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Kókai, Jürgen Branke, and Sanaz Mostaghim for technical discussions and successful
cooperation.

Many thanks for implementations and interesting discussions go to all students
whose semester and diploma theses I supervised or co-supervised: Johannes Jordan,
Alexandr Gnezdilov, Thomas Ritscher, Matthias Hoffmann, Ludmila Omeltschuk,
and Valerian Brem.

I am grateful to all collegues who made the chair of Hardware-Software-Co-Design
a pleasant place to work, and in particular to Josef Angermeier and Moritz Mühlen-
thaler for proofreading parts of this thesis.

Finally, I would like to thank my friends and family for their support. I am par-
ticularly grateful to my brother Wolfram for thorough proofreading of some of my
theoretical works, and, most of all, to Stefan for his support and patience throughout
the last years.

iii



iv



Abstract

Particle swarm optimization (PSO) is an optimization approach from the field of ar-
tificial intelligence. A population of so-called particles moves through the parameter
space defined by the optimization problem, searching for good solutions. Inspired by
natural swarms, the movements of the swarm members depend on own experiences
and on the experiences of adjacent particles.

PSO algorithms are mainly used for continuous optimization problems, whose fea-
sible space is often restricted by a set of constraints. A special case are box con-
straints, which define upper and lower bounds for the problem parameters. In the
literature, there exist several so-called bound handling strategies to integrate box con-
straints in PSO algorithms, such as setting infeasible particles to the nearest feasible
position or reflecting them at the boundary.

In this thesis, various aspects of box-constrained particle swarm optimization are
examined. The core of this work is the theoretical analysis of the impact of box
constraints for particle swarm optimization. It is shown mathematically that initial
particle swarm performance strongly depends on the chosen bound handling strategy
due to the fact that, with overwhelming probability, many particles leave the feasi-
ble space at the beginning of the optimization. Moreover, by using a simplified PSO
model, is shown that this effect can be reduced if particle velocities are scaled with
respect to the problem dimensionality. A thorough experimental evaluation shows
that bound handling also significantly influences the final solution quality of a parti-
cle swarm optimizer, especially when applied to high-dimensional problems. Three
way to cope with these results in practical PSO applications are presented: The care-
ful selection of bound handling strategies, the use of self-adaptation, and the use of
velocity adaptation. Finally, the investigated PSO algorithms are applied to an opti-
mization problem from the field of mechanical engineering.
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Kurzfassung

Partikelschwarmoptimierung (PSO) ist ein Optimierungsverfahren aus dem Bereich
der Künstlichen Intelligenz. Eine Population sogenannter Partikel bewegt sich auf
der Suche nach guten Lösungen durch den durch das Optimierungsproblem festge-
legten Suchraum. Inspiriert von natürlichen Schwärmen, hängen die Bewegungen der
Schwarmmitglieder sowohl von eigenen Erfahrungen als auch von den Erfahrungen
benachbarter Partikel ab.

PSO-Algorithmen werden vor allem für kontinuierliche Optimierungsprobleme
eingesetzt, deren Gültigkeitsbereich oftmals durch eine Reihe von Nebenbedingun-
gen beschränkt ist. Als Spezialfall hat der Gültigkeitsbereich die Form eines hochdi-
mensionalen Quaders, d.h., für jeden Parameter des Optimierungsproblems sind obe-
re und untere Schranken festgelegt. In der Literatur existieren zahlreiche Möglichkei-
ten, quaderförmige Suchraumbeschränkungen in PSO-Algorithmen zu integrieren.
So können ungültige Partikel beispielsweise auf die Suchraumgrenze gesetzt oder an
dieser reflektiert werden.

In dieser Arbeit wird das Verhalten von Partikelschwärmen in beschränkten Such-
räumen untersucht. Kern der Arbeit ist die theoretische Analyse der Anwendung
von PSO-Algorithmen auf Optimierungsprobleme mit quaderförmigen Suchraum-
beschränkungen. Es wird bewiesen, dass viele Partikel den Gültigkeitsbereich zu Be-
ginn der Optimierung mit überwältigender Wahrscheinlichkeit verlassen. Als Konse-
quenz ergibt sich, dass die Art und Weise, wie ungültige Partikel behandelt werden,
großen Einfluss auf das anfängliche Schwarmverhalten hat. Unter Verwendung eines
vereinfachten PSO-Modells wird weiterhin gezeigt, dass dieser Effekt reduziert wer-
den kann, wenn die Partikelgeschwindigkeiten an die Suchraumdimensionalität an-
gepasst werden. Ausführliche experimentelle Studien zeigen, dass, insbesondere bei
Anwendung auf hochdimensionale Optimierungsprobleme, die Strategie der Behand-
lung ungültiger Partikel auch auf die finale Lösungsqualität signifikanten Einfluss hat.
Es werden drei Möglichkeiten vorgestellt, mit diesen Resultaten in der Praxis umzu-
gehen: Die sorgfältige Auswahl von Strategien zur Behandlung ungültiger Partikel,
die Verwendung von Selbstadaption und der Einsatz von Geschwindigkeitsadaption.
Abschließend werden die untersuchten PSO-Algorithmen auf ein Optimierungspro-
blem aus dem Bereich Maschinenbau angewendet.
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1. Introduction

Artificial intelligence (AI) [RN03, Win92] is a branch of computer science, which is
concerned with the design of intelligent entities, and includes a broad variety of topics
such as knowledge representation, automated reasoning, learning, and perception. In
computational swarm intelligence (CSI) [BDT99, Eng05, KE01], which is a subfield
of AI, the focus has shifted from the design of individual intelligent entities to the
design of intelligent swarm behavior. CSI is inspired by natural swarms, such as fish
schools, bird flocks, and ant colonies, in which problem-solving behavior emerges
from the interaction of (usually simple) individuals.

Particle swarm optimization (PSO) [KE95,EK95,KE01] is a computational swarm
intelligence method for global optimization. The task of global optimization is the
minimization or maximization of an objective function f : S → R, where S is an
arbitrary n-dimensional search space, e.g., S ⊆Rn. Consider the following example,
adapted from [RN03]: The locations of k new airports should be determined such that
the sum of squared distances from each city of a specified set of cities to its nearest
airport is minimized. The goal is to determine the coordinates

(x1,y1),(x2,y2), . . . ,(xk,yk)

of the k new airports. The complexity of the problem increases if further real world
circumstances, e.g., accessibility, existing infrastructure, or other economic aspects,
are taken into account. Standard mathematical approaches such as solving ∇ f (~x) =~0,
which is a necessary condition for ~x being an optimal solution, are often not appli-
cable in such contexts due to the lack of a functional representation of f . More-
over, even if a continuously differentiable representation of f is available, solving the
system of equations ∇ f (~x) =~0 is usually algorithmically as difficult as solving the
original optimization problem [Ber95].

PSO algorithms do not take the functional representation of the objective function
f into account, and are therefore suited for black box optimization. A typical situa-
tion is depicted in Figure 1.1. Due to the fact that the application of PSO algorithms
is not restricted to a specific kind of optimization problems, they belong to the class
of meta-heuristic optimization approaches. Since their invention, PSO algorithms
were successfully applied to various continuous and discrete optimization problems.
Example PSO applications are listed in Table 1.1. Other popular meta-heuristic op-
timization approaches are simulated annealing, genetic algorithms, and ant colony
optimization.

1



1. Introduction

Objective
function

f

(Black box)

Search space
position

~x ∈ S

Objective value

f (~x) ∈ R

Figure 1.1: Black box optimization.

Particle swarm optimization is a stochastic optimization approach, which means
that random numbers are involved when applying PSO to an optimization task. The-
oretical analyses of PSO algorithms are very challenging due to the stochastic nature
of particle swarm optimization and due to the patterns that emerge from the inter-
actions of the participating individuals, which are hard to model and to analyze.
Therefore, PSO algorithms are typically experimentally compared with each other
and with other black box optimization algorithms by using well-defined benchmark
optimization problems, such as the CEC 2005 benchmark suite [SHL+05]. Up to
now, general theoretical results concerning the quality of the solutions obtained with
PSO algorithms do not exist.

Many optimization tasks (e.g., [Abi02,HES03a,ZWLK09]) are subject to so-called
constraints, which means that not an arbitrary solution to the problem is searched for,
but a solution that complies with certain restrictions. For instance, in the above exam-
ple, the airport coordinates have to be chosen such that the airports are located inside
a specified country. A special case of constraints are so-called box constraints, which
define upper and lower bounds for the problem parameters. Suppose that, in our air-
port example, not only the airport locations, but also the runway lengths have to be
determined. As it does not make sense to construct a runway with negative length,
the respective parameters are bounded to be greater than zero or to be greater than a
specified minimum runway length. Most benchmarks that are used to test PSO algo-
rithms include box constraints, e.g., most of the CEC 2005 benchmarks [SHL+05].
Optimization problems with box constraints are also denoted as box-constrained op-
timization problems in the following.

1.1 Contributions

In this thesis, various aspects of box-constrained particle swarm optimization are
examined. In constrained optimization, solutions that do not comply with the defined
constraints are called infeasible. In case of box constraints there exist various so-
called bound handling strategies to cope with infeasible particles, such as moving
them to the nearest feasible position.

In the following, it is shown that the performance of a particle swarm optimizer

2



1.1 Contributions

Table 1.1: Example PSO applications
Application References
Training of artificial neural networks [KE01]
Optimization of electrical power systems [YKF+00, Abi02, MF02a]
Optimization of wireless communication systems [ZWLK09]
Design of pressure vessels [HES03a]
Biomedical image registration [WSZ+04]
Relative positioning [SWHP07, GWHK09]
Scheduling [AP09]
Traveling salesperson problem [Cle00]
N-queens [HES03b]

significantly depends on the chosen bound handling strategy when solving high-
dimensional box-constrained optimization problems. The solutions obtained with
particle swarm optimization can be considerably improved if an appropriate bound
handling method is selected. Alternative methods to cope with this result, such as
self-optimization and velocity adaptation are described. The results presented in this
thesis provide a better understanding of the peculiarities of box-constrained optimiza-
tion problems and support the application of PSO algorithms to such problems.

Contributions to Box-constrained Particle Swarm Optimization

The contributions to box-constrained particle swarm optimization can be structured
into theoretical and experimental results, and were mostly published in [HW07,HW08,
HNW09].

For the theoretical analysis, PSO is described as an iterative stochastic process,
similar to the models used in the analyses of Jiang et al. [JLY07a,JLY07b] and Poli et
al. [PB07,Pol08]. Based on this model, particle initialization and particle trajectories
in the first iteration are studied. It is first shown that, when solving high-dimensional
problems, particles are initialized very close to the search space boundary defined
by the box constraints of the optimization problem. In a second step, particle trajec-
tories in the first iteration are analyzed, considering three different particle velocity
initialization strategies. It is proved that many particles become infeasible in the first
iteration of a PSO algorithm, with overwhelming probability. The higher the search
space dimensionality the more probable a particle will leave the initialization space.
This theoretical result implies that bound handling has a very strong impact on initial
particle swarm behavior.

Furthermore, the impact of a particle’s velocity on its tendency to become infea-
sible is analyzed by using a simplified PSO model. It is shown mathematically that
the probablity that a particle leaves the feasible space can be strongly reduced if the

3



1. Introduction

interval from which the velocities are chosen is scaled with respect to the problem
dimensionality.

Finally, the well-known Sphere benchmark is considered as an example to demon-
strate some of the peculiarities of high-dimensional box-constrained particle swarm
optimization.

The experimental evaluation addresses the following issues in order to confirm and
to extend the theoretical results, and to support practical particle swarm optimization:

Velocity initialization: In the theoretical analysis, three velocity initialization strate-
gies are considered. It is shown that none of the strategies is able to prevent that many
particles become infeasible at the beginning of the optimization process. The exper-
imental comparison of these three strategies confirms that velocity initialization has
only minor impact on the performance of a particle swarm optimizer.

Significance of bound handling: It was proved that bound handling has strong im-
pact on initial particle swarm behavior. An experimental comparison shows that also
the final solution quality is significantly affected by the chosen bound handling strat-
egy. The higher the problem dimensionality, the more noticeable are the performance
differences.

Strengths and weaknesses of selected strategies: Bound handling has strong impact
on particle swarm performance and particle swarm behavior. A straightforward way
to cope with this fact is to carefully select the bound handling strategy according to
the specific application. In order to assist in this process, various commonly-used
bound handling methods are experimentally compared. Strengths and weaknesses of
the investigated strategies are discussed.

The experimental results were obtained by using standard benchmark problems
and interpreted by means of statistical methods and tests.

Contributions to Adaptive Particle Swarm Optimization

Two adaptive particle swarm optimizers are presented: Multi-Swarm PSO with Mi-
gration (MPSO) [JHW08] and PSO with Velocity Adaptation [HNW09, HNW10].
Both algorithms are investigated experimentally and discussed with focus on box-
constrained optimization.

The goal of Multi-Swarm PSO with Migration is to reduce the necessity of manual
parameter adjustment for PSO applications. Instead, the parameters are dynamically
adapted during the optimization by using a subswarm approach. The performance of
MPSO and its ability to adapt the bound handling strategy to the current problem are
investigated experimentally.

The second adaptive particle swarm optimizer, PSO with Velocity Adaptation, was
derived from the theoretical results in order to reduce the importance of bound hand-
ling for particle swarm optimization. Experimentation shows that PSO with Velocity
Adaptation is less sensitive to the chosen bound handling strategy than standard par-
ticle swarm optimization, and often provides superior results at the same time.

4



1.2 Overview

The use of these adaptive PSO algorithms is not restricted to box-constrained op-
timization problems.

Contributions to PSO Application

Finally, particle swarm optimization is applied to the relative positioning problem,
which often has to be solved in the field of tolerance analysis in mechanical engi-
neering. The optimization task is a six-dimensional box-constrained problem, in-
vestigated in cooperation with the Chair of Engineering Design (Department of Me-
chanical Engineering) of the University of Erlangen-Nuremberg (see also [SWHP07,
GWHK09]). The impact of bound handling on this rather low-dimensional problem
is analyzed. Both adaptive algorithms investigated in this thesis are applied to rel-
ative positioning, and their performance is compared with standard particle swarm
optimization.

