1. Fundamentals of Optimization Problems |
Ernst W. Mayr
Slides |
- G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi:
Complexity and Approximation - Combinatorial Optimization Problems and Their Approximability Problems, pp. 22-38 pdf, 87-152 pdf
Springer-Verlag: Berlin-Heidelberg-New York, 1999
- J. Hromkovič:
Algorithmics for Hard Problems - Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, pp. 213-238
Springer-Verlag: Berlin-Heidelberg-New York, 2001
pdf
- R. Wanka:
Approximationsalgorithmen - Eine Einführung, pp. 81-85
B.G. Teubner Verlag: Wiesbaden, 2006
pdf
|
2. The Knapsack Problem |
Florian Pawlik
Slides,
Paper
|
- J. Hromkovič:
Algorithmics for Hard Problems - Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, pp. 238-248
Springer-Verlag: Berlin-Heidelberg-New York, 2001
pdf
|
3. Dynamic Programming for Counting the Number of Knapsack Solutions |
Julius Kobold
Slides, Paper |
- M. Dyer.
Approximate counting by dynamic programming.
in: Proc. 35th ACM Symp. on Theory of Computing (STOC), pp. 693-699, 2003.
10.1145/780542.780643
pdf
- P. Gopalan, A. Klivans, R. Meka, D. Stefankovic, S. Vempala,
E. Vigoda.
An FPTAS for #Knapsack and Related Counting Problems.
in: Proc. 52nd IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 817-826, 2011
doi:10.1109/FOCS.2011.32
pdf
|
4. Blind Search |
Sophia Koch
Slides, Paper |
- M. Dietzfelbinger, J. E. Rowe, I. Wegener, Ph. Woelfel:
Tight Bounds for Blind Search on the Integers and the Reals.
in: Combinatorics, Probability and Computing 19 (2010) 711-728.
doi:10.1017/S0963548309990599
pdf
|
5. Particle Swarm Optimization (PSO) and Parameter Selection |
Christoph Strößner
Slides,
Paper
| -
M. Jiang, Y. P. Luo, S. Y. Yang:
Particle swarm optimization - stochastic trajectory
analysis and parameter selection.
In Felix T. S. Chan and Manoj Kumar Tiwari, editors,
Swarm Intelligence - Focus on Ant and Particle Swarm Optimization, chapter 17, pages 179-198. I-TECH Education and Publishing, Vienna, 2007.
doi:10.5772/5104
pdf
For background information, also refer to:
Sabine Helwig.
Particle Swarms for Constrained
Optimization.
Ph.D. Thesis, University of Erlangen-Nuremberg, 2010.
(full text is available here)
|
6. Particle Swarm Optimization for Discrete Problems (PSO) |
Yushan Liu
Slides, Paper |
- M. Clerc:
Discrete Particle Swarm Optimization, illustrated by
the Traveling Salesman Problem
2000.
Paper and source files
- M. Hoffmann, M. Mühlenthaler, S. Helwig, R. Wanka:
Discrete Particle Swarm Optimization for TSP: Theoretical Results and Experimental Evaluations.
in: Proc. International Conference on Adaptive and Intelligent Systems (ICAIS), pp. 416-427, 2011.
doi:10.1007/978-3-642-23857-4_40
pdf
|
7. Evolutionary Algorithms for Sorting and Shortest Path Computation (EA) |
Dominik Schmid
Slides, Paper |
- J. Scharnow, K. Tinnefeld, I. Wegener:
The Analysis of Evolutionary Algorithms on Sorting and Shortest Paths Problems.
Journal of Mathematical Modelling and Algorithms
3 (2004) 349-366.
doi:10.1023/B:JMMA.0000049379.14872.f5
pdf
|
8. Evolutionary Algorithms for Minimum Spanning Trees (EA) |
Martin Bullinger
Slides,
Paper |
- F. Neumann, I. Wegener:
Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem.
Theoretical Computer Science
378 (2007) 32-40.
doi:10.1016/j.tcs.2006.11.002
pdf
|
9. A Slime Mold Computes Shortest Paths |
Lukas Eisert
Slides, Paper |
- L. Becchetti, V. Bonifaci, M. Dirnberger, A. Karrenbauer, K. Mehlhorn.
Physarum Can Compute Shortest Paths: Convergence Proofs and Complexity Bounds.
in: Proc. 40th Int'l Colloquium on Automata, Languages, and Programming (ICALP), Part II, pp. 472-483, 2013.
doi:10.1007/978-3-642-39212-2_42
pdf
|
10. The Satisfiability Problem: Random Walk and Derandomization |
Timo Eckstein
Slides, Paper |
- U. Schöning.
A probabilistic algorithm for k-SAT based on limited
local search and restart.
Algorithmica 32 (2002) 615-623.
Paper beim Autor
pdf
- R. A. Moser, D. Scheder.
A Full Derandomization of Schöning's k-SAT Algorithm.
in: Proc. 43rd ACM Symp. on Theory of Computing (STOC), pp. 245-251, 2011.
doi:10.1145/1993636.1993670
pdf
|
11. Constructive Proof of the Lovasz Local Lemma |
Katharina Angermeier
Slides, Paper |
- H. Gebauer, R. A. Moser, D. Scheder, E. Welzl.
The Lovasz Local Lemma and Satisfiability.
Efficient Algorithms - Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pp. 30-54, 2009.
doi:10.1007/978-3-642-03456-5_3
pdf
|
12. Counting the Number of Satisfying Assignments |
Stefan Ploner
Slides, Paper |
- M. Thurley.
An approximation algorithm for #k-SAT
in: Proc. 29th Int. Symp. on Theoretical Aspects of Computer Science (STACS), pp. 78-87.
doi:10.4230/LIPIcs.STACS.2012.78
pdf
- M. Schmitt, R. Wanka.
Exploiting Independent Subformulas: A Faster Approximation Scheme for #k-SAT
Information Processing Letters (2013), pp. 337-344.
doi:10.1016/j.ipl.2013.02.013
pdf
|
13. Randomized Optimization Algorithms |
Manuel Schmitt
Slides |
- D.S. Hochbaum:
Approximation Algorithms for NP-hard Problems, pp. 447-459
PWS Publishing Company: Boston, 1997
pdf
- G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi:
Complexity and Approximation - Combinatorial Optimization Problems and Their Approximability Problems, pp. 153-174
Springer-Verlag: Berlin-Heidelberg-New York, 1999
pdf
|
14. Approaches based on the Primal-Dual Paradigm |
Arya Moorthy
|
- D.S. Hochbaum:
Approximation Algorithms for NP-hard Problems, pp. 144-165
PWS Publishing Company: Boston, 1997
pdf
|