11

RANDOMIZED APPROXIMATION
ALGORITHMS IN COMBINATORIAL
OPTIMIZATION

Rajeev Motwani Joseph (Seffi) Naor ~ Prabhakar Raghavan

Randomization has proved to be a powerful technique in
finding approximate solutions to difficult problems in com-
binatorial optimization. In this chapter, we restrict ourselves
to approximation algorithms that are efficient and provably
good. The focus of this chapter is the use of randomized
rounding. In this approach, one solves a relaxation of a
problem in combinatorial optimization, and then uses ran-
domization to return from the relaxation to the original
optimization problem. Two kinds of relaxations of difficult
combinatorial problems are considered: linear program-
ming relaxations and semidefinite programming relaxations.
A number of concrete applications are given.

— —
INTRODUCTION

-

The last few years have witnessed the proliferation of randomization in approximation
algorithms for difficult combinatorial problems. Probabilistic search techniques such as
simulated annealing [LA87] (see also Section 12.6) have e'njoycd considerable success
in solving large instances of a variety of combinatorial problems. In this chapter we study
approximation algorithms that are efficient, in that their running times are (provably)
bounded by a polynomial in the size of the input; and provably good, in that the solution
produced by the algorithm is guaranteed to be close to the optimal solution to within

447

448 CHAPTER 11 RANDOMIZED APPROXIMATION ALGORITHMS

a specified, provable tolerance. Further, we insist that these guarantees hold for every
instance of the problem being solved: the only randomness in the performance guarantee
stems from the randomization in the algorithm itself, and not due to any probabilistic
assumptions on the instance.

Among such provably good and efficient randomized algorithms there have been
two major areas of success. The first is that of approximation algorithms for combina-
torial problems such as graph coloring, multicommodity flow, and finding large cuts in
a graph. Additional algorithms for the multicommodity problem and cuts are described
in Chapter 5. This will be the focus of this chapter. The second area, which is covered in
the chapter on approximate counting in this book (Chapter 12), is that of approximately
counting the number of distinct solutions to an instance of a combinatorial problem.

All the algorithms we will discuss follow a common paradigm. They first formulate
the problem as an integer program. Next, some constraints in this integer program are
relaxed in order that the relaxation be efficiently solvable. Finally, randomization is used
to restore the relaxed constraints.

Throughout this chapter, E[X] will denote the expectation of a random variable
X. P[A] will denote the probability of an event A, and A will denote the complement
of event A. We refer the reader to the book by Motwani and Raghavan [MR95] for an
introduction to the area of randomized algorithms.

We will consider optimization problems where we seek to either minimize or maxi-
mize the value of an objective function V(7), for a given input instance /. Let V4 (/) be
the value of the objective function for the solution delivered by an algorithm A for an
input instance /, and let V. (/) denote the optimal value of the objective function for an
instance /. For minimization problems, the performance ratio of an algorithm A is the
supremum over all / of the ratio V4 (I)/ V..(I); similarly, for maximization problems, the
performance ratio of an algorithm A is the infimum over all I of the ratio V,(1)/ V.(I).
We say that an algorithm A is an «-approximation algorithm if it has performance ratio
at most & for minimization problems, and performance ratio at least & for maximiza-
tion problems. In the case of randomized approximation algorithms, we replace V4 (/)
by E[V,(I}]in the definition of performance ratio, where the expectation is taken over
the random choices made by the algorithm. In general, the term approximation algorithm
will denote a polynomial-time algorithm.

In Section 11.2 we study linear programming relaxations using an integer multi-
commodity flow problem, covering and packing problems, multicut problems, and the
maximum satisfiability problem as illustrations. In Section 11.3 we study the application
of semidefinite programming relaxations to maximum cuts in a graph and to graph col-
oring. We give a number of ways in which these results can be extended, and the results
of some implementations, in Section 11.4.

 —
ROUNDING LINEAR PROGRAMS

NN

In this section we discuss approximations obtained using the linear programming re-
laxation of the integer program formulation of an optimization problem. A convenient

11.2 ROUNDING LINEAR PROGRAMS 449

abstraction for beginning this study is the lattice-approximation problem. After study-
ing this problem in the abstract, we will point out its connections to linear programming
relaxations and to approximation algorithms in a number of concrete settings. In the lat-
tice approximation problem we are given an n x n matrix A, all of whose entries are 0
or |. In addition, we are given a column vector p with n entries, all of which are in the
interval [0, 1]. We wish to find a column vector q with n entries, all of which are from
the set {0, 1}, so as to minimize || A - (p —q) || . (Please refer to problem [LAP] in the
Glossary). We think of the vector q as an “integer approximation” to the given real vector
p, in the sense that A - q is close to A - p in every component. Below, we apply the tech-
nique of randomized rounding to this problem. Following this, we give two instructive
applications of the technique in detail, and finally, mention a number of other interesting
applications.

One solution to this problem is thresholding: forall i, if p; > 0.5 set g; to 1, else set
it to 0. Thresholding may yield a vector q for which || A - (p—q) ||~ may be as large as
order of || A -q || Consider the following randomized rounding scheme for determining
the components of q: for each i, independently set g; to 1 with probability p;, and to 0
otherwise. Then, letting A; denote the ith row of A, we have E[A,;-q]= E[A, -p] by
linearity of expectation (this does not require the entries of A to be 0-1). We now argue
that for all i, A; - q is likely to remain close to A; - p after randomized rounding. To this
end we invoke the following bounds (commonly known as Chernoff bounds [MR95])
on the sum of independent 0-1 (or, Bernoulli) random variables,

LEMMA 11.1 Let X,..., X, be a sequence of independent Bernoulli trials such that
P[X;=1]=p;and P[X; =0]=1— p;. Let S be any subset of the integers 1,..., n,
and let s = |§|. Define Y =3, ¢ X, so that E[Y]=Y",_; pi. Then,

P[lY— E[Y]| > \/4slns] < lz
5

The following alternative version of the Chernoff bound [MR95] will also be useful in
the sequel:

LEMMA 11.2 Let X,,..., X, be a sequence of independent Bernoulli trials such that
P[X;=1]= p; and P[X;=0]= 1~ p;. Define Y =} X;, sothat E[Y] =Y p;.
Then, for g € [0, 1],

P[|Y — E[Y]| > B E[Y]] < 2exp(—0.388% E[Y]).

By Lemma 11.1, we know that

P[|A,--q—A,-pI>«.m:|cL

n?’
Now,

P[”A(P‘q} loc> M]= P[U:'I=I|'Af'q_A.-'pi < M]
EiP[Mf'q—ArPlﬁ-\/M]
i=l z

I
< —.
n

450 CHAPTER 11 RANDOMIZED APPROXIMATION ALGORITHMS

We thus have:

THEOREM 11.1 For every instance {A, p} of the lattice approximation problem, ran-
domized rounding finds a solution q such that [| A- (p—q) [|<< v4nInn, with proba-
bility at least 1 — L.

Using slightly stronger versions of the Chernoff bound than Lemma 11.1 [Rag88, RT87.
$S895), it is possible to get slightly sharper results than that in Theorem 11.1. However,
in the worst case, we know of no efficient algorithm that can find a solution q such that
[|A-(p—q) |l is o(~/4nlnn) on every instance.

The set-balancing problem [Spe85, Spe87] is a special case of the lattice-approxi-
mation problem, in which every entry of p is 0.5. (Please refer to problem [SB] in the
Glossary). This problem has a rich history in combinatorics, and additionally has a direct
application to a problem in integrated circuit design [DR89]. Gao and Kaufmann [GK87]
show that a closely related problem arises in the solution of channel-routing problems
in VLSI. Theorem 11.1 implies a solution to the set-balancing problem; directions for
improving this solution will be suggested later in Section 11.4.3.

What does the lattice approximation problem have to do with linear programs and
approximation algorithms? To answer this question, we define the general framework
in which randomized rounding is used. Given a combinatorial optimization problem,
we first formulate it as a zero-one integer linear program, if possible. We do not know
of good ways of solving large zero-one linear programs in general, so we first relax
the integrality constraints, and solve the resulting linear program. The linear program
can be solved by any one of several algorithms with proven theoretical and/or practical
efficiency. Let x denote the vector of variables in the integer linear program formulation,
and let X denote the vector of solutions resulting from the linear program. We now apply
randomized rounding to restore integrality to the variables: for each i, independently set
x; to | with probability X;, and to 0 otherwise. Let X; denote the resulting 0-1 vector
of solutions to the integer program. Let a denote a row of the coefficient matrix of the
linear program formulation. By linearity of expectation, E[a-X]=a -X. This suggests
that the expected value of the left-hand side of any constraint in the linear program will
satisfy the bound prescribed by the right-hand side. We note that in certain instances
(e.g.. maximum satisfiability), better results can be obtained by rounding a variable x
to 1 with probability f(X), where f is a function that maps X to a value in [0, 1].

We next illustrate the use of this technique in three settings — integer multicom-
modity flows, covering problems, and maximum satisfiability. These applications have
been chosen because they are especially illustrative; a number of others are listed in
Section 11.2.4.

11.2.1 THE INTEGER MULTICOMMODITY FLOW PROBLEM

We are given a directed network (V, E) with a set V of nodes and a set E of arcs. Let m
denote | E| and n denote | V|. Associated with each each arc e € E is a capacity, denoted
¢(e). In an instance of the multicommodity flow problem, (see also problem [Multicom]
in the Glossary), we are given a set of k triplets (s;.#,d;). In each triplet, s; and ¢; are

11.2 ROUNDING LINEAR PROGRAMS 451

nodes in the network, while d; is a positive integer demand. A solution is a set of flows,
denoted f;(e), where we think of f;(e) as the amount of commodity i that flows through
arc e. The flows are subject to the following restrictions:

I. All the flows f;(e) should be integral.

II. The incoming and outgoing flows of each commodity at each node should obey
conservation constraints.

III. Capacity constraints: forall e, ", fi(e) < c(e).

IV. Demand constraints: we must ship d; units of commodity i from s; to #;. In our
notation, we write) ___, fi(e) > d;, where A; is the set of arcs leaving s;.

As stated above, it is possible for the problem to be infeasible — the capacities available
may not suffice to sustain the demands. Consider the following optimization version
of the problem, for which we seek approximation algorithms. Given the instance, we
seek to maximize the total flow of all commodities, which is clearly Y, 3", fi(e).
Thus, some commodities may not have their demands satisfied in the process of this
maximization.

We now proceed to discuss the case d; = 1 for all i; the same technique applies to
the general case d; > 1 with minor modifications. Clearly this maximization problem can
be written as a 0-1 linear program. By relaxing the integrality constraint f;(e) € {0, 1}
for all i, e, we obtain the relaxation linear program in which f;(e) € [0, 1] for all i, e.
This linear program can be solved efficiently; in fact, one can use more efficient and
direct combinatorial algorithms [KST90, PST91]; see also Chapter 5 in this book. We
solve instead a slightly modified linear program, one in which we set the capacity of
every arc e to (1 — €)c(e) for a positive constant € < ‘/_— We solve this modlﬁed
linear program to obtain the fractional solutions f(e) together with the total flow F =
2i 2 eca, Ji(e). Let F denote the value of the total flow in the optimal integral solution.
Then, F > F(1 —€), and the fractional total flow in any arc is at most (1 — €) times
its capacity. Randomized rounding is now invoked as follows: for each commodity i,
we independently perform a random walk from s; to ¢ that is guided by the fractional
solutions f,(e} The random walk for commodity i is as follows: we begin at s; by
flipping a coin with probability of heads equal to 3, . fi(e) < 1. If the coin comes
up heads, we proceed with the random walk as described below; if not, we assi gn zero
flow to commodity i. We now describe the general step of the random walk: suppose
that we are at a node v. Let A(v) denote the set of arcs leaving v. The random walk

then chooses to proceed along arc a € A(v) with probability E—&’;— The walk for
cEALLY i

commodity i terminates on reaching ¢;, which it must in at most n — | steps because the
set of arcs with non-zero flow may be assumed (without loss of generality) to form a
directed acyclic graph. The following lemma is easy to prove by induction:

LEMMA 11.3 The probability that the random walk for commodity i traverses any arc
e is equal to f,(e)

We are now ready for the main result.

452 CHAPTER 11 RANDOMIZED APPROXIMATION ALGORITHMS

THEOREM 11.2 Suppose that we have an instance of multicommodity flow in which
every capacity c(e) 15 at least 5.21n4m. Let € be a positive constant less than ‘/5 L Then,
with probablhry] — L, the above algonthm yields a integer solution of total ﬁow at least
F(1 —¢)? with probab:lny atleast 1 — + ——2exp(—0. 38¢2F), where F is the total flow
in the optimal integer solution.

Proof. The algorithm always produces an integer solution, so it can only fail to meet
the guarantees of the theorem because of the following types of failure:

I. The rounded flow violates the capacity constraint on some arc.
II. The rounded flow is of value less than F (1 —¢€)2.

We proceed to bound the probability of the first mode of failure by ;f; and the second by
2exp(—0.38¢%F). Adding together these probabilities yields the theorem.

The crucial observation is that the event “the random walk for commodity i traverses
arc ¢” is a Bernoulli trial, for any fixed arc e. Likewise, the event “commodity i has non-
zero flow in the solution™ is also a Bernoylli trial. Then, after randomized rounding the
flow in any arc is the sum of independent Bernoulli trials. Likewise, the total flow is a
random variable that is the sum of independent Bernoulli trials. We have already ob-
served that the expectation of the total flow after rounding is at least F (1 —€). Applying
Lemma 11.2 with B = € now yields the probability bound for the second mode of failure.
We turn now to the flow through a fixed arc of the network, following randomized round-
ing. Once again, Lemma 11.2 yields that the probability that the capacity constraint of
a fixed arc is violated is at most %r we omit the detailed but routine calculations. Sum-
ming this probability over all m arcs, we have the desired bound. |

Note that the failure probability of the algorithm can be diminished by independent
repetitions. In most applications, it is the computation of the fractional solutions f;(e)
that is computationally intensive. Randomized rounding is itself quite fast, and can be
repeated many times.

11.2.2 COVERING AND PACKING PROBLEMS

Covering and packing integer programs are defined as follows. Let Z, denote the non-
negative integers. Let A be an m x n matrix over Z,, let b be a vector over Z', and let x
and w be vectors over Z’| . The covering problem is to minimize w’ . x subject to AX > b.
The packing problem is to maximize w’ - x subject to Ax < b. (Please refer to problems
[PA] and [CO] in the Glossary). In a linear programming setting, covering and packing
are dual problems. Randomized rounding is a very useful technique for approximating
both covering and packing problems. We will present this technique in the context of
an important special case of covering problems, the ser cover problem. Please refer to
Chapter 3 for an extensive discussion of this problem. In Section 11.2.2.1 we present an
application of set cover to the undirected multicut problem.

Let V = {vy,..., v,} be a set of elements, and let S = {S),..., S») be a family
of subsets defined over V. There are two common ways of formulating the set cover
problem, and the reader can easily verify that they are equivalent. (See also the Glossary,

11.2 ROUNDING LINEAR PROGRAMS 453

problem [SC]). In the first formulation, a non-negative weight function w is attached to
V. The goal is to find a minimum weight set of elements V' C V that intersects all subsets
S € S. The weightof V' is defined to be the sum of the weights of the elements belonging
to V', In the second formulation, a non-negative weight function w is attached to S, and
the goal is to find a minimum weight family of subsets &' C S, such that their union
is equal to V. We will henceforth use the first formulation (which is also known as the
hitting set) of the problem.

We first write the set cover problem as an integer program. For | <i < n, let x;
denote the indicator variable for element v;.

n
Minimize Z w; - X;
i=l
subject to Z.l‘,— >1 VS§;es.
i L'.ES,

x; € {0, 1} | <i<n. (11.1)

We relax this integer program and allow each variable x; to assume values in the interval
[0, 1]. Let X; be the value assigned to x; in an optimal fractional solution of the relaxed
program. We now apply randomized rounding and set each variable x; to 1 with prob-
ability E Clearly, the expected weight of the elements chosen to the cover is equal to
D i Wiki.

What is the probal:u]lly thata subset S; is covered? Suppose that S; contains elements
Ui, ..., v recall that ZJ 1 X; = 1. The probability that S; is covered is:

k R I\ |
1 E{l) >1 (1 k) 2 Loy (11.2)
That is, the probability that subset S; is covered is at least a constant. To increase the
probability of covering the family of subsets &, randomized rounding can be repeatedly
applied to the set of variables that were not set to 1. For example, by repeating the ran-
domized rounding procedure r = O(log m) times, we can guarantee that the probability
that a subset §; is not covered is at most 5-. Thus, the probability that S is not covered
after ¢ rcpe(mom is at most ~ . The cxpec.ted weight of the cover after ¢ repetitions is
at most 1 - Z < Wik et nmcs the weight of an optimal fractional cover. In fact, re-
peating the randomized rounding procedure ¢ times is the same as scaling the original
probabilities and rounding each variable x; as follows:

Plx;=0]1=(1-%)'

We thus have:

THEOREM 11.3 For every instance {V,S} of the set cover problem, randomized
rounding finds an O (logm)-approximate cover, with probability at least %

The result obtained in Theorem 11.3 is not the best possible. It is well known that the
approximation factor obtained by the greedy algorithm can be at most | +In A, (please
refer to Theorem 3.1 in Chapter 3), where A denotes the maximum degreée of an element
in V, i.e., the maximum number of subsets in S that can be covered by a single element

454 CHAPTER 11 RANDOMIZED APPROXIMATION ALGORITHMS

in V. We will now show that the bound obtained in Theorem 11.3 can be improved. We
follow the work of Bertsimas and Vohra [BV94] and Srinivasan [Sri95, Sri96].

Let A; denote the event that subset S; is not covered. We claim that events A; and
A; are positively correlated. To verify this, observe that

Plaina)= [] Pe=0 [] Plxe=0 [] Plx=0l
teSi=s, tes; =5 tes,ns,
> P[A;]- P[A}],
implying also that P[A;NA;] > P[A]- P[A;]. These inequalities are actually im-

plied by the FKG Inequality [AS92], which also implies the more general inequality for
any subset J of indices:

P[ﬂAJ—] =[] Plai]

jed jed
Suppose that randomized rounding is invoked with some scaling parameter 1 whose
value will be determined later. We are interested in evaluating the expected weight of

a solution produced by randomized rounding, given that all subsets are satisfied. Let
F =N, A;; then,

E[iw,-xdF:l = i:w,w Plx; = 1|F]
i=1 i=1

:gw;-ﬂ%}%”- Plx; =1]. (11.3)
For each element v;, let N (i) denote the indices of the subsets in which v; is contained,
and let d; denote the degree of v;, i.e., d; = [N (1)|. Then,

PlFlx=1] _ P[jevod] |
P[F] P[ﬂj’z,ﬁj] = P[NjennAj]’

where the latter inequality follows from the positive correlation of the events {A;}. We

then obtain the following inequality from (11.2) and from the positive correlation of the
events {A;}.

P[njeﬁl”f’:j] > l_[P[ATJ] > (1 —E_r)d‘.
jeN()

Recall that A = max”_, d;. Substituting back in (11.3), we obtain:

=l
E[Zw;w] <Y wid—e)4-(1-0-5)"
i=l i=1
<(I—e™)™) wi(l=(1-1%))
i=l1

=:(1—e—’)-"~‘zw,-f,-.
i=|

11.2 ROUNDING LINEAR PROGRAMS 455

Choosing 1 = O(log A) we get

E[iw;x;lf‘:l =0 (!ogA-iw;}‘}) .
i= i=1

This proof shows that with positive probability, randomized rounding can yield
an O(log A) approximation factor to the set cover problem. However, the probability
of success can still be exponentially small. Thus, from the algorithmic point of view,
achieving an O(log A) approximation factor with a randomized algorithm still remains
open. Stronger results for covering and packing problems that use the positive correla-
tion of the events {A;}!, were shown by Srinivasan [Sri95, Sri96], who also showed
how to de-randomize his existential proof by constructing appropriate pessimistic esti-
mators. He obtains the following bound for covering problems:

n(22) [in(22)
14+ O | max B B 3

where B is defined to be the minimum entry in the vector b and y* = Y""_, w;X;. This

improves on the bound
Inm [Inm
1 — =l =tk
+0 (max B B])

which is obtained from the (standard) application of randomized rounding to covering
problems, e.g., Theorem 11.3 in the case of set cover.

For the unweighted set cover problem, Srinivasan [Sri95] (see also [Sri96]) obtains
the following approximation bound:

In (vﬁ) +0 (ln[n (vﬁ)) +0(1),

which is at least as good as O(log A).

11.2.2.1 The undirected multicut problem

The undirected multicut problem is defined as follows. Let G = (V, E) be an undirected
graph,c: E—- Rt a capacity function, and let (s;,;), | <i <k, be k source-sink pairs.
A multicut is a set of edges that separates each source from its corresponding sink, i.e,
the removal of a multicut disconnects the graph into connected components such that
no source-sink pair is contained in the same connected component. Finding a minimum
capacity multicut is an NP-complete problem. Garg, Vazirani, and Yannakakis [GVY93]
gave a polynomial-time algorithm that approximates the minimum capacity multicut
(in an undirected graph) to within a factor of O(logk). This algorithm is described in
detail in Section 5.2.2. We show a set cover formulation of the multicut problem that
yields an O(logk) approximation factor via randomized rounding. We follow the work
of Bertsimas and Vohra [BV94].

We first note that the minimum capacity multicut problem can be formulated as a set
cover problem in a natural way. Let the elements in the set cover formulation correspond
to the edges in the graph and let each source-sink path define a subset. We are looking

456 CHAPTER 11 RANDOMIZED APPROXIMATION ALGORITHMS

for a minimum weight set of edges that intersects each source-sink path. However, the
approximation factor obtained from this set cover formulation is quite weak, and can
be as bad as §2(|V|). We now define a different set cover formulation of the multicut
problem.

Let F be the collection of all subsets of V with the property that for any S € F, at
most one of 5; and #; belong to S, for all 1 <i < k. We denote by §(S) the set of edges
for which exactly one endpoint is in S. Let ¢(A) denote the sum of the capacities of the
edges in a set A. Let a;s (b;s) be the indicator variable of the eventa; € S (1; € S). Let
x(S) = | mean that subset § is picked, x(§) = 0 otherwise. We are now ready to define
the following integer program:

el Bk
Minimize EZC(S{S)}'X(S}

SeF
subject to Za,-g‘x{S) >1 Vs, | <i<k,
SeF
Y bisx(H=1 Vi, 1<i<k,
SeF
x($)e{0,1}, VSeF. (11.4)

In words, the goal here is to cover all sources and sinks in the graph by subsets belonging
to F. Given any feasible multicut C, it is not hard to see that the connected components
generated by removing the edges of C induce a feasible solution to the integer program.
Conversely, from any feasible solution to the integer program, a feasible multicut can be
computed.

Bertsimas and Vohra [BV94] show that a linear relaxation of this integer program,
where each variable x(S) is allowed to assume values in the range [0, 1], can be com-
puted in polynomial time, albeit the number of variables is exponential. This follows by
observing that there exists a relaxed optimal solution in which the number of variables
that have non-zero variables is bounded by a polynomial. Given an optimal fractional so-
lution, we can now apply the set cover randomized rounding procedure to this solution,
and obtain a feasible multicut from it. The approximation factor obtained is O (logk),
since the number of elements that need to be covered is 2k. We note that a greedy algo-
rithm that finds an approximate multicut, and uses the above set cover formulation of the
multicut problem, was given by Cheriyan and Yu [CY95].

11.2.3 THE MAXIMUM SATISFIABILITY PROBLEM

The satisfiability problem (SAT) is defined as follows: given a set of clauses in conjunc-
tive normal form over a collection of boolean variables, we wish to decide whether there
is an assignment of the variables that satisfies all the clauses. In the MAX SAT problem,
we are given an instance of satisfiability and we seek an assignment that maximizes the
number of satisfied clauses. Since SAT is known to be NP-hard, it immediately follows
that MAX SAT is also NP-hard. Given an instance I, let M, (1) be the maximum number
of clauses that can be satisfied, and let M 4(I) be the number of clauses satisfied by an
algorithm A. Recall that the performance ratio of algorithm A is the infimum (over all

instances /) of ﬂ"f:: and that for a randomized algorithm A, the quantity M4 (1) may

11.2 ROUNDING LINEAR PROGRAMS 457

be a random variable, in which case we replace M4(1) by E[M4(I)] in the definition
of the performance ratio. Thus, our definition requires us to satisfy a number of clauses
close to the best possible for the instance at hand.

We now give a simple randomized algorithm that achieves a performance ratio of %
We note that the techniques described here can easily be generalized to yield the same
performance ratio for the weighted MAX SAT problem, where a non-negative weight is
attached to each clause, and the goal is to find an assignment that maximizes the weight
of the satisfied clauses.

Consider setting each variable in the instance independently to 1 with probability 1.
Clearly, a clause containing k literals is not satisfied by this process with probability 5r;
thus, such a random assignment would work well for instances in which every clause
contains many literals: if every clause were to contain k or more literals, we immediately
have an a-approximation algorithm for which @ > 1 — 2%, This idea is implicit in
early work of Johnson [Joh74]. It follows that we have a randomized %-approximation
algorithm for instances of MAX SAT in which every clause has at least two literals. It
appears that the bottleneck for achieving a performance ratio of % stems from clauses
consisting of a single literal. We now give a different algorithm that performs especially
well when there are many clauses consisting of single literals. This algorithm is due to
Goemans and Williamson [GW94a].! We then argue that on any instance, one of these
two algorithms will yield a (randomized) %-appmximation‘ Thus, given an instance, we
run both algorithms and take the better of the two solutions. In Section 11.3 we will
describe a general technique due to Goemans and Williamson [GW94b] that achieves
an improved approximation ratio.

The idea again is to formulate the problem as an integer linear program, solve the
linear programming relaxation, and then to round using the randomized rounding. To
each clause C; in the instance, we associate an indicator variable z; € {0, 1} in the integer
linear program that is 1 when C; is satisfied and 0 otherwise. For each variable x;, we
use an indicator variable y; that is 1 if the variable x; is set TRUE, and 0 otherwise. Let
.S';' be the set of variables that appear in the uncomplemented form in clause S;, and S;
be the set of variables that appear in the complemented form in clause C;. We may then
formulate the MAX SAT problem as follows:

Maximize Zz,—
j

subject to Z}‘;‘ +Z(1 —yilzz; Vj,
5+ 5

yi.z; €{0,1}) Vi, j. (11.5)

We solve the linear program in which we relax the integrality constraints (11.5),
allowing the y; and the z; to assume values in the interval [0, 1]. Let ¥; be the value
assigned to y; in the optimal solution to this linear program, and let Z; be the value
assigned to z;. Clearly, 3 Z; is an upper bound on the number of clauses that can be
satisfied. We first show that using randomized rounding, we obtain a solution in which
the expected number of clauses satisfied is at least (1 — é) Zj?j.

TPrior to the work of Goemans and Williamson, Yannakakis [Yan92] had given a deterministic
polynomial-time %-appmximalion algorithm for MAX SAT.

458 CHAPTER 11 RANDOMIZED APPROXIMATION ALGORITHMS

Randomized rounding independently sets the variable y; to | (corresponding to
x; being set TRUE) with probability y;. Where k is a positive integer, let g denote
I — (1 — 1)¥. We first show that for a clause C; with k literals, the probability that it
is satisfied by randomized rounding is at least ;2. Because i > (1 — %), the expected
number of clauses satisfied by randomized rounding is at least (1 — ;) 3=, Z;.

LEMMA 11.4 Let C; be a clause with k literals. The probability that it is satisfied by
randomized rounding is at least 8,2 ;.

Proof. Consider a single clause C;. We may assume without loss of generality that all
the variables contained in it appear in uncomplemented form, and that C; is of the form
X1 V-V x;. By constraint (11.5) in the linear program,

Vit +W 27

Clause C; remains unsatisfied by randomized rounding only if every one of the vari-
ables y; is rounded to 0. Since each variable is rounded independently, this occurs with
probability [Tf_, (1 — ;). To show that

k
1-[Ja- 283
i=l

we observe that the expression on the left is minimized when y; = f for all i. It now
suffices to show that 1 — (1 — i_f-)" > Birz; in [0, 1]; this follows from elementary calculus.
|

THEOREM 11.4 Given an instance of MAX SAT, the expected number of clauses
satisfied by linear programming and randomized rounding is at least (1 — f) times the
maximum number of clauses that can be satisfied on that instance.

We have studied two randomized algorithms MAX SAT: one that set each variable
to 1 with probability % and a second that used the solutions to the linear program as a
basis for randomized rounding. We will now show by a simple convexity argument that
on any instance, one of the algorithms is a %-approximation algorithm. Namely, given
any instance, we run both algorithms and choose the better solution. Let n; denote the
expected number of clauses that are satisfied when each variable is independently set
to 1 with probability % Let n; denote the expected number of clauses that are satisfied
when we use the linear programming followed by randomized rounding (corresponding
to Theorem 11.4). The following exercise will be used in the proof below.

EXERCISE 11.1 Fork > 1,04 =1—3and fr=1—(1 - 1)k, show that
3
d;-‘*‘ﬁk == E

THEOREM 11.5 max{n;,m2} > 33,7

11.2 ROUNDING LINEAR PROGRAMS 459

Proof. We show that

ny+n; 3 o
= > — o
max{n,ny} > T E} Zj

The first inequality is immediate, we prove the second one. Let o, denote 1 — 2% and let
C* denote the set of clauses that contain precisely k literals. Then,

na=zzax222ak-?j

k=1 Ciect k=1 C;ect

since 0 <Z; < 1. By Lemma 11.4,

”222 Z ﬁk'?j

k=1 C;ect

Hence,

+ o+ P ~
mzﬂzzzz 1.2 k-z;-

k=1 Cject

L] L]

This inequality yields the theorem, since o + By > 2 for all k > 1 as proved in
Exercise 11.1. @

11.2.4 RELATED WORK

There are many other interesting applications of randomized rounding; we mention a
few of them. Naor and Roth [NR95] apply the technique to a file distribution problem in
networks. Klein and Sairam [KS92] apply it to the computation of approximate shortest
paths in a graph. Lin and Vitter [LV92] consider a family of packing problems. Kortsarz
and Peleg [KP93] study the construction of a useful class of graphs known as spanners.
The paper by Bertsimas and Vohra [BV94] is a comprehensive guide to uses of the
technique in a variety of covering problems. One of the interesting ideas in their paper is
to devise a function that maps each value in the linear program solution to a probability
in [0, 1], a generalization of the technique used by Raghavan and Thompson [RT87],
and Goemans and Williamson [GW94a); note that in the above examples, we have only
used the obvious identity function. In some applications, as shown in [BV94], it helps
to use other mappings from fractional solutions to probabilities. The interested reader
is referred to these papers and the ones cited in them for further applications. Before
proceeding to semidefinite programming, it is worth pointing out an alternative view
of randomized rounding. Instead of thinking of the process as rounding a fraction £ to
I with probability £, we may adopt the following equivalent view: We pick a random
number y uniformly in [0, 1]. If £ > y we round up to 1. Otherwise, we round down to
0. The effect is the same, but we now think of comparing the fraction % to a randomly
chosen threshold. This view will be useful in the following section.

	DH001
	DH002