1.2 Overview

This thesis is structured as follows: In Chapter 2, the concept of particle swarm op-
timization is introduced, and related work is presented. First, PSO algorithms for
continuous, binary, and combinatorial optimization are described, and PSO parame-
ters and recommended settings are discussed. Section 2.2 summarizes various kinds
of particle cooperation. Particle swarm optimization for constrained optimization
is detailed in Section 2.3. After presenting some general constraint handling tech-
niques for stochastic search algorithms, available bound handling methods for box-
constrained particle swarm optimization are categorized and discussed. Previous the-
oretical results in the field of particle swarm optimization are presented in Section 2.4.
These studies mostly concentrate on the parameters of the PSO movement equations,
but do neither take high-dimensional parameter spaces nor constraints into account.
A brief overview on multi-objective particle swarm optimization is given afterwards,
before concluding Chapter 2 with a short description of related meta-heuristic opti-
mization approaches.

Chapter 3 covers the theoretical analysis of box-constrained particle swarm opti-
mization. After introducing the examined PSO model in Section 3.1, particle initial-
ization is analyzed in Section 3.2. The particles’ behavior at the beginning of the op-
timization is analyzed theoretically in Section 3.3, taking three velocity initialization
strategies into account. Afterwards, the impact of particle velocities on their tendency
to become infeasible is studied in Section 3.4. For this investigation, a simplified PSO
model is used. In Section 3.5, some of the pecularities of high-dimensional particle
swarm optimization are demonstrated by using the well-known Sphere benchmark as
an example. The implications of the theoretical results for practical PSO application
are finally discussed in Section 3.6.

5



1. Introduction

Chapter 4 contains the experimental contributions to box-constrained PSO. The
experimental procedure is clarified in Section 4.1. In the same section, the statistical
tools used in the experimental evaluation are briefly described. The investigated test
problems are summarized in Section 4.2. Afterwards, experimental results are pre-
sented and discussed. First, velocity initialization is studied in Section 4.3. Various
bound handling methods are analyzed in detail in Section 4.4. After demonstrat-
ing the significance of bound handling for particle swarm optimization, the strengths
and weaknesses of several commonly-used methods are discussed on the basis of the
experimental results.

Chapter 5 is devoted to the contributions in the field of adaptive particle swarm
optimization. First, existing adaptation strategies are categorized and presented in
Section 5.1. Afterwards, Multi-Swarm PSO with Migration and PSO with Velocity
Adaptation are presented in Section 5.2 and Section 5.3, respectively. Both algo-
rithms are analyzed experimentally, with focus on their benefits for box-constrained
particle swarm optimization.

Finally, the application of particle swarm optimization in the field of mechanical
engineering is presented in Chapter 6. A brief introduction into the field of tolerance
analysis is given in Section 6.1. Relative positioning is formulated as a continuous
optimization problem afterwards in Section 6.2. Experimental results are presented
in Section 6.3.

6



2. Particle Swarm Optimization
(PSO)

Particle swarm optimization (PSO) is a nature-inspired algorithm for global opti-
mization. The task of global optimization is to minimize or to maximize an objective
function f : S →R. In this thesis, minimization problems are assumed, which means
that the goal is to find a solution x∗ ∈ S such that

∀x ∈ S : f (x∗)≤ f (x) .

A solution x∗ that satisfies this condition is called a global minimum. If there exists
an ε > 0 such that

∀x with ||x− x∗||< ε : f (x∗)≤ f (x) ,

the solution x∗ is called local minimum.
This chapter provides an introduction into particle swarm optimization methods.

After presenting background information on flocks, herds, and schools, PSO algo-
rithms for continuous, binary and combinatorial optimization problems are described
in the following section.

2.1 The PSO Algorithm
Particle swarm optimization was first presented in 1995 by Kennedy and Eberhart
[KE95, EK95]. A detailed description with a lot of background information can be
found in their textbook Swarm Intelligence [KE01]. The algorithm is inspired by
the social interaction of individuals living together in groups, e.g., bird flocks, fish
schools, or human societies.

2.1.1 Flocks, Herds, and Schools

The synchronous movement of birds inside a flock or land animals in their herd was
analyzed in the 1980s by both computer scientists and zoologists [Rey87, HG90].
While the aim of computer scientists was the realistic visualization of bird flocks,
fish schools, or herds of land animals, zoologists were interested in the dynamics of
these natural systems. In 1987, Reynolds [Rey87] simulated the flight of birds by
assigning a simple set of rules to each single bird. His algorithm is decentralized,

7



2. Particle Swarm Optimization (PSO)

deterministic, and each individual’s perception is restricted to its local neighborhood.
The state of a simulated bird consists of its geometrical shape model, orientation,
position in the respective coordinate system and a so-called velocity, which is the
combination of both speed and direction of the bird’s movement. The following
rules, listed in decreasing order of importance, were assigned to each individual:

• Collision Avoidance: Avoid collisions with other flock members.

• Velocity Matching: Try to fly in same direction and with same speed than
nearby flockmates.

• Flock Centering: Move to the center of nearby flock members. Flock centering
helps the simulated birds to stay together.

Using these simple rules and some additional restrictions like a maximum veloc-
ity and a maximum acceleration per individual, flock-like behavior was simulated.
Complex movement patterns were the result of the interaction of simple individuals.
The model can not only be used for the visualization of bird flocks, but also for fish
schools and herds of land animals.

Reynold’s approach is similar to the particle systems presented by Reeves [Ree83]
in 1983. Reeves claimed that the motion of fuzzy objects like fire, smoke, clouds,
or water, which do not have a well-defined, smooth surface, cannot be described
by simple affine transformations commonly used in computer graphics. Instead, he
modelled such systems by using thousands or even millions of so-called particles
with each one having its own behavior. A particle is a point in three-dimensional
space, having a position, velocity (again, velocity is the combination of speed and
direction), color, transparancy, and lifetime. For each frame, each particle’s velocity
is calculated according the the system’s characteristics, and added to its position. As
we will see later, PSO has a very similar structure, and also the term particle can
partly be traced back to Reeveses particle systems [KE95].

Similar to Reynold’s approach, Heppner and Grenander [HG90] described the syn-
chronous movements of birds by assigning a set of rules to each bird. However, their
simulated birds were additionally attracted by a roost. In early simulations, which
finally led to the PSO algorithm, Kennedy and Eberhart [KE95] extended this model:
instead of knowing the exact position of the roost (or food source), their birds, also
called agents, were able to evaluate the distance to it, the so-called cornfield vec-
tor. The simulated birds are then indirectly attracted by the roost (or food source).
Through interaction with other flock members, each agent tries to minimize its corn-
field vector, until it eventually arrives at its destination.

Initially, one of the goals of Kennedy’s and Eberhart’s studies was to derive a sim-
plified model of human social behavior, in order to simulate social processes [KE95].
Hence, the interaction of the agents was inspired by findings in the field of social psy-
chology and by socio-psychological models of human behavior. While birds move
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in three-dimensional space and try to avoid collisions, beliefs, thoughts and attitudes
of human beings are points in an high-dimensional cognitive space, where collisions
may occur. People who live in the same social group tend to become more and more
similar, and norms and cultures emerge. The model which underlies PSO assumes
that each individual has three main characteristics [KE01]: It evaluates stimuli of the
environment, it compares itself with other members of its social group, and it imi-
tates other individuals, preferably better ones. By using these three principles, each
individual is able to learn from others, and to improve (optimize) itself to a certain
degree.

2.1.2 PSO for Continuous Problems

The PSO algorithm [KE95, EK95, KE01, BK07] considers two main sources of in-
fluence for social learning processes: Individuals rely on their own previous experi-
ences (cognitive component), and they imitate better group members (social compo-
nent). Transforming these observations in an iteration-based optimization algorithm,
a population of m individuals, which are from now on called particles, explores the
n-dimensional search space S of an optimization problem with objective function
f : S ⊆ Rn → R. Without loss of generality, a minimization problem is assumed.
Each particle i has a position ~xi,t (where t is the iteration counter), a fitness value
f (~xi,t), and moves through the search space with a velocity ~vi,t . A position~z1 ∈ S is
called better than~z2 ∈ S iff f (~z1) < f (~z2). The best search space position particle i
has visited until iteration t is its private guide ~pi,t . To each particle, a subset of all
particles is assigned as its neighborhood (see Section 2.2 for more information about
possible neighborhood structures). The best private guide of all neighbors of particle
i is called its local guide ~li,t . Besides the cognitive and the social component, and
based on the model of bird flocks or fish schools, each particle additionally keeps a
fraction of its old velocity, which results in the following update equations for particle
swarm optimization:

~vi,t = ω ·~vi,t−1 + c1 ·~r1,i,t� (~pi,t−1−~xi,t−1)︸ ︷︷ ︸
cognitive component

+c2 ·~r2,i,t� (~li,t−1−~xi,t−1)︸ ︷︷ ︸
social component

(2.1)

~xi,t =~xi,t−1 +~vi,t (2.2)

where ω, c1, and c2 are prespecified parameters,~r1,i,t and~r2,i,t are vectors of random
real numbers whose components are drawn uniformly at random in [0,1], and �
denotes element-by-element vector multiplication.

After each particle has computed its new position and velocity, the private guides
of all particles are updated. Typically, a particle’s private guide ~pi,t is updated to its
current position ~xi,t iff f (~xi,t) < f (~pi,t−1) holds. However, other definitions are pos-

9



2. Particle Swarm Optimization (PSO)

Algorithm 2.1 Particle swarm optimization
Require: Objective function f : S ⊆ Rn→ R, PSO parameters

1: for each particle i (i = 1, . . . ,m) do {Particle initialization}
2: Initialize position~xi,0 and velocity~vi,0 according to initialization strategy
3: Initialize private guide: ~pi,0←~xi,0
4: end for
5: Initialize neighborhood structure
6: t← 0
7: repeat
8: t← t +1
9: for each particle i (i = 1, . . . ,m) do {Particle movement}

10: Velocity update according to Equation (2.1)
11: Position update according to Equation (2.2)
12: if~xi,t /∈ S then
13: Apply bound handling procedure
14: end if
15: end for
16: for each particle i (i = 1, . . . ,m) do {Private guide update}
17: if success(~xi,t ,~pi,t−1) then
18: ~pi,t ←~xi,t
19: end if
20: end for
21: until termination criterion met

sible (see Section 2.1.5). For the update of the private guides, the objective function
f has to be evaluated once for each particle in each iteration.

The PSO algorithm is given in Algorithm 2.1. It terminates as soon as a specified
termination criterion is met, for instance, as soon as the best found solution was not
improved during a certain amount of time or the iteration counter t exceeds a specified
limit.

When applying particle swarm optimization to a given problem, the parameters of
the algorithm, e.g., ω, c1, c2, and the neighborhood structure, have to be selected
appropriately. Some parameter setting guidelines, which were previously extracted
from theoretical studies and experimentation with commonly-used benchmark prob-
lems, are summarized in Section 2.1.5.

Particle swarm optimization was originally introduced for continuous optimiza-
tion problems. However, there exist PSO variants for binary and combinatorial prob-
lems [KE97, Cle00], which are briefly described in Sections 2.1.3 and 2.1.4. After-
wards, the parameters of the PSO algorithm and initialization issues are discussed.
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2.1.3 PSO for Binary Problems
In 1997, Kennedy and Eberhart [KE97] proposed a particle swarm optimizer for the
optimization of pseudo-Boolean functions f : {0,1}n→ R. In their approach, each
particle i has a position ~xi,t ∈ {0,1}n, which is a binary vector, and a continuous
velocity ~vi,t ∈ [−Vmax,Vmax]n. Additionally, each particle stores its private guide ~pi,t

as a binary vector, and communicates with its neighbors to obtain the local guide~li,t .
The PSO equation for the velocity update remains unchanged, despite the fact that no
inertia weight ω is used:

~vi,t =~vi,t−1 + c1 ·~r1,i,t� (~pi,t−1−~xi,t−1)+ c2 ·~r2,i,t� (~li,t−1−~xi,t−1)

For all d ∈ {1, . . . ,n}, the d-th component of the velocity vector, vi,t,d , is then mapped
to the interval [0,1] by using a mapping function g : [−Vmax,Vmax] → [0,1]. The
function value g(vi,t,d) defines the probability that the respective component of the
position vector is set to 1. Hence, a particle’s position is updated according to:

if Ri,t,d < g(vi,t,d) then
xi,t,d ← 1

else
xi,t,d ← 0

end if

where Ri,t,d is drawn uniformly at random from [0,1]. As mapping function, an arbi-
trary function g : [−Vmax,Vmax]→ [0,1] can be used, e.g., the monotonic increasing
sigmoid function s, which is depicted in Figure 2.1:

s(v) =
1

1+ e−v

When using the sigmoid function, Vmax may for instance be set to Vmax = 6 [KE97]
or to Vmax = 4 [KE01]. As s(−6)≈ 0.9975 and s(6)≈ 0.0025 (respectively, s(−4)≈
0.9820 and s(4)≈ 0.0180), for each bit in a particle’s position vector there is a small
probability that it is flipped. Hence, Vmax is similar to a mutation rate in evolutionary
algorithms. The smaller Vmax is chosen, the higher is the probability that a bit is
flipped. Based on their runtime analysis of this binary PSO, Sudholt and Witt [SW08]
propose to scale Vmax with the problem size and to set it to Vmax = ln(n−1).

2.1.4 PSO for Combinatorial Problems
In order to design a particle swarm optimizer for combinatorial problems, Clerc
[Cle00] first identified the main components of the PSO algorithm, and then rede-
fined them with respect to the particular problem. In his general framework, the goal
is to optimize an objective function f : S → Y , where S is an arbitrary search space,
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Figure 2.1: The sigmoid function s(v) = 1
1+e−v , which can be used as mapping func-

tion in the binary PSO.

and Y is an arbitrary, totally ordered objective space. Both S and Y may be finite
sets.

In order to develop a PSO algorithm for combinatorial problems, the following
PSO components must be redefined:

• A particle’s position, representing a solution of the given problem

• A particle’s velocity, representing the difference of two positions

• Subtraction: position− position = velocity

• Addition: velocity+ velocity = velocity

• External multiplication: r · velocity = velocity with r ∈ R

• Move: position+ velocity = position

Note that, in contrast to the standard PSO formulas presented in Eq. (2.1) and
Eq. (2.2), a single value is used instead of a vector of random real numbers for exter-
nal multiplication.

Clerc illustrated this general PSO framework by designing a particle swarm op-
timizer for the traveling salesperson problem (TSP). TSP is the problem of finding
a Hamiltonian cycle1 of minimum length in a complete weighted graph G = (V,E),
where V = {v1, . . . ,vn} and E denote the set of vertices and edges, respectively. A
solution of a traveling salesperson problem, and hence, a particle’s position, can be

1A Hamiltonian cycle in a graph G is a closed path which visits every node exactly once.
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given as a permutation indicating in which order the nodes are visited. Let wi, j be the
weight of edge (vi,v j) ∈ E, and xi,t be the position of particle i at time step t, with
xi,t = (p1, p2, . . . pn), p j ∈ V and ∀ j,k with 1 ≤ j < k ≤ n : p j 6= pk. The objective
value of xi,t is the length of the corresponding Hamiltonian cycle:

f (xi,t) = wpn,p1 +
n−1

∑
k=1

wpk,pk+1

In the following, Clerc’s definitions for the remaining components are briefly pre-
sented. A velocity is a list of transpositions. The move operator simply applies a
list of transpositions (velocity) on a permutation (position). The subtraction of two
positions x1 and x2, x2− x1, yields a velocity vector v such that x1 + v = x2. Two
velocities are added by appending the transpositions of the second velocity to those
of the first velocity, possibly followed by a reduction of the length of the list. Note
that this operation is not commutative. Finally, external multiplication truncates or
expands a list of transpositions according to a specified scheme [Cle00].

Anghinolfi and Paolucci [AP09] proposed a discrete PSO algorithm for scheduling
problems, which was developed on the basis of Clerc’s general framework.

2.1.5 Parameters and Initialization

After having presented PSO algorithms for continuous, binary, and combinatorial
optimization, the algorithmic parameters of particle swarm optimization are now dis-
cussed.

Inertia Weight and Acceleration Coefficients

The inertia weight ω was first introduced by Shi and Eberhart in 1998 [SE98]. Mostly,
values smaller than 1 are used in order to reduce the swarm’s exploration behavior
over time. The so-called acceleration coefficients or control parameters c1 and c2
determine the relative influence of cognitive and social component for a particle’s
movement. Based on a convergence analysis of Clerc and Kennedy [CK02], the
following relation between c1, c2, and ω was established, which is widely-used in
particle swarm optimization (for details see also Section 2.4) [Cle06c]:

c1 = c2 =
(ω+1)2

2
(2.3)

with 2c1/ω = 2c2/ω > 4. In the standard PSO presented by Bratton and Kennedy
[BK07], the inertia weight is set to ω = 0.72984, which results in c1 = c2 ≈ 1.49617.

Another approach to select inertia weight and acceleration coefficients is to choose
them randomly in specified intervals whenever a particle’s velocity is updated [PC04].
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Population Size

The population size m is often set to values between 20 and 50, and should be chosen
according to the problem characteristics and dimensionality [PKB07]. Bratton and
Kennedy [BK07] carried out experiments with different swarm sizes between 20 and
100 and reported that none of the swarm sizes performed clearly better or worse than
the others on the tested benchmarks. Hence, it seems that the population size only
slightly influences particle swarm performance.

In some implementations, the population size is adapted to the dimensionality n of
the problem under consideration, and set to m = 10+2

√
2n [Cle06a].

Velocity Clamping

In early PSO implementations (particularly in those without inertia weight, i.e., ω =
1), the particles’ velocities were component-wise limited to specified values in order
to prevent that the magnitudes of the particles’ positions and velocities rapidely in-
crease [BK07]. Let V = [−Vmax,1,Vmax,1]× [−Vmax,2,Vmax,2]×·· ·× [−Vmax,n,Vmax,n].
When using velocity clamping, the standard velocity update equation Eq. (2.1) is
followed by (see, e.g., [KE01]):

if vi,t,d > Vmax,d then
vi,t,d = Vmax,d

else if vi,t,d <−Vmax,d then
vi,t,d =−Vmax,d

end if

Based on a deterministic PSO model, Clerc and Kennedy [CK02] showed that a
restriction of the particles’ velocities is not necessary to obtain a convergent particle
swarm. Nevertheless, the use of velocity clamping can significantly improve the per-
formance of a PSO algorithm [ES00]. A detailed discussion on velocity clamping,
including time-dependent and adaptive settings for Vmax,d , was presented by Engel-
brecht [Eng05, p. 109ff.].

Private Guide Update and Local Guide Selection

A particle’s private guide ~pi,t is defined as the best position it has visited so far, and
is usually updated to a particle’s current position ~xi,t iff f (~xi,t) < f (~pi,t−1) [EK95].
However, if there are large regions of equal fitness, this update procedure might re-
duce exploration, as discussed in a similar context by Owen and Harvey [OH07].
Based on this reasoning, the following private guide update procedures arise:
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• Standard, as defined above, and described by Eberhart and Kennedy [EK95]:

if f (~xi,t) < f (~pi,t−1) then
~pi,t =~xi,t

else
~pi,t = ~pi,t−1

end if

• Newest, based on the discussion of Owen and Harvey [OH07]:

if f (~xi,t)≤ f (~pi,t−1) then
~pi,t =~xi,t

else
~pi,t = ~pi,t−1

end if

• Random, used in [HNW09] and throughout this thesis, where R is distributed
uniformly at random in [0,1], and independently drawn at each occurence:

if f (~xi,t) < f (~pi,t−1) then
~pi,t =~xi,t

else if f (~xi,t) > f (~pi,t−1) then
~pi,t = ~pi,t−1

else
if R < 0.5 then

~pi,t =~xi,t
else

~pi,t = ~pi,t−1
end if

end if

Similarly, if a particle has more than one best neighbor, its local guide is drawn
uniformly at random among the candidates.

Initialization of Particle Positions

Particle positions are often initialized uniformly at random in the search space S
[Cle06b, Eng05]. If S is unbounded, i.e., S = Rn for a certain n, appropriate initial-
ization ranges have to be found.

Some benchmark problems that are widely-used for the comparison of stochas-
tic search algorithms, such as Sphere, Rosenbrock, and Rastrigin (function descrip-
tions can be found in Chapter 4), have their global optimum at the center of the
search space S . Therefore, when performing benchmark analyses, individuals are
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often initialized in an asymmetric subspace of S in order to avoid that the perfor-
mance of center-biased algorithms is overestimated. The initialization space of the
Sphere benchmark can for instance be set to [50,100]n whereas the parameter space
is [−100,100]n [BK07]. However, there is no reason to define asymmetric initializa-
tion ranges when analyzing algorithms by means of more modern benchmark suites,
such as the CEC 2005 benchmarks [SHL+05], or when applying PSO to real world
problems.

Initialization of Particle Velocities

The particles’ velocities can be initialized to one of the following schemes:

• Uniform: Let S ⊆ Rn be the search space of the given optimization problem.
Particle velocities are drawn uniformly at random in a specified n-dimensional
space. For instance, the d-th component of a particle’s velocity vector is ini-
tialized uniformly at random in [−Vmax,d,Vmax,d] [KE01], or uniformly at ran-
dom in [−(ubd − lbd)/2,(ubd − lbd)/2], if S = [ub1, lb1]× [ub2, lb2]× ·· · ×
[ubn, lbn]⊆ Rn is rectangularly bounded [Cle06b].

• Zero: Velocities are initialized to zero [Eng05], i.e.,~vi,0 =~0 for each particle i.

• Half-diff : The initial velocities are set to [C+07]

~vi,0 = 1
2 (~zi−~xi,0)

where~xi,0 is the initial position of particle i, and the vectors~zi are independently
drawn uniformly at random in S for i = 1, . . . ,m. The half-diff strategy is
illustrated in Figure 2.2.

Random search
space position~zi

(redrawn for each
particle)

Initial position~xi,0

of particle i

S

~vi,0

Figure 2.2: Half-diff velocity initialization: ~vi,0 = 1
2 (~zi−~xi,0)
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2.2 Social Interaction in PSO

Particle swarm optimization is inspired by models of social learning processes. When
moving through the search space, each individual takes own experiences as well as
those of neighboring particles into account. The social relationship among particles,
the so-called neighborhood topology, is often visualized as directed or undirected
graph in which nodes represent the particles, and edges specify which particles inter-
act with each other, i.e., exchange their private guides.

In most PSO algorithms, the neighborhood relations are defined completely in-
dependent from the search space positions of the particles. Instead, neighborhood
is solely based on the particles’ identifiers. Communication is possible even if the
search space distance is enormous. In very early simulations, and based on the model
of bird flocking and fish schools, the so-called Euclidean neighborhood was used,
which determines the neighbors of a particle according to distance meassures in the
search space. This model was soon replaced due to its computational costs and of-
ten worse performance [BK07,PKB07]. However, for the computation of the private
guide, information of nearby particles can be taken into account [Ken00]. This PSO
variant was proposed by Kennedy and is presented at the end of this section.

2.2.1 Static Neighborhood Topologies

A static neighborhood topology is usually represented as a graph, and used through-
out the optimization run. Examples of static topologies are [EK95, KM02]:

• The fully connected graph, or gbest (global best) topology: All particles are
connected.

• The lbest(k) (local best) topology, for an even k ≥ 0: Each particle has exactly
k/2 neighbors on each side. E.g., for k = 2, particle i is connected with particles
i− 1 and i + 1 (the array is wrapped so that particles 1 and m are connected).
For k = 4, particle i is additionally adjacent to particles i−2 and i + 2, and so
on. The special case lbest(2) is also called ring topology.

• The grid or so-called von Neumann topology: The particles are arranged like
the nodes of a grid, and each particle has exactly four neighbors: the particle
above, below, on the left hand side, and on the right hand side (using wrap-
around edges).

The gbest, lbest(2), and grid topology are depicted in Figures 2.3 and 2.4. A particle
can be included in or excluded from its own neighborhood.

The more neighbors an individual has, the faster its private guide is propagated
among the particles. In a fully connected swarm, all particles use the same local
guide for the velocity update, and the swarm often converges very fast. In contrast,
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the information flow in a sparsely connected graph can be very slow, as each particle
solely provides its private guide to its neighbors, and not the information it has ob-
tained from its neighbors. Assume, for instance, the ring topology. Then, particle i is
connected with particles i−1 and i+1:

i−1 i i+1

For all population sizes m > 3, particles i− 1 and i + 1 are not adjacent. If particle
i−1 updates its private guide to its current position, it will be passed to particle i in
the next iteration step. However, particle i+1 will not be informed of the promising
search space region until particle i itself has improved its private guide.

The application of the ring topology was introduced in 1995 by Eberhart and Ken-
nedy [EK95]. The authors reported that a particle swarm optimizer using the ring
topology usually converged slower than a fully connected swarm, but is on the other
hand more resistant to local optima. However, if the convergence speed of the ring
topology is too slow for a particular application, the grid topology might be a good
compromise of the fast converging fully connected graph and the ring topology:
Kennedy and Mendes [KM02] compared more than 1000 neighborhood graphs on
widely-used benchmark problems and concluded their study by recommending the
grid topology due to its constantly good performance compared to other communica-
tion structures.

(a) Ring or lbest(2) (b) Fully connected

Figure 2.3: Two commonly-used static neighborhood graphs for particle swarm opti-
mization: The ring (or lbest(2)) topology and the fully connected (gbest) swarm.

2.2.2 Dynamic Neighborhood Topologies
Instead of using a predefined static topology, communication links may be modified
during runtime. Some approaches dynamically adjust the neighborhood topology to
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Figure 2.4: The grid (or von Neumann) topology.

the optimization problem to be solved [Sug99, RV03, Cle03]. These adaptive PSO
variants are discussed in Chapter 5. The dynamic neighborhood topologies presented
in this section do not take particle swarm performance into account.

In Liang’s and Suganthan’s [LS05] Dynamic Multi-Swarm PSO, the population is
split into several small-sized and fully-connected subswarms which simultaneously
explore different search space regions. The swarm is periodically regrouped into new
subpopulations.

In a PSO variant presented by Mohais, Ward and Posthoff [MWP04], a directed
neighborhood topology with gradual edge modifications is used. The communica-
tion structure is initialized at random. At the end of each iteration, a random edge
is deleted from the neighborhood graph, and a new communication link with the
same target is inserted. Alternatively, the communication structure can be completely
reinitialized after a certain number of iterations, by keeping the out-degree of the
neighborhood graph fixed throughout the optimization run [MMWP05]. Based on
experimental investigations, Mohais et al. assigned 5 neighbors to each particle.

Clerc [Cle07] proposes to randomly reinitialize the neighborhood graph after ei-
ther each iteration in which the best known solution was not improved or, inspired
by a rumour spread model, after L/2 iterations, where L is the total number of com-
munication links. In contrast to the approach of Mohais et al., Clerc recommends to
use a fixed in-degree for the neighborhood graph. This way, a particle is expected to
have only a few neighbors, which is beneficial for problems with many local optima.
There is, however, a non-zero probability of large neighborhood sizes. Experimental
results on selected test functions suggest to set the in-degree to K = 3 [Cle06b].

2.2.3 Stereotyping

In 2000, Kennedy proposed a new approach for computing a particle’s private and
local guide, called stereotyping [Ken00]. The algorithm is inspired by the social-
psychological assumption that individuals identify themselves with their social group
and that they evaluate others by taking the respective social environment into account.
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Moreover, social-psychologic studies indicate that opinions, beliefs, behavior, and
norms of a social group tend to converge to the members’ average opinions, beliefs
and behavior [Ken00]. This convergence point needs not to be present as the attitudes
of one of its members.

Based on these findings, Kennedy suggests to replace a particle’s private and/or
local guide by the respective group average. Therefore, all private guides are parti-
tioned into several (e.g., 5) clusters based on their search space positions: The less the
search space distance of two private guides is the more probable they are put into the
same cluster. Any clustering algorithm can be used for this purpose, e.g., as proposed
by Kennedy, k-means clustering [Llo82,KMN+02]. Three different approaches were
investigated:

• When evaluating a particle’s new velocity, the private guide’s cluster center is
used instead of the particle’s private guide.

• When evaluating a particle’s new velocity, the cluster center of its best neighbor
is used instead of its local guide.

• For both the private and the local guide the respective cluster centers are used.

Based on his experimental study, Kennedy concluded that the first variant can re-
markably improve a particle swarm’s performance. However, especially the second
method may lead to a performance decrease [Ken00].

2.2.4 Fully Informed Particle Swarm (FIPS)
Similar to Stereotyping presented in the previous section, in a fully informed parti-
cle swarm (FIPS) [MKN04,Men04,MKN03] each particle takes knowledge not only
from its best, but from all its neighbors into account to compute its subsequent ve-
locity and position. However, the approach is different: Instead of computing cluster
centers, the information is directly incorporated into the velocity update equation.

Applying simple algebraic manipulations, Eq. (2.1) and Eq. (2.2) can be trans-
formed to the following PSO update equations, which use the so-called Type 1” con-
striction coefficient χ of Clerc and Kennedy [CK02]:

~vi,t = χ ·
(
~vi,t−1 +ϕ1 ·~r1,i,t� (~pi,t−1−~xi,t−1)+ϕ2 ·~r2.i,t� (~li,t−1−~xi,t−1)

)
(2.4)

~xi,t =~xi,t−1 +~vi,t (2.5)

with χ = ω and χϕi = ci⇔ ϕi = ci/χ for i = 1,2. Clerc and Kennedy proved, under
simplifying assumptions, that a particle swarm converges, if χ and ϕ = ϕ1 +ϕ2 satisfy
the following relation:

χ =
2 ·κ

ϕ−2+
√

ϕ2−4 ·ϕ
(2.6)

20



2.2 Social Interaction in PSO

where κ ∈ [0,1] and ϕ > 4. Often, κ = 1, ϕ1 = ϕ2 = 2.05, i.e., ϕ = 4.1 and χ =
0.72984, are used as a standard setting [BK07]. Interestingly, the convergence prop-
erty is not dependent on the values of ϕ1 and ϕ2 but only on the sum these two
coefficients. Hence, any number k of terms may contribute to a particle’s velocity
update without losing the convergent behavior, as long the coefficients ϕ1,ϕ2, . . .ϕk
sum up to an appropriate value [MKN04].

Mendes et al. [MKN04, Men04] propose three methodologies to include the in-
formation gathered from all adjacent individuals to a particle’s movement: an un-
weighted approach, a fitness based approach and a distance based approach. For the
unweighted approach, the velocity update is modified as follows:

~vi,t = χ

~vi,t−1 + ∑
j∈Ni,t−1

ϕ

|Ni,t−1|
·~r� (~p j,t−1−~xi,t−1)


where~r is a vector of random real numbers between 0 and 1, which are regenerated
every time they occur, and Ni,t is the set of indices of particle i’s neighbors at time
step t.

In the fitness based approach, better neighbors have greater influence on a par-
ticle’s movement. Mendes considered minimization problems with positive fitness
values, and weighted each neighbor’s influence indirectly proportional to its pri-
vate guide’s fitness value: 1/ f (~p j,t−1), where j is the index of the respective neigh-
bor [Men04]. However, the fitness based version did not deliver better solutions than
the unweighted FIPS in an experimental investigation [MKN04]. Therefore, mostly
the unweighted FIPS is used because it is more efficient and simpler. The distance
based approach provided worse results than the other two approaches and a standard
PSO [MKN04, Men04], and is therefore seldomly regarded in the literature.

When introducing the fully informed particle swarm, Mendes et al. [MKN03,
MKN04] reported that the algorithm provides very good results compared to a stan-
dard particle swarm optimizer. However, their experimental study showed that the
neighborhood topology strongly influences its performance. Often, the less neigh-
bors a particle has, the better are the results delivered by a fully informed particle
swarm. The weighted FIPS in combination with a ring topology and self excluded
succeeded to find solutions of predefined problem-dependent quality very close to
the global optima in 100% of the runs on a testbed of six commonly-used benchmark
functions, 200,000 function evaluations per run, and 40 runs per setting. However,
the solution quality after 1,000 iterations (20,000 function evaluations) was still quite
poor. Considering the achieved performance in a shorter time frame, the unweighted
FIPS with grid topology and self excluded yielded the best results. Additionally,
this setting was able to reach the predefined problem-dependent limit 98,9% of the
cases [MKN03, MKN04]. It has to be noted that using densely connected neigh-
borhood graphs, e.g., a fully connected one, can considerably deteriorate the perfor-
mance of the FIPS algorithm [MKN03, MKN04].
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Further studies with randomly generated graphs confirmed these observations.
Mendes and Neves [MN04] investigated the effects of 3,289 neighborhood graphs
with different characteristics on the performance of a fully informed particle swarm.
They concluded that neighborhood graphs with an average degree of 4 and a low
clustering coefficient2 are best suited for the use with the FIPS algorithm.

In a later study, Kennedy and Mendes [KM06] tested the impact of 1,343 randomly
generated neighborhood graphs with different characteristics on the achieved solution
quality of both the FIPS algorithm and a standard particle swarm optimizer. They
investigated 231 graphs with an average degree of k = 3, 311 graphs with an average
degree of k = 5, and 801 graphs with an average degree of k = 10. The presented
experimental results show that the FIPS algorithm performs best in combination with
a neighborhood topology of low degree (k = 3), and that performance can be seriously
deteriorated when using a denselier connected graph (k = 10).

Summarized, the FIPS algorithm with ring or grid topology often provided very
good results, especially if a particle is not included in its own neighborhood. More
densly connected topologies should not be used for a fully informed particle swarm.

2.2.5 Ranked FIPS

As described above, Mendes et al. [Men04, MKN04] proposed three different ver-
sions for the fully connected particle swarm. In the fitness based approach, the in-
fluence of each neighbor j is weighted with 1/ f (~p j,t−1) [Men04], whereas in the
unweighted approach, each adjacent particle has equal weight. Intuitively, the fitness
based approach should yield better results as more problem-specific information is
used for the particles’ movement. However, in experimental investigations carried
out by Mendes et al. [MKN03, MKN04], both approaches showed similar perfor-
mance.

The reason might be that particles which are close to each other in the neighbor-
hood graph often have similar fitness values as they are searching in the same search
space regions. Hence, the weighting effect is diminished in comparison to the ran-
domization [JHW08].

In order to overcome this problem, the Ranked FIPS was developed [JHW08]. In
this variant, each particle ranks its neighbors according to the fitness values of their
private guides. The lower the fitness value, the lower is a particle’s rank. For the
velocity update, the relative influence of each neighbor is determined according to its
rank: The weight of an adjacent particle with rank r is twice as high as the weight of
the neighbor with the subsequent rank r+1. The rank weights sum up to 1. Hence, as
∑

∞
i=1 1/2i = 1, if a particle had infinity many neighbors, the best particle would still

be weighted with factor 1/2. The less neighbors a particle has, the higher weights

2The clustering coefficient measures the average percentage of a particle’s neighbors that are
neighbors to one another.
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are used, yielding the rank weights r1 ∈ [1
2 , 2

3 ], r2 ∈ [1
4 , 1

3 ], and so on, assuming that
a particle has at least two neighbors. Hence, strong emphasis is given to the best
neighbor even if a densely connected topology like the fully connected swarm is
used.

Let again Ni,t be the set of indices of particle i’s neighbors at time step t, then the
ranked FIPS without private guide uses the following velocity update equation for
particle i (adapted from [JHW08]):

~vi,t = χ

~vi,t−1 +
|Ni,t−1|

∑
j=1

r j ·ϕ ·~r� (~pinvranki,t−1( j),t−1−~xi,t−1)


where the ranking function invranki,t−1 : [1, . . . , |Ni,t−1|]→ Ni,t−1 defines the (in-
verse) ranking on particle i’s neighbors, i.e., each rank is mapped to the index of the
respective neighbor according to the fitness values of their private guides as explained
above. The rank weights r1, . . .r|Ni,t−1| are given by

∀ j = 1, . . . , |Ni,t−1|−1 : r j = 2 · r j+1

∑
|Ni,t−1|
j=1 r j = 1

The ranked FIPS was compared to the unweighted FIPS and the fitness based FIPS
on both a series of traditionally used benchmarks and on the recently introduced CEC
2005 benchmark suite. On most functions, the ranked FIPS yielded superior results
than the other two variants [JHW08], and can therefore be considered as valuable
alternative to other FIPS approaches.

2.3 PSO for Constrained Problems
In constrained optimization, solutions must satisfy a number of so-called constraints,
which either restrict the parameter values to certain intervals or define dependencies
among them. Formally, the task of constrained optimization in continuous domain is
defined as follows:

Minimize f (~x)
Subject to gi(~x)≤ 0 i = 1, . . . ,m1 (inequality constraints)

h j(~x) = 0 j = 1, . . . ,m2 (equality constraints)
lbk ≤ xk ≤ ubk k = 1, . . . ,n (box constraints)

(2.7)

The objective function f maps the n-dimensional parameter space S = [lb1,ub1]×
[lb2,ub2]× ·· ·× [lbn,ubn] ⊆ Rn to R. The feasible region F ⊂ Rn is given by the
intersection of S with the equality and inequality constraints. The goal is to find a
global optimal solution~x∗ ∈ F with ∀~x ∈ F : f (~x∗)≤ f (~x).

There exist a lot of strategies to cope with constraints in evolutionary algorithms
and particle swarm optimization [MS96, Coe02b], which are outlined in the follow-
ing.
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2.3.1 Constraint Handling
The available constraint handling techniques can be classified into the following five
categories [Coe02b]:

• Penalty functions

• Repair algorithms

• Special representations and operators (including decoders)

• Separation of objectives and constraints

• Hybrid methods

Penalty Functions

The use of penalty functions is one of the most common approaches to deal with
constraints in evolutionary computation. If a minimization problem is assumed, the
objective function f is modified to fnew [Coe02b]:

fnew(~x) = f (~x)+
m1

∑
i=1

ai ·max{0,gi(~x)}α +
m2

∑
j=1

b j · |h j(~x)|β

where α, β, and the penalty coefficients a1, . . . ,am1,b1, . . . ,bm2 > 0 are user-defined
parameters, which have to be selected carefully. If the penalty coefficients are cho-
sen too low, the population might explore infeasible space most of the time while
when chosen too high, the individuals are distracted from the boundary and might
be unable to locate disconnected feasible regions [Coe02b]. Besides being statically
defined at the beginning of the optimization and used throughout the run, the penalty
coefficients can be dynamically adapted during the process. Among the dynamic ap-
proaches, there are time-dependent ones, which means that the penalty coefficients
increase with the number of iterations to guide the population to feasible regions at
later stages of the optimization. Other dynamic approaches adapt the penalty coef-
ficients to the optimization process by taking the number of feasible and infeasible
individuals into account, by trying to stress the importance of difficult constraints, or
by using co-evolutionary approaches [MS96, Coe02b].

A conceptually different approach is the use of so-called death penalties (see, e.g.,
[MS96]). This means that infeasible individuals are either completely rejected or
regenerated until they satisfy all constraints. Note that the latter alternative might be
a very time-consuming task in the occurence of difficult constraints.

Penalty function approaches can be utilized in combination with PSO algorithms
as well when solving constrained optimization problems. Parsopoulos and Vraha-
tis [PV02b] used a dynamic, time-dependent penalty function for particle swarm op-
timization, and reported promising results on six well-known constrained benchmark
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problems. Static penalty functions were successfully used for the optimization of
electrical power systems with PSO algorithms [Abi02, YKF+00].

Repair Algorithms

Another approach to cope with infeasible solutions in constrained optimization is to
map each~x∈ S to a feasible solution~z∈F . This process is also denoted as repairing
the infeasible solution~x. More formally, a repair function frepair : S → F is defined,
and the objective function is modified as follows:

fnew(~x) = f ( frepair(~x)) .

There are two aspects which have to be considered when designing repair functions:
First, frepair can be either deterministic or stochastic. When randomness is involved,
two evaluations of frepair with the same search space element ~x might produce two
different results~z1,~z2 ∈ F ,~z1 6=~z2. Second, the repaired solution can either be used
only for the fitness evaluation of an individual, i.e., that the objective function is
modified as stated above, or an infeasible individual might be replaced (with some
probability) by its repaired version [Mic00c, Coe02b].

In some cases, it is relatively simple to repair infeasible solutions. When solving,
for example, the knapsack problem, items may be removed from the knapsack, ei-
ther in a deterministic or in a stochastic way, until the solution is feasible [Mic00c].
However, in general, the design of an efficient repair function is a non-trivial task.

In particle swarm optimization, repair methods are often utilized to satisfy box
constraints. Usually, particles are replaced with their repaired version. A variety
of deterministic and stochastic repair algorithms to handle box constraints exist in
the literature (see, for instance, [Cle06a, ABEF05]). Due to their importance for this
work, they are presented in detail in Section 2.3.2.

Repair strategies can be used in combination with other constraint handling mecha-
nisms as well. E.g., in Genocop III, an evolutionary optimization system presented by
Michalewicz and Nazhiyath [MN95], specialized mutation and crossover operators
guarantee that all linear constraints are satisfied during the optimization. However,
non-linear constraints are handled by either a stochastic or a deterministic repair pro-
cedure [Mic00c]. In the so-called quantum particle swarm optimizer, box constraints
are satisfied using a stochastic repair mechanism while for all other constraints a
static penalty function is applied [dS08].

Special Representations and Operators

In this category, constrained optimization problems are tackled by either

• the use of specialized operators which keep the population inside the feasible
space (e.g., modified position and velocity update equations), or
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• the modification of the problem’s representation such that the constraints can
be satisfied more easily (e.g., by simplifying the shape of the search space).

In Genocop III, specialized mutation and crossover operators guarantee the feasibility
of the generated solutions when solving linearly constrained problems [MN95]. Let
~x1 and ~x2 be two feasible solutions, then arithmetic crossover ~y = a ·~x1 + (1− a) ·
~x2,a∈ [0,1], results in a feasible offspring~y. A modified mutation operator is applied
as well.

Similarly, in particle swarm optimization linear equality constraints can be satis-
fied by using random values instead of random vectors in the velocity update equa-
tion [PE03]:

~vi,t = ω ·~vi,t−1 + c1 · r1,i,t · (~pi,t−1−~xi,t−1)+ c2 · r2,i,t · (~li,t−1−~xi,t−1)
~xi,t = ~xi,t−1 +~vi,t

In this case, the new particle position is a linear combination of feasible solutions,
and therefore also feasible. In order to avoid premature convergence and to ensure
the reachability of all feasible solutions, a specialized mutation operator was imple-
mented by Paquet and Engelbrecht [PE03]. Note, however, that linear inequality
constraints are not necessarly fulfilled. Therefore, Halter and Mostaghim extended
this approach with a repair mechanism to deal with general linearly constrained opti-
mization problems [HM06].

Instead of designing specialized operators which preserve the feasibility of the gen-
erated solutions, the problem’s representation can be modified such that it is easier to
handle the constraints. An example of such a transformation are decoders [Mic00a].
Formally, decoders can be described by a decoder function fdec : R →F which maps
a representation space R to the feasible solutions. The representation space can be an
arbitrary space which is explored by the population of a stochastic search algorithm,
but should, of course, have a simpler shape than the original feasible space.

When utilizing decoders, it is important that each feasible solution ~x ∈ F can be
reached, i.e., that fdec is surjective, that each~x ∈ F has the same number of represen-
tations, that the decoder function can be computed efficiently, and that small changes
in the representation space result in small changes in the feasible space [Mic00a].

Koziel and Michalewicz presented a decoder-based approach with R = [−1,1]n

which can be used for any constrained optimization problem in continuous domain.
For convex spaces, the decoder function fdec : [−1,1]n→ F is defined as [KM98]:

fdec(~y) =


~r0 + ymax · t0 ·

(
fS

(
~y

ymax

)
−~r0

)
︸ ︷︷ ︸

~l

if~y 6=~0

~r0 otherwise

(2.8)

where the fS : [−1,1]n→ S intuitively maps the n-dimensional cube [−1,1]n to the
rectangularly bounded n-dimensional search space, ~r0 ∈ F is an arbitrary feasible
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reference point, ymax = maxi=1...n |yi|, and t0 is computed by binary search such that
r0 + t0 ·~l is located on the boundary of F . Note that t0 is unique for convex fea-
sible spaces. The homomorphous mapping is illustrated in Figure 2.5. Koziel and
Michalewicz extended their approach for non-convex spaces [KM98, KM99]. How-
ever, an additional parameter is needed in that case.

x1

y1

S

x2 fS(~y/ymax)

~y

1-1

-1

1 ~y/ymax

ymax

y2

~r0
F

~r0 + t0 ·~l

fdec(~y)

Figure 2.5: Illustration of the homomorphous mapping as defined by Koziel and
Michalewicz [KM98, KM99]. The decoder function fdec : [−1,1]n → F and ~l are
given in Equation (2.8).

Monson and Seppi [MS05] used a homomorphous mapping for optimization prob-
lems that solely incorporate linear equality constraints. Let S = Rn be the n-dimen-
sional search space of the optimization problem. Then, the equality constraints define
a lower-dimensional space, which is transformed such that the explored representa-
tion space is Rm with m≤ n.

Some particle swarm optimizers cope with constrained optimization problems by
transforming them in unconstrained ones. Hu, Eberhart and Shi [HE02b, HES03a]
allow particles to leave F , but they neither evaluate infeasible solutions nor consider
them in the private guide update. For minimization problems, this method is equiva-
lent to modifying the objective function to:

fnew(~x) =

{
f (~x) if~x ∈ F
+∞ otherwise

In the PSO variant of Zhang et al. [ZXB04], box constraints are eliminated by con-
structing infinitely many copies of the n-dimensional search space which are placed
side by side in Rn as illustrated in Figure 2.6.

Separation of Objectives and Constraints

Some constraint handling techniques aim at optimizing constraints and objective
function seperately. There exist several approaches in this category, for instance:
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Figure 2.6: Periodic search space of Zhang et al. [ZXB04] for a two-dimensional
problem.

• The problem can be transformed into a multi-objective optimization problem
(see, e.g., [Mic00b] for details).

• Deb [Deb00] used a modified selection scheme for handling constraints in evo-
lutionary computation. Whenever two solutions compete, a feasible solution is
preferred to an infeasible one. If both solutions are feasible, they are compared
with respect to their objective values, whereas if both are infeasible, the sum-
marized constraint violations are considered. A similar approach was presented
by Pulido and Coello for particle swarm optimization [PC04].

• Takahama and Sakai [TS06] proposed a so-called ε-constrained PSO with a
modified order relation for the solutions produced by a particle swarm. For the
comparison of two candidate solutions, the objective value is only used if either
the constraint violations are equal (note that a definition for the computation of
constraint violations is needed), or if the constraint violations of both solutions
are smaller than a specified, possibly dynamic, threshold ε. Otherwise, the
constraint violations are used for the comparison.

• Liang and Suganthan [LS06] extended their dynamic multi-swarm optimizer
[LS05] for constrained optimization problems by adaptively assigning sub-
swarms to solve different constraints, and by utilizing specialized criteria for
the comparison of two particles.

2.3.2 Bound Handling

Many optimization problems have at least box constraints, i.e., the search space S =
[lb1,ub1]× [lb2,ub2]×·· ·× [lbn,ubn] is bounded. Even if constraints are eliminated
by certain approaches, e.g., the homomorphous mapping of Koziel and Michalewicz
[KM98, KM99], box constraints are not removed. Feasible solutions can be located
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efficiently when solving box-constrained problems. In PSO algorithms, box con-
straints are usually tackled by repairing infeasible solutions, or by using a modified
problem representation or velocity operator. Note that repair algorithms have to con-
sider both position and velocity handling. Moreover, general constraint handling
techniques like penalizing infeasible solutions as discussed in the previous section
can be applied.

Repair Algorithms – Position Handling

The application of the standard PSO update equations does not prevent particles from
leaving the specified search space. In this section, repair mechanisms, which map
infeasible particle positions to feasible ones, are discussed. When repairing a particle,
it often makes sense to also modifiy its velocity. Assume, for instance, that infeasible
particles are set to the nearest boundary:

xi,t,d =


lbd if xi,t,d < lbd

ubd if xi,t,d > ubd

xi,t,d otherwise

where xi,t,d is the d-th component of particle i’s position at time step t. If xi,t,d > ubd
and the velocity is not altered, vi,t,d ≥ 0 holds and the particle tends to leave the search
space again (similarly, for xi,t,d < lbd). Hence, it would make sense to, for example,
set the velocity to zero or even invert the d-th velocity component so that the particle
is pulled back into the search space. Velocity handling strategies are discussed in
the next paragraph. For position handling several repair strategies exist (see also
Figure 2.7):

• Nearest: Infeasible particles are reset to the nearest boundary as defined above
[CPL04, BM06, ZXB04, Cle06a, Cle06b].

• Shrink: The particle position is set to the intersection point of~xi,t −~xi,t−1 with
the boundary (i.e., the particle “stops” at the boundary) [ABEF05, Eng05].
Hence, the particle position is computed as

~xi,t =~xi,t−1 +σi,t ·~vi,t

with

σi,t,d =


(lbd− xi,t−1,d)/vi,t,d if xi,t,d < lbd

(ubd− xi,t−1,d)/vi,t,d if xi,t,d > ubd

1 otherwise

and
σi,t = min

d=1...n
{σi,t,d} .

This method can also be utilized for general linear constraints [HM06].
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• Random: Each xi,t,d /∈ [lbd,ubd] is redrawn uniformly at random between lbd
and ubd [ZXB04, Eng05].

• Reflect: Infeasible particles are reflected at the boundary [BF05]. This process
is repeated until the particle position satisfies the box constraints:

while xi,t,d /∈ [lbd,ubd] do
if xi,t,d < lbd then

xi,t,d = 2 · lbd− xi,t,d
else if xi,t,d > ubd then

xi,t,d = 2 ·ubd− xi,t,d
end if

end while

• Intermediate: If xi,t,d > ubd then xi,t,d is set to an intermediate value of xi,t−1,d
and ubd (the case xi,t,d < lbd is handled analogically). Alvarez-Benitez et
al. [ABEF05] used a truncated exponential distribution that prefers boundary
regions for this purpose. The utilization of other probability distributions is
also possible. Zielinski et al. [ZWLK09] deterministically set infeasible parti-
cles to the center of xi,t−1,d and ubd (resp. lbd), i.e., xi,t,d = 1

2(xi,t−1,d +ubd) if
xi,t,d > ubd .

• Resample: The stochastic components in the velocity update equation are re-
drawn until the particle position is feasible [ABEF05].

Repair Algorithms – Velocity Handling

Whenever an infeasible particle’s position is repaired, it might make sense to also
modify its velocity. Typical velocity handling strategies are:

• Unmodified: Both feasible and infeasible particles keep their velocity.

• Adjust: After position handling, the velocity is adjusted such that ~vi,t =~xi,t −
~xi,t−1 holds.

• Zero: Let Di,t = {d | xi,t,d /∈ [lbd,ubd]} be a set of indices, and~vi,t the velocity
vector of particle i at time step t. Then ∀d ∈ Di,t : vi,t,d = 0. In other words,
vi,t,d is set to zero iff particle i crosses the boundary in dimension d at time
step t. This method can be utilized with or without a position handling strategy
[Cle06b, Cle06a, Eng05, RRS04].

• Invert: Let Di,t be defined as above, then ∀d ∈Di,t : vi,t,d =−z ·vi,t,d , where z≥
0 is a user-defined parameter. This method is usually applied in combination
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Figure 2.7: Various position handling strategies utilized in particle swarm optimiza-
tion, illustrated for two-dimensional search spaces S . Figures (a)–(e) show repair
strategies whereas Figure (f) depicts a special representation of the problem: Infeasi-
ble particle positions evaluate to +∞ for minimization problems.

with a bound resetting method such as Nearest in order to pull particles back
into the search space. Typical values for z are z = 0, which is equivalent to
the Zero strategy, z = 0.5 [Cle06a], and z = 1 [CPL04, MK05]. Alternatively,
z may be drawn at random according to a specified probability distribution,
independently for each component [Cle06a].

Special Representations

Instead of utilizing repair strategies, infeasible particle positions can be accepted if
the objective function is modified appropriately. Often, the objective function value
is set to infinity for all~x /∈ S [Men04, BK07, Ken07, Eng05, RRS04]. This method is
equivalent to not evaluate infeasible particles and equivalent to prevent that a parti-
cle’s private guide is updated to an infeasible solution. Using the previously presented
categories for constraint handling techniques, this approach can be seen as a special
representation of the problem. For minimization problems, the objective function is
modified to:

fnew(~x) =

{
f (~x) if~x ∈ S
+∞ otherwise

This strategy, which will be denoted as Infinity henceforth, is recommended by Ken-
nedy, one of the inventors of the PSO algorithm, due to the following reasons [BK07,
Ken07]: It is straightforward, easy to apply, and the trajectories of the particles are
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not disturbed. Kennedy argues that there is no reason to limit the particle positions to
a specified range as the skipped evaluation can be used in a later iteration.

Zhang et al. [ZXB04] also accept infeasible particle positions. In their approch the
n-dimensional search space is copied infinite many times and placed side by side to
cover Rn (see Figure 2.6).

Special Velocity Update Operators

The goal of special velocity update operators is either to to preserve the feasibility of
the particles or to help them to locate feasible regions.

The so-called Hyperbolic method presented by Clerc [Cle06a] is a feasibility pre-
serving approach. The d-th component of particle i’s position and velocity vector is
updated using the following equations:

vi,t,d = ω · vi,t−1,d + c1 · r1,i,t,d · (pi,t−1,d− xi,t−1,d)+ c2 · r2,i,t,d · (li,t−1,d− xi,t−1,d)

if vi,t,d > 0 then
vi,t,d =

vi,t,d

1+
vi,t,d

ubd− xi,t−1,d
else

vi,t,d =
vi,t,d

1−
vi,t,d

xi,t−1,d− lbd
end if

xi,t,d = xi,t−1,d + vi,t,d
(2.9)

After applying the standard velocity update, the velocity is adjusted such that the
resulting particle position is feasible, as shown in Figure 2.8 for a one-dimensional
search space S = [−100,100].

The definition of a maximum velocity for each component, also denoted as velocity
clamping, is another special velocity operator which might help particles to reenter
the search space once they are infeasible. Kennedy suggests to rather use velocity
clamping than position clamping in the occurence of box constraints [Ken07]. Let
V = [−Vmax,1,Vmax,1]× [−Vmax,2,Vmax,2]× ·· · × [−Vmax,n,Vmax,n] then the standard
velocity update equation is followed by:

if vi,t,d > Vmax,d then
vi,t,d = Vmax,d

else if vi,t,d <−Vmax,d then
vi,t,d =−Vmax,d

end if
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Figure 2.8: Hyperbolic boundary handling as presented by Clerc [Cle06a]. Particle
i’s new position xi,t is shown in dependence of the old position xi,t−1 and the updated
(but not yet corrected) velocity vi,t . Obviously, xi,t ∈ [−100,100], which would also
be true for broader ranges of vi,t .

2.4 Theoretical Results for Particle Swarm
Optimization

Although the core of the PSO algorithm can be described by two formulas (velocity
and position update equation), the exact swarm behavior and characteristics such as
convergence properties or sampling distributions are by far not obvious. In fact, the
analysis of particle swarm optimization is a great challenge due to the particles’ inter-
actions and the stochastic nature of the velocity update, which make it difficult to find
accurate models reflecting the behavior of a real particle swarm. However, progress
was made in recent years, leading to a better understanding of the swarm’s dynamics
and providing parameter selection guidelines based thereon. Before presenting the
models that are utilized in the literature of PSO analyses, the standard position and
velocity update equations (cf. Eq. (2.1) and Eq. (2.2), page 9) are repeated here for
convenience:

~vi,t = ω ·~vi,t−1 + c1 ·~r1,i,t� (~pi,t−1−~xi,t−1)+ c2 ·~r2,i,t� (~li,t−1−~xi,t−1)
~xi,t =~xi,t−1 +~vi,t
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2.4.1 Models

Deterministic model [vdB02, CK02, Tre03, vdBE06, OM99, YII03]. As each com-
ponent of a particle’s position and velocity vector is updated independently, a one-
dimensional problem is considered without loss of generality (see, e.g., [vdB02]).
Furthermore, stagnation is assumed, which means that none of the particles improves
its personal best. This implies that all particles move independently from one another
through the search space, and the subscript i can be dropped [JLY07a,PB07]3. Due to
the stagnation, a particle’s private and local guide are constants, and will be denoted
as p and l in the following. By removing the stochastic components, the following
one-dimensional deterministic PSO update equations are derived:

vt = ω · vt−1 +φ1 · (p− xt−1)+φ2 · (l− xt−1) (2.10)
xt = xt−1 + vt (2.11)

where φ1 and φ2 are constants. By algebraic manipulations4, the system can be trans-
formed to a non-homogeneous linear recurrence relation [vdB02, vdBE06, OM99]:

xt = (1+ω−φ1−φ2) · xt−1−ω · xt−2 +φ1 p+φ2l (2.12)

As an alternative notation, the simplified PSO algorithm can be written as a linear,
discrete-time dynamic system [CK02, Tre03, YII03] with states~yt and system matrix
A such that~yt = A ·~yt−1 +~z. There are different possibilities to define~yt , A, and~z, for
instance (similar to [Tre03]):

~yt =
[

xt
vt

]
, A =

[
1−φ1−φ2 ω

−φ1−φ2 ω

]
, ~z =

[
φ1 p+φ2l
φ1 p+φ2l

]
(2.13)

Stochastic model [JLY07a, JLY07b, PB07, Pol08]. Similar to the deterministic
model, a one-dimensional problem and stagnation are assumed. However, the stochas-
tic parts of the velocity update equation are kept. Again, the system can be rewritten
as a non-homogeneous linear recurrence relation [JLY07a, JLY07b, PB07, Pol08]:

xt = (1+ω− c1r1,t− c2r2,t) · xt−1−ω · xt−2 + c1r1,t p+ c2r2,t l (2.14)

In this relation, whilst c1, c2, ω, p, and l are constants, r1,t , r2,t , x0, and x1 are stochas-
tic variables. The particle’s trajectory {xt} is a stochastic process [JLY07a], from
which expectation values and variances [JLY07a,JLY07b,PB07], or higher-order mo-
ments [Pol08] may be derived.

3Some authors consider particles in isolation [vdB02] or reduce the population to a single indi-
vidual [CK02], which results in the same model due to the fact that they additionally assume that the
isolated/single particle does not improve its private guide.

4Insert vt = xt − xt−1 and vt−1 = xt−1− xt−2 which are obtained from Eq. (2.11) in Eq. (2.10).
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2.4 Theoretical Results for Particle Swarm Optimization

Markov chain model [PLCS07, PL07]. The preceding models are typically an-
alyzed without taking the optimization problem to be solved into account. Instead,
stagnation is assumed, and therefore, the trajectories of the particles do not depend on
the shape of the objective function. In 2007, Poli et al. [PLCS07] suggested to model
stochastic search algorithms for continuous problems, such as evolution strategies
or particle swarm optimization, by discrete Markov chains. Most evolutionary al-
gorithms can be described such that the Markovian property, which means that the
next state of the algorithm only depends on its current state, is fulfilled. Poli et al.
discretisize the n-dimensional search space S into a finite number of compact non-
overlapping subsets S1, . . . ,Sk. To each sub-domain, a fitness value fi, i = 1, . . . ,k is
assigned, e.g., fi = f (~xci), where~xci is the central point of Si. The state of an evolu-
tionary algorithm is usually its population, i.e., a set of search space positions, and
possibly additional algorithmic components such as private guides and velocities in
a particle swarm optimizer. In order to obtain a finite number of states, an individual
can, for instance, be represented by the index i of the respective sub-domain Si it is
located in.

Poli et al. [PLCS07, PL07] presented a Markov chain model for the so-called bare
bones particle swarm optimizer [Ken03], which samples a particle’s new position
componentwise from a Gaussian distribution with mean (pi,t−1,d + li,t−1,d)/2 and
standard deviation |pi,t−1,d− li,t−1,d|. The state of this particular particle swarm op-
timizer can be described by the particles’ private guides, as no additional informa-
tion (such as a particle’s current position) is needed for the update equation. Hence,
the state of a bare bones PSO with five particles can, for instance, be expressed by
Yt = (1,1,2,1,6), which means that three particles are located in sub-domain S1, and
one particle is located in sub-domains S2 and S6, respectively, at time step t. When
sub-domains are ordered such that a higher index reflects a better fitness value, the
fifth particle (in sub-domain S6) currently carries the best private guide, and serves,
using a fully connected neighborhood topology, as local guide for all other particles.
With these definitions in mind, Poli et al. determined the state transition matrix M of
different bare bones particle swarm optimizers [PLCS07,PL07]. E.g., the probability
of transition (1,1,2,1,6)→ (1,1,2,1,5) is zero as private guides never deteriorate
during the optimization (and the fitness of S5 is worse than the fitness of S6 due to
the order of the sub-domains). However, other state transitions are possible, e.g.,
switching from state (1,1,2,1,6) to state (1,1,2,5,6). The respective probabilities
were determined by Poli et al. [PLCS07, PL07].

The Markov chain model is very powerful, as the probability that an algorithm is
in a particular state at time step t can be determined by iterating the state transition
matrix M. More formally, let N be the number of states and π j,t denote the proba-
bility that the algorithm is in state j at time step t. Then, ~πt = (π1,t ,π2,t , . . . ,πN,t)
can be computed by ~πt =~π0 ·Mt . However, the computation of ~πt can be a very
time-consuming task as M grows quadratically with the number of sub-domains and
exponentially with the number of particles and dimensions [PL07].
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2.4.2 Analyses and Results

Many PSO analyses are based on a deterministic or stochastic model in which the
algorithm is either represented by a linear non-homogeneous recurrence relation or a
linear dynamic system. The application of dynamic systems theory allows to study
the convergence properties of the PSO model by computing the eigenvalues of the
system matrix A. If and only if the magnitude of all eigenvalues is smaller than 1, the
system converges to a stable point (see, e.g., [Tre03, YII03]). From this condition,
parameter guidelines can be derived.

Analyses of Deterministic PSO Models

Ozcan and Mohan [OM99] analyzed the recurrence relation given in Eq. (2.12) with
ω = 1, and suggest to choose c1+c2 < 4. Furthermore, they showed that the particles’
trajectories in this simplified system can be described by functions of sine and cosine.

Van den Bergh et al. [vdB02, vdBE06] studied the recurrence relation given in
Eq. (2.12) with respect to the convergence properties of the sequence {xt}+∞

t=0. They
formally defined convergence as limt→+∞ xt = x, where x is the point of convergence.
However, convergence of the series does not imply that x is a local or global optimum.
By analyzing the deterministic model, Bergh et al. showed that a particle’s trajectory
is guaranteed to converge to the weighted average of its private and local guide if c1,
c2, and ω are chosen such that the relation

ω >
1
2

(c1 + c2)−1 ⇔ c1 + c2 < 2(ω+1)

is fulfilled [vdB02, vdBE06]. A similar result was obtained by Yasuda et al. [YII03],
however, they did not replace φ1 and φ2 with their upper bounds c1 and c2, yielding
the following convergence criterion:

φ1 +φ2 < 2(ω+1)

In contrast to the previous approaches, φ1 and φ2 were replaced by their expec-
tation values c1/2 and c2/2, respectively, in Trelea’s PSO analysis. Hence, the fol-
lowing relationship between accelearation constants and inertia weight was estab-
lished [Tre03]:

c1 + c2 < 4(ω+1) (2.15)

Trelea not only provided convergence criteria, but additionally analyzed the kind of
convergence, which depends on the characteristics of the eigenvalues of the system
matrix, e.g., real-valued, complex, positive or negative. Conditions were derived
to obtain oscillatory, either harmonic or zigzagging, or non-oscillatory convergence
behavior.
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Clerc and Kennedy [CK02] analyzed the PSO algorithm in both discrete and con-
tinuous time using a deterministic model similar to the one presented above. A so-
called constricted particle swarm optimizer was derived by rewriting the original
PSO equations to

~vi,t = χ ·
(
~vi,t−1 +ϕ1 ·~r1,i,t� (~pi,t−1−~xi,t−1)+ϕ2 ·~r2,i,t� (~li,t−1−~xi,t−1)

)
(2.16)

~xi,t =~xi,t−1 +~vi,t (2.17)

where χ is denoted as constriction coefficient. These update equations are alge-
braically equivalent to the standard ones (see Eq. (2.1) and Eq. (2.2)) by setting χ = ω

and χϕi = ci⇔ ϕi = ci/χ for i = 1,2. Clerc and Kennedy proved that the dynamic
system converges if the constriction coefficient χ is computed as follows:

χ =
2 ·κ

ϕ−2+
√

ϕ2−4 ·ϕ
(2.18)

where κ ∈ [0,1] and ϕ = ϕ1 + ϕ2 > 4. The convergence speed can be controlled by
κ: High values, e.g., κ = 1, correspond to slow convergence.

Analyses of Stochastic and Markov Chain PSO Models

Jiang, Luo and Yang [JLY07a, JLY07b] and Poli and Broomhead [PB07] considered
the particles’ trajectories as a stochastic process using the stochastic non-homoge-
neous recurrence relation given in Eq. (2.14). By applying the expectation opera-
tor on both sides of Eq. (2.14), an iterative process is obtained which can be ana-
lyzed by computing the roots of the associated characteristic polynom. The magni-
tudes of these roots must be smaller than one for a convergent system. The series
of expectation values converges if the relation suggested by Trelea (Eq. (2.15)) is
fulfilled [JLY07a]. However, convergence of the sequence of expectation values,
{E[xt ]}, does not imply convergence of {xt}. Convergence of {xt} is only guaran-
teed if additionally the sequence of standard deviations, denoted as {StdDev[xt ]},
approaches zero. This aspect was analyzed by Jiang et al., and conditions for a
convergent sequence of variances (the sequence will be denoted as {Var[xt ]}) were
derived [JLY07a]. The study was extended by not only defining convergence crite-
ria, but by establishing relations between the eigenvalues of the iterative processes
{E[xt ]} and {Var[xt ]} and the algorithmic parameters c1, c2, and ω. These relations
allow to control the convergence speed of a particle swarm by appropriate parameter
selection [JLY07b]. Poli and Broomhead [PB07] analyzed the sequence of standard
deviations in the stochastic model. They showed that {StdDev[xt ]} can only converge
to zero if p = l. Hence, particles with p 6= l keep on exploring. Note that a parameter
setting that results in {StdDev[xt ]} 6→ 0 for all particles might be desirable to enhance
a swarm’s capability to escape local optima [PB07].
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Poli [Pol08] studied the dynamics of higher-order moments of the stochastic se-
quence {xt} presented in Eq. (2.14), and showed that, theoretically, the respective
recurrence relations can be obtained for moments of arbitrary order. Based on these
findings, the density function of the sampling distribution of PSO during stagnation
was approximated by using the first four moments. Experimentation showed that the
model’s predictions are extremely accurate [Pol08].

The so-called bare bones particle swarm optimizer [Ken03] was analyzed by Poli
et al. [PLCS07,PL07] using the Markov chain model presented above. Success prob-
ability and expected runtime of different bare bones particle swarm optimizers was
computed for several one-dimensional testfunctions. Again, the results are confirmed
by experimental investigations [PLCS07, PL07].

Kadirkamanathan et al. [KSF06] analyzed the stability of a stochastic PSO model
and derived sufficient conditions for asymptotic stability in the sense of Lyapunov
stability.

Analyses of PSO Variants

The previously presented theoretical investigations either study a model of the stan-
dard particle swarm optimizer or the bare bones PSO. There exist some analyses for
special PSO variants: Veeramachaneni et al. [VOK07] took first steps in analyzing
the density function of a particle’s velocity in the binary PSO of Kennedy and Eber-
hart. A theoretical runtime analysis of the same binary particle swarm optimizer was
performed by Sudholt and Witt [SW08]. Poli et al. [PBBK07] analyzed the first four
moments of a self-constructed PSO variant, which was obtained by stepwise transfor-
mation and simplification of the standard PSO algorithm. Witt conducted a runtime
analysis of a special variant of the so-called guaranteed convergence PSO [Wit09].

2.5 Multi-objective Particle Swarm Optimization

Many real-world optimization problems require the simultaneous optimization of two
or more objectives. For instance, the design of hardware/software systems, which can
be found in cars or mobile phones, involves the optimization of many, usually con-
flicting criteria like monetary cost, data-throughput, or power consumption [BTT98].
Other examples are portfolio optimization (risk vs. expected return) [EKS04], or
manufacturing processes (fabrication cost vs. quality). As the optimization goals are
usually conflicting, most algorithms search for a set of so-called trade off solutions.

Classical approaches for solving multi-objective optimization problems are for in-
stance weighted sum scalarization or the ε-constraint method (see, e.g., [Ehr05]). Ad-
ditionally, many meta-heuristic approaches were extended for solving multi-objective
problems. There exist multi-objective variants for evolutionary algorithms [Deb01,
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ZT99, ZLT01, DAPM02, ZK04, CVL02], simulated annealing [BSMD08, SK06], ant
colony optimization [GMCH07], and particle swarm optimization [RSC06].

2.5.1 Multi-objective Optimization

The task of multi-objective optimization is to simultaneously optimize n′ objectives
fi : S → R, i = 1, . . .n′, n′ ≥ 2. It is assumed that each function is to be minimized.
Hence, a multi-objective optimization problem can be described by an objective func-
tion f : S→Rn′ , where S is the n-dimensional search space (or decision space) of the
problem, and the image Z ⊆ Rn′ of S under f is the n′-dimensional objective space.
As PSO is mainly designed for continuous optimization problems, let S ⊆ Rn in this
section. The situation is depicted in Figure 2.9.

Objective
function

f

(Black box)

Search space
position

~x ∈ S ⊆ Rn

Objective values

f (~x) = ( f1(~x), . . . , fn′(~x))
∈ Z ⊆ Rn′

Figure 2.9: Typical scenario when solving continuous multi-objective optimization
problems (based on an illustration in [ZTL+03]).

