q, p) ≥ i

Request Rq from all q ∈ M and look for better entries for R .

Notify every peer in M, L and R about our arrival.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 61 / 70

Appendix Insertion

Locality in Insertion

Fact

The algorithm for inserting peers generates good R[i , j].

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 62 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Insertion

Locality in Insertion

Proof.

(Outline)

Assume that the routing tables are optimized.

R[0, ∗] is taken from p0.

∀q ∈ R[0, ∗]. d(p0, q) small =⇒ d(p, q) small.

R[1, ∗] is taken from p1.

∀q ∈ R[1, ∗] : d(p1, q) is good, d(p, p1) is good.

The following is needed: q ∈ {s|p�x(s, p) ≥ 1}
Thus ∀q ∈ R[1, ∗] : d(p, q) is relatively small.

And so on for all R[i , ∗]

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 63 / 70

Appendix Repair

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 64 / 70

Appendix Repair

Repairing the Routing Table

How are missing entries in R �lled?

Algorithm:

A peer notices that it is missing an entry R[i , j].
It asks all other q ∈ R[i , ∗] for their entry Rq[i , j]
If this does not succeed it tries its next row R[i + 1, ∗], ...

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 65 / 70

Appendix Repair

Repairing the Routing Table

How are missing entries in R �lled?

Algorithm:

A peer notices that it is missing an entry R[i , j].
It asks all other q ∈ R[i , ∗] for their entry Rq[i , j]
If this does not succeed it tries its next row R[i + 1, ∗], ...

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 65 / 70

Appendix Repair

Repairing the Routing Table

How are missing entries in R �lled?

Algorithm:

A peer notices that it is missing an entry R[i , j].
It asks all other q ∈ R[i , ∗] for their entry Rq[i , j]
If this does not succeed it tries its next row R[i + 1, ∗], ...

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 65 / 70

Appendix Repair

Repairing the Routing Table

How are missing entries in R �lled?

Algorithm:

A peer notices that it is missing an entry R[i , j].
It asks all other q ∈ R[i , ∗] for their entry Rq[i , j]
If this does not succeed it tries its next row R[i + 1, ∗], ...

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 65 / 70

Appendix Malicious Nodes

Overview

1 Data Structures
Routing Table
Leaf Set
Neighbourhood Set

2 Operations
Routing
Insertion of peers
Locality
Locality in Routing

3 Stability
Leaf Set
Routing Table
Experimental Results

4 Conclusion and Outlook
FreePastry
PAST
Scribe and SplitStream
E�ciency
Insertion
Repair
Malicious Nodes

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 66 / 70

Appendix Malicious Nodes

Malicious Nodes

There may be faulty implemtations of pastry.

There may be nodes that try to interfer with the network.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 67 / 70

Appendix Malicious Nodes

Malicious Nodes

There may be faulty implemtations of pastry.

There may be nodes that try to interfer with the network.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 67 / 70

Appendix Malicious Nodes

Assumtions

Routing in pastry is deterministic.

Invariant: In routing through ...pi , pi+1, ... to ID r :

pfxl(id(pi+1), r) > pfxl(id(pi), r) or at least

|id(pi+1)− r | > |id(pi)− r |

Assumption: Most nodes in the network are working properly

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 68 / 70

Appendix Malicious Nodes

Assumtions

Routing in pastry is deterministic.

Invariant: In routing through ...pi , pi+1, ... to ID r :

pfxl(id(pi+1), r) > pfxl(id(pi), r) or at least

|id(pi+1)− r | > |id(pi)− r |

Assumption: Most nodes in the network are working properly

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 68 / 70

Appendix Malicious Nodes

Assumtions

Routing in pastry is deterministic.

Invariant: In routing through ...pi , pi+1, ... to ID r :

pfxl(id(pi+1), r) > pfxl(id(pi), r) or at least

|id(pi+1)− r | > |id(pi)− r |

Assumption: Most nodes in the network are working properly

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 68 / 70

Appendix Malicious Nodes

Assumtions

Routing in pastry is deterministic.

Invariant: In routing through ...pi , pi+1, ... to ID r :

pfxl(id(pi+1), r) > pfxl(id(pi), r) or at least

|id(pi+1)− r | > |id(pi)− r |

Assumption: Most nodes in the network are working properly

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 68 / 70

Appendix Malicious Nodes

Assumtions

Routing in pastry is deterministic.

Invariant: In routing through ...pi , pi+1, ... to ID r :

pfxl(id(pi+1), r) > pfxl(id(pi), r) or at least

|id(pi+1)− r | > |id(pi)− r |

Assumption: Most nodes in the network are working properly

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 68 / 70

Appendix Malicious Nodes

Methods against Malicious Nodes

The algorithm discussed earlier is randomized.

The invariant is maintaied.

A strong bias towards using R is applied.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 69 / 70

Appendix Malicious Nodes

Methods against Malicious Nodes

The algorithm discussed earlier is randomized.

The invariant is maintaied.

A strong bias towards using R is applied.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 69 / 70

Appendix Malicious Nodes

Methods against Malicious Nodes

The algorithm discussed earlier is randomized.

The invariant is maintaied.

A strong bias towards using R is applied.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 69 / 70

Appendix Malicious Nodes

Methods against Malicious Nodes

The algorithm discussed earlier is randomized.

The invariant is maintaied.

A strong bias towards using R is applied.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 69 / 70

Appendix Malicious Nodes

Methods against Malicious Nodes

The algorithm discussed earlier is randomized.

The invariant is maintaied.

A strong bias towards using R is applied.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 69 / 70

Appendix Malicious Nodes

Methods against Malicious Nodes

The algorithm discussed earlier is randomized.

The invariant is maintaied.

A strong bias towards using R is applied.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 69 / 70

Appendix Malicious Nodes

Methods against Malicious Nodes

The algorithm discussed earlier is randomized.

The invariant is maintaied.

A strong bias towards using R is applied.

No single node stores all copies of a piece of data.

Nodes send replies when they store data etc.

Messages are signed.

id(p) is the checksum of p's public key.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 69 / 70

Appendix Malicious Nodes

Robustness

Remove 10% of all peers from the network.

Then repair:

Randomly choose two peers p and q and an ID d .

Send a message from p and from q to d .

Repeat 100.000 times.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 70 / 70

Appendix Malicious Nodes

Robustness

Remove 10% of all peers from the network.

Then repair:

Randomly choose two peers p and q and an ID d .

Send a message from p and from q to d .

Repeat 100.000 times.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 70 / 70

Appendix Malicious Nodes

Robustness

Remove 10% of all peers from the network.

Then repair:

Randomly choose two peers p and q and an ID d .

Send a message from p and from q to d .

Repeat 100.000 times.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 70 / 70

Appendix Malicious Nodes

Robustness

Remove 10% of all peers from the network.

Then repair:

Randomly choose two peers p and q and an ID d .

Send a message from p and from q to d .

Repeat 100.000 times.

R. Himmelmann (Ferienakademie '08) Pastry October 12, 2008 70 / 70

	Data Structures
	
	Routing Table
	Leaf Set
	Neighbourhood Set

	Operations
	Routing
	Insertion of peers
	Locality
	Locality in Routing

	Stability
	Leaf Set
	Routing Table
	
	Experimental Results

	Conclusion and Outlook
	FreePastry
	
	PAST
	Scribe and SplitStream

	Appendix
	Efficiency
	Insertion
	Repair
	Malicious Nodes