In contrast to single-objective optimization problems, it is in general not possible
to define a total order on Z ⊆ Rn′ . Sometimes, user preferences can be determined
beforehand, and a multi-objective problem can be transformed into a single-objective
one by, e.g., building a weighted sum, minimizing the distance to an ideal solution, or
by defining a lexicographic order on the objectives [Deb01,Ehr05]. However, often it
is more desirable to present a set of equally good solutions to the decision maker. This
is possible due to the fact that a partial order�⊆Z×Z, denoted as weak dominance,
can be defined on the objective space (see, e.g., [Lau03]):

f (x1)� f (x2) :⇔
(
∀i ∈ {1, . . . ,n′} : fi(x1)≤ fi(x2)

)
(2.19)

with x1,x2 ∈ S . Based on this definition, an order relation� f⊆ S×S , which depends
on the objective function f , can be specified for elements x1,x2 ∈ S :

x1 � f x2 :⇔ f (x1)� f (x2) (2.20)

For the sake of brevity, the index f will be skipped in the following. Let x1,x2 ∈ S .
The relations ≺ (dominance), ∼ (equivalence), ‖ (incomparability) ⊆ S × S (see,
e.g., [Lau03]) are defined as follows:
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x1 ≺ x2 ⇔ x1 dominates (is preferable to) x2 ⇔ (x1 � x2∧ x2 � x1)
⇔ (∀i ∈ {1, . . . ,n′} : fi(x1)≤ fi(x2)∧∃i ∈ {1, . . . ,n′} : fi(x1) < fi(x2))

x1 ∼ x2 ⇔ x1 and x2 are equivalent ⇔ (x1 � x2∧ x2 � x1)
⇔ (∀i ∈ {1, . . . ,n′} : fi(x1) = fi(x2))

x1 ‖ x2 ⇔ x1 and x2 are incomparable ⇔ (x1 � x2∧ x2 � x1)

These relations are illustrated in Figure 2.10 on a multi-objective optimization prob-
lem with the two objective functions f1 and f2 which are to be minimized. E.g.,
assume that A, . . . ,J are available cars, and we want to optimize both the fuel con-
sumption ( f1) and the price ( f2). Obviously, we would prefer car B over car E as it
is both cheaper and consumes less gas. Hence, B ≺ E holds. We would also prefer
B over H. Although both cars have the same monetary cost, car B consumes less
gas. In other words, B also dominates H, B≺ H. Although I and J are not the same
cars, they are equivalent with respect to the optimization goals as they are mapped to
the same objective vector: I ∼ J. However, it is not clear, if car A or car B is to be
preferred. B is cheaper than A, but its fuel consumption is higher, whereas A is more
expensive but consumes less gas. These solutions are incomporable, or A ‖ B.

f(B)

Region dominated

by

2f

f(B)

f(C)

f(E)

f(H)

f(F)

f(D)

f(G)

f(I) = f(J)

f1

f(A)

Figure 2.10: Example of the objective space of a multi-objective optimization prob-
lem with two objective functions f1 and f2 which are to be minimized.

A solution x∗ ∈ S is called Pareto optimal if there exists no solution x ∈ S with
x ≺ x∗. The set PS ⊆ S of all Pareto optimal solutions is called Pareto optimal set,
whereas the set PZ ⊆ Z of the corresponding objective vectors is denoted as Pareto
optimal front.
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When solving multi-objective optimization problems, usually the goal is to present
a set of incomparable solutions to the decision maker who has to choose among
them according to his/her preferences. A set A ⊆ Z which contains only incom-
parable solutions is called approximation set [ZTL+03]. In Figure 2.10, the sets
A1 = { f (A), f (B), f (C), f (D)} and A2 = { f (D), f (E)} are examples of approxima-
tion sets.

Most meta-heuristic optimization algorithms do not guarantee to find the Pareto
optimal solutions. Instead, their output is an approximation of the true Pareto front,
typically an approximation set. In order to compare the performance of different
multi-objective optimizers, the following steps are usually carried out in experimental
studies:

1. Choose a suitable set of benchmark functions, e.g. from the ZDT functions
[ZDT00], the DTLZ problems [DTLZ02], the WFG benchmarks [HHBW06],
the benchmarks of Okabe et al. [OJOS04], and/or real world applications.

2. Perform multiple runs per algorithm and benchmark.

3. Compare the performance of different algorithms by visualizing the achieved
approximation sets and by computing commonly-used quality meassures such
as hypervolume [ZT98, ZTL+03], binary ε-indicator [ZTL+03], inverted gen-
erational distance [SC05], spacing [VL00], and coverage [ZT98], to assess both
to what extent the algorithms approached the true Pareto front, and the spread
and diversity of the obtained solutions. A thorough study on the capabilities
and restrictions of quality indicators was carried out by Zitzler et al. [ZTL+03].

2.5.2 PSO for Multi-objective Problems

When adapting particle swarm optimization for multi-objective problems, the most
crucial question is how to choose a particle’s private and local guide. As often a total
order cannot be defined on the objective space, it is not possible to directly adopt the
concepts of single-objective particle swarm optimization. Most multi-objective PSO
algorithms maintain an external repository to store (a subset of) the best solutions
found so far by the swarm. A particle’s local guide is then chosen among them
according to a specified strategy.

External repositories for storing good solutions, also denoted as archives, are also
frequently used in multi-objective evolutionary algorithms. They can either be un-
bounded in size by means of efficient data structures such as dominated and non-
dominated trees [FES03], or their size can be restricted by using, for instance, the
adaptive grid archive [KC03] or the ε-dominance concept [LTDZ02].

Archives usually contain a set of incomparable solutions, which means first, that a
solution can only be added if it is not dominated by any archive member, and second,
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that whenever a solution is added, all archive members that are dominated by this
solution are deleted from the repository.

Selection of Local Guides

In early multi-objective PSO algorithms, the local guides were not selected from an
external repository. Instead, in Moore’s and Chapman’s [MC99] approach, the non-
dominated solutions found by each particle are stored in a private repository. Similar
to single-objective particle swarm optimization, a social network is defined upon the
particles, and a particle’s local guide is chosen among all mutually non-dominated
solutions of its neighbors.

Most other multi-objective particle swarm optimizers gave up the idea of a social
network. Instead, information obtained by the swarm is globally available for any
particle. In the approaches of Hu and Eberhart [HE02a] and Parsopoulos and Vra-
hatis [PV02a], a particle’s local guide is selected by explicitely taking the fact that
more than one objective is to be optimized into account. For problems with two
objectives, Hu and Eberhart redefined neighborhood such that each particle i has k
neighbors, where k is a user-specified parameter. The neighbors are dynamically de-
termined in every iteration as those particles which are closest to particle i considering
the first objective. From these neighbors, particle i’s local guide is selected as the one
which is best according to the second optimization goal. Parsopoulos and Vrahatis
also explained their approach for two-dimensional problems. In their algorithm, two
subswarms are used to perform the optimization task. The fitnesses of the individuals
in the first subswarm are evaluated according to the first objective function. However,
for their velocity update, the best individual in the second swarm is used as their local
guide, and vice versa.

In the following, selected multi-objective PSO algorithms in which local guides are
chosen from an external repository of non-dominated solutions are briefly decribed,
in order to give an impression of how PSO can be extended for multi-objective prob-
lems. However, it has to be noted that the list is by far not complete. A detailed
overview on multi-objective PSO algorithms can be found in [RSC06].

In the approach of Coello et al. [Coe02a, CPL04], the objective space explored so
far is split into equal-sized hypercubes. To each hypercube a fitness value is assigned
which is indirectly proportional to the number of archive members in the respective
hypercube. In order to select a particle’s local guide, first a hypercube is chosen
based the fitness values. The higher the fitness, i.e., the less populated the respective
hypercube is, the higher is the probability that it is selected. Afterwards, the particle’s
local guide is chosen uniformly at random from the archive members in the selected
hypercube. The approach is illustrated in Figure 2.11 (a).

In contrast to the multi-objective PSO algorithm of Coello et al., the Sigma method
of Mostaghim and Teich [MT03] as well as the strategies of Alvarez-Benitez et
al. [ABEF05] take the particle positions in the objective space into account when
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selecting local guides. In Mostaghim’s and Teich’s Sigma method a so-called sigma
vector is assigned to each element of the objective space such that any two points
that define a line through the origin have the same sigma values (see the four lines in
Figure 2.11 (b)). Each particle chooses the closest archive member as its local guide,
where the Euclidean distances of the sigma vectors are used as distance meassure.
Alvarez-Benitez et al. allow only archive members which dominate particle i to be
selected as particle i’s local guide. They introduced three methodologies, from which
two are depicted and described in Figures 2.11 (c) and 2.11 (d).

Selection of Private Guides

For selecting a particle’s private guide, two conceptually different methods are cur-
rently available in the literature:

• Each particle i has a single private guide ~pi,t−1 at time step t. The private guide
is updated according to one of the following strategies:

1. It is replaced with the current particle position ~xi,t only if ~xi,t ≺ ~pi,t−1
[HE02a, MT03].

2. It is replaced with the current particle position~xi,t if either~xi,t � ~pi,t−1 or
~xi,t ‖ ~pi,t−1 [ABEF05].

3. As a compromise of these two approaches, the private guide can be set
to the prefered solution of ~xi,t and ~pi,t−1, if existing. However, if they
are incomparable, ~pi,t is chosen uniformly at random among ~pi,t−1 and
~xi,t [Coe02a, CPL04].

• The second approach is to maintain a repository for each particle to store its
best found solutions. In each time step, the private guides are chosen from
these personal archives, e.g., uniformly at random [MC99, FS02, BM06].

2.6 Other Meta-heuristic Optimization Algorithms

The following meta-heuristic optimization approaches belong, like particle swarm
optimization, to the class of stochastic search algorithms: Genetic algorithms [Hol62,
Hol75, Gol89], evolution strategies [Rec65, Rec73, Sch75, Rec94, BS02], simulated
annealing [KGV83, vLA87], differential evolution [SP97, PSL05], and ant colony
optimization [DMC91, CDG99, DS04].

In their no free lunch theorems, Wolpert and Macready [WM97] proved that, if av-
eraged over all possible optimization problems, all black box optimization algorithms
perform equally well. Although it has to be noted that these theorems are based on
some assumptions and are therefore not always applicable [AT07, CK03], the results
of Wolpert and Macready imply that each black box optimization algorithm has its

43



2. Particle Swarm Optimization (PSO)

f
1

f
2

f
1

f
2

f
2

f
1

f
2

f
1

10

3.33

1.67

(a) (b)

f(P)

f(C)

f(B)
f(A)

f(D)

(d)

Archive Member

(c)

A random archive

member inside this

f(P)

f(C)

f(B)
f(A)

f(D)

P chooses its local guide among A,

B, C, and D, according to their fitness.

An archive member’s fitness is higher

(i.e., it is chosen with higher probability)

the less particles it dominates.
region is selected

as P’s local guide.

Archive Member

Particle

Archive Member

Particle

Archive Member

Particle

Figure 2.11: Strategies for selecting local guides from an external repository in multi-
objective particle swarm optimization.
(a) Coello et al. [Coe02a, CPL04]
(b) Sigma method of Mostaghim and Teich [MT03]
(c) Random method of Alvarez-Benitez et al. [ABEF05]
(d) Prob method of Alvarez-Benitez et al. [ABEF05]
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specific strengths and weaknesses, which, due to the complexity of most algorithms,
are usually determined by experimental evaluation on well-defined benchmark prob-
lems.

In this section, evolution strategies and ant colony optimization are briefly de-
scribed. Evolution strategies are a basis of PSO with velocity adaptation presented
in Section 5.3, and ant colony optimization is an example of another optimization
algorithm from the field of computational swarm intelligence.

2.6.1 Evolution Strategies
Evolution strategies belong to the class of evolutionary algorithms, which perform
optimization tasks by simulating natural evolution processes according to Darwin’s
theory. A population of individuals explores the parameter space of the objective
function to be optimized. New individuals, also referred to as offspring, are gen-
erated by using problem-specific crossover (recombination) and mutation operators.
The combined crossover and mutation step is also called variation. A selection oper-
ator decides which individuals survive and build the population of the next iteration.
Usually, the better an individual’s objective value, the higher is the probability that it
is selected. Evolutionary algorithms can be divided into four major fields:

• Genetic algorithms [Hol62, Hol75, Gol89]

• Evolution strategies [Rec65, Rec73, Sch75, Rec94, BS02]

• Genetic programming [Koz92]

• Evolutionary programming [Fog62, FOW66]

Genetic programming and evolutionary programming are used for evolving computer
programs, while genetic algorithms and evolution strategies are stochastic search al-
gorithms for global optimization. The parameter space S of the optimization problem
to be solved can be an arbitrary set on which crossover and mutation operators are
defined.

Evolution strategies not only try to optimize the parameters of the objective func-
tion (object parameters), but also the algorithmic parameters, referred to as strategy
parameters. Therefore, the algorithmic parameters are devided into a set of so-called
endogenous strategy parameters, which are adapted to the optimization process, and
fixed exogenous strategy parameters [BS02].

In an evolution strategy, a population of µ individuals explores the search space. In
each iteration, λ offspring are generated by applying problem-specific recombination
and mutation operators. For the recombination process, an additional parameter ρ

indicates the number of parents per offspring. After λ offspring were produced, the
individuals for the next iteration are selected. Evolution strategies can be described
with the following commonly-used notation [Rec94, BS02]:
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• (µ/ρ+λ)-ES if the individuals that build the population in the subsequent iter-
ation are selected from both current population and offspring.

• (µ/ρ,λ)-ES if these individuals are selected from the set of offspring. In this
case, it is important to choose λ > µ so that the selection operator is able to
guide the search in promising directions (otherwise, all children would be se-
lected).

An individual i at time step t is composed of a position~xi,t , also denoted as object pa-
rameter vector, the corresponding objective value f (~xi,t), and its endogenous strategy
parameters~si,t .

Adaptation of the strategy parameters can take place in various ways, among them
mutative strategy parameter control [Rec94], the so-called 1/5-rule of Rechenberg
[Rec73], cumulative and/or derandomized approaches [OGH94], and covariance ma-
trix adaptation [HO96, HO01].

Although evolution strategies can be used for any search space on which recom-
bination, mutation, and corresponding strategy parameter adaptation is defined (e.g.,
binary and combinatorial search spaces [BS02]), they are mostly applied to solve
continuous optimization problems. In the following, examples for each algorithmic
component like recombination and mutation are outlined, assuming f : Rn→ R.

Parental selection

In an (µ/ρ ,+λ)-ES, ρ parents must be selected for each offspring. They are usually
chosen uniformly at random among all population members, independently of the
individuals’ fitness values [BS02].

Recombination

There exist two standard approaches for recombination in ES [Rec73, BS02].

• Intermediate recombination: Let PAR = {(~xi,~si, f (~xi) | i = 1,2, . . . ,ρ} denote
the set of (randomly) selected parents, A = {~ai | i = 1,2, . . . ,ρ} the set of vec-
tors to recombine (object or strategy parameters), and~b the resulting recombi-
nant. Then, the d-th component bd of~b is the arithmetic mean of the respective
parental components:

bd =
1
ρ

ρ

∑
i=1

ai,d

where ai,d is the d-th component of vector ~ai.

• Discrete recombination: Each component of~b is equal to the respective com-
ponent of a randomly selected parent.

An example of both approaches is given in Figure 2.12.
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Figure 2.12: Example of two standard evolution strategy recombination approaches:
intermediate and discrete recombination.

Mutation of object parameters

Object parameter mutation typically takes place by adding a normally distributed
random value with zero mean to the result of the recombination. Let ~yrec be the
recombined object parameters, then the offspring’s object parameters evaluate to

~y =~yrec +~z

where~z can be defined as:

• ~z = σ(N1(0,1),N2(0,1), . . . ,Nn(0,1))
where Nk(0,1), k = 1 . . .n, are independently drawn from the standard normal
distribution [Rec94, BS02]. In this case, there exists only a single endogenous
strategy parameter, σ.

• ~z = (σ1N1(0,1),σ2N2(0,1), . . . ,σnNn(0,1))
with n endogenous parameters: ~s = (σ1,σ2, . . . ,σn) [Rec73, BS02].

• In the previous approach only axis-parallel scaling is taken into account. More
generally,~z can be computed as follows [HO96]:
~z = δM(N1(0,1),N2(0,1), . . . ,Nn(0,1))
where δ > 0 is a global step size and M ∈ Rn×n is a transformation matrix,
which intruduces correlations between the components of~z. Hansen and Os-
termeier proposed covariance matrix adaptation to adapt the strategy parame-
ters introduced by M. The global step size δ is updated by using a cumulative
approach, which takes the mutation steps of more than one iteration into ac-
count [HO96, OGH94].

Strategy parameter adaptation

The mutation approaches presented above introduce strategy parameters. In this sec-
tion, two methodologies for strategy parameter adaptation are briefly described: the
1/5-rule of Rechenberg [Rec73], and mutative strategy parameter control [Rec94].
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The 1/5-rule of Rechenberg. Rechenberg [Rec73] analyzed the (1+1)-ES on two
very different functions. He observed that in both cases, the progress rate could
be maximized if the probability that an offspring is better than its parent is about
1/5 during the whole optimization run. If only a single standard deviation is used
for all object parameters, the following rule is suggested: The standard deviation
is decreased if the success probability (calculated by taking previous iterations into
account) drops below the threshold of 1/5, otherwise it is increased.

Mutative strategy parameter control. In this approach, each individual’s strategy
parameters are mutated before object parameter mutation is applied. The algorithm
is depicted in Algorithm 2.2. The basic idea is that strategy parameters which pro-
duced offspring of good quality survive for the next iteration while unsuccessful set-
tings vanish. Mutation of strategy parameters mostly takes place in a multiplicative
manner. As an example, if σ is the only strategy parameter, the mutant σ′ can be
calculated as follows:

σ
′ = σ · e(τN(0,1))

where τ is an exogenous learning parameter, typically set to τ = 1√
n or τ = 1√

2n
[BS02].

Selection

After the offspring was generated by performing recombination and mutation, the
individuals which build the population of the next iteration have to be selected. In
evolution strategies, selection is usually a deterministic procedure: Only the individ-
uals with best fitness values survive [Rec94,BS02]. There exist two kinds of selection
schemes: Plus selection selects the next population from both current population and
offspring whereas comma selection only selects among offspring individuals.

2.6.2 Ant Colony Optimization

Ant Colony Optimization (ACO) [DMC91, CDG99, DS04] is a meta-heuristic opti-
mization approach inspired by the foraging behavior of ants and their capability of
finding short(est) paths from their nest to a food source. The ACO algorithm is mostly
applied to combinatorial optimization problems. In this section, first the natural ba-
sis of ant colony optimization is described. Afterwards, the resulting optimization
algorithm is presented by using the traveling salesperson problem as an example.

Natural Ants – The Double Bridge Experiment

In 1989, Goss et al. [GAJP89] analyzed the foraging behavior of the Argentine ant
Iridomyrmex humilis. In their double bridge experiment, two paths were offered to
an ant colony from their nest to a food source: a shorter and a longer one. After
about ten minutes, nearly all ants took the shorter path. Based on previous biologic
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Algorithm 2.2
(µ/ρ ,+λ)-ES with mutative strategy parameter control (adapted from [BS02])
Require: Population size µ, Number of parents per offspring ρ, Number of offspring

per iteration λ, Fitness function f
1: t← 0
2: Initialize population P0←{(~xi,0,~si,0, f (~xi,0)) | i = 1,2, . . . ,µ}
3: repeat
4: for j = 1, . . . ,λ do
5: PAR j,t ← SelectParents(Pt , ρ)
6: ~r j,t ← RecombinationOfStrategyParameters(PAR j,t)
7: ~y j,t ← Recombination(PAR j,t)
8: ~r j,t ←MutationOfStrategyParameters(~r j,t)
9: ~y j,t ←Mutation(~y j,t)

10: end for
11: Ot ←{(~y j,t ,~r j,t , f (~y j,t)) | j = 1,2, . . . ,λ}
12: if Comma-selection then
13: Pt+1← SelectPopulation(Ot , µ)
14: else
15: Pt+1← SelectPopulation(Pt ,Ot , µ)
16: end if
17: t← t +1
18: until termination criterion is met
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studies, Goss et al. assumed that the investigated Argentine ant has only little ori-
entation skills. Instead, ants find shortest paths by using indirect communication via
pheromone trails, i.e., environmental modifications. They derived a stochastic model
for the ants’ behavior, which served as a basis for the ant colony optimization algo-
rithm.

The double bridge experiment, which led to the stochastic model of the Argentine
ants’ foraging behavior, is illustrated in Figure 2.6.2. At the beginning, each ant
chooses the upper (shorter) or lower (longer) path with equal probability. Hence, in
the idealized example each path is chosen by the same number of ants. While moving,
ants mark the chosen path with trail pheromones. The more pheromones are placed
on a path the more probable other ants will choose the same path. After a while, the
ants which have taken the shorter path arrive at the food source. On their way back,
they will choose the same path with great probability as there are no pheromones on
the other path yet. In the example used in Figure 2.6.2, all ants take the upper branch.
In subfigure (d), the other ants finally arrived at the food source. When heading back,
there are twice as many pheromones on the shorter path than on the longer one. It
is therefore chosen with a probablity of 2/3 whereas the other branch is only chosen
with a probability of 1/3. Assuming that two ants take the shorter path and only a
single ant takes the longer one, the difference in pheromone concentration on the two
paths further increases. Eventually, nearly all ants take the shorter branch as a result
of this autocatalytic or positive feedback process.

The Ant Colony Optimization Algorithm

In the following, two representative ACO algorithms, namely ant system [DMC91]
and ant colony system [DG97] are described by using the traveling salesperson prob-
lem (TSP) as an example application (see page 12 for a description of the TSP).

Ant System (AS), also referred to as ant-cycle [DMC91], was one of the first ACO
algorithms described in the literature. It is the basis for many improved ACO algo-
rithms such as ant colony system [DG97].

In AS, each ant starts at a randomly chosen vertex, and adds, step-by-step, new
nodes until the tour is completed. Similar to natural ant colonies, the artificial ants
cooperate via indirect communication using pheromone trails. Let G = (V,E) de-
note the graph of the traveling salesperson problem. For each edge (vi,v j) ∈ E, a
pheromone value τi, j is maintained, which indicates how desirable it is that an arti-
ficial ant chooses this edge for its tour. The pheromone values are updated during
the optimization. If an ant k is located at vertex vi, the probability that it proceeds to
vertex v j is given by the following random-proportional state transition rule:

pk
i, j =


τα

i, j·η
β

i, j

∑vl∈Jk(i)

(
τα

i,l ·η
β

i,l

) if v j ∈ Jk(i)

0 otherwise
(2.21)
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Figure 2.13: The double bridge experiment as described by Goss et al. [GAJP89].

where Jk(i) denotes the set of vertices which still have to be visited by ant k located
at vertex vi, ηi, j is a heuristic value typically set to 1/di, j where di, j is the distance
(weight) from vi to v j, and α and β are user-defined parameters, which determine the
relative importance of pheromone trail and heuristic information. Standard values for
the parameters are α = 1 and β ∈ [2,5] [DS04].

Let Lk be the length of the tour constructed by ant k. After each ant has completed
its tour, first a certain percentage of all pheromone values evaporates. Then, each ant k
increases the pheromone values on the edges it has used. The amount of pheromones
added by an ant is indirect proportional to the length of its tour, i.e., ants which found
good (short) tours are allowed to deposit more pheromones. The pheromone values
are updated according to

τi, j = (1−ρ)τi, j +
m

∑
k=1

∆τ
k
i, j (2.22)

where 0 < ρ≤ 1 is the pheromone evaporation rate and

∆τ
k
i, j =

{
1
Lk

if (vi,v j) ∈ tour constructed by ant k

0 otherwise.
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Due to the pheromone update rule, edges which are used in many good tours receive
high pheromone values, and the search is guided towards promising directions.

Ant colony system (ACS) [DG97] introduces three major modifications to AS. First,
the state transition rule is modified such that with a certain probability q0 an ant
chooses the “best” edge for its next step. This way, the importance of exploitation is
emphasized. If ant k is located at vi, it chooses vertex v j according to the following
pseudo-random-proportional rule:

v j =

{
argmaxvl∈Jk(i){τ

α

i,l ·η
β

i,l} if q≤ q0

S otherwise

where q is drawn uniformly at random in [0,1], and S is a random variable selected
according to the probability distribution given by Equation (2.21).

Second, each time an ant moves from vertex vi to v j, τi, j is decreased to increase
the probability that other ants will explore alternative paths.

Third, for the pheromone update given in Equation (2.22), only the best tour con-
structed so far is used. This modification increases the convergence speed of the ACO
algorithm, which is crucial for large TSP instances.

Ant colony optimization can be used for any kind of optimization problem that
allows to construct solutions step-by-step. A more general definition of ACO and
other applications such as routing, scheduling and assignment problems are discussed
in [DS04].
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for Box-constrained Problems

The theoretical analysis of particle swarm optimization has gained increasing interest
in recent years in order to understand the swarm dynamics that lead to the success of
the PSO algorithm. A detailed review on existing analyses is given in Section 2.4.
Based on both deterministic and stochastic models, parameter guidelines were ex-
tracted and the behavior of particle swarms, including results about convergence
properties, expected runtime on specified benchmarks, and the particles’ sampling
distribution during stagnation, is more and more understood. All these analyses are
based on simplifying assumptions, such as the reduction to a single particle and a one-
dimensional problem, non-improving particles (i.e., fixed private and local guides),
and unconstrained optimization problems. The theoretical work presented in this
chapter (mostly published in [HW07, HW08, HNW09]) complements these studies
by providing insights into particle swarm optimization from a completely different
perspective. In particular, there are two aspects which, despite their practical rele-
vance, were disregarded in previously analyzed PSO models:

• Constraints within the optimization problem, and

• the peculiarities of high-dimensional parameter spaces.

The task of constrained optimization task is formally defined as (see also Section 2.3):

Minimize f (~x)
Subject to gi(~x)≤ 0 i = 1, . . . ,m1 (inequality constraints)

h j(~x) = 0 j = 1, . . . ,m2 (equality constraints)
lbk ≤ xk ≤ ubk k = 1, . . . ,n (box constraints)

The theoretical analysis presented in this chapter assumes box-constrained problems
as a first step to study PSO algorithms on constrained optimization problems. The
optimization task is given by:

Minimize f (~x)
Subject to lbk ≤~xk ≤ ubk k = 1, . . . ,n (box constraints) (3.1)

with f : S = [lb1,ub1]× [lb2,ub2]× . . .× [lbn,ubn]⊂ Rn→ R. W.l.o.g., S = [−r,r]n

is assumed. Box constraints can be part of an optimization problem due to one or
more of the following reasons:
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1. The introduction of box constraints can simplify the problem. If, for instance,
one of the parameters is an angle, the number of local optima can be strongly
reduced by bounding the respective search space dimension to [0..2π].

2. Using search space bounds can avoid needless objective function evaluations.
If it is known beforehand that the global optimum and many local ones are
located in a specified search space region, the search can be restricted to the
relevant part of the underlying parameter space by the introduction of box con-
straints. This approach was used in the PSO application presented in Chapter 6,
and especially pays off when the evaluation of the objective function is very ex-
pensive. This is often the case when solving real world problems.

3. Box constraints might be part of the optimization problem.

Moreover, theoretically, any constrained optimization problem can be transformed
to a box-constrained problem by defining a homomorphous mapping of the feasible
region to a hypercube [KM98, KM99]1. Hence, the theoretical results derived in this
chapter are relevant for a wide range of practical PSO applications.

Existing PSO analyses assume one-dimensional optimization problems due to the
fact that the components of a particle’s position (resp. velocity) vector are updated
independently from one another. However, the implications for high-dimensional
optimization problems are not considered. This thesis gives insight into the pecu-
liarities of high-dimensional optimization problems and discusses the consequences
for particle swarm optimization. The fact that the geometric properties of high-
dimensional spaces are not intuitive and that high-dimensional domains are often
hard to tackle, is a well-known mathematical phenomenon, often denoted as curse
of dimensionality due to a discussion of Bellman [Bel61]. In the field of com-
puter science, the peculiarities of high-dimensional spaces are of particular interest
when solving data mining problems such as clustering, classification, nearest neigh-
bor search, and indexing, as these applications often involve high-dimensional data
sets [AHK01, VF05, ACXZ05, FWV07, HC09]. The results presented in this thesis
show that the curse of dimensionality is an important topic for particle swarm opti-
mization, too, especially when solving problems with box constraints.

In this chapter, it is proven that all particles are initialized very close to the search
space boundary when solving high-dimensional optimization problems, and that many
particles become infeasible in the first iteration. The treatment of infeasible particles
depends on the PSO algorithm’s bound handling strategy (see Section 2.3.2). Infeasi-
ble particles may, for instance, be reset into the search space according to a specified
procedure. As many particles leave the search space in the first iteration, the initial
particle swarm behavior strongly depends on the chosen bound handling mechanism.

1Note, however, that up to now a suitable mapping cannot trivially be found for optimization
problems with disconnected feasible regions. Details can be found in Section 2.3.1. The approach of
Koziel and Michalewicz [KM98, KM99] is illustrated in Figure 2.5 on page 27.
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Hence, the theoretical results indicate that the bound handling strategy has large im-
pact on particle swarm performance when solving high-dimensional problems. This
claim is confirmed by experimental investigations.

Wolpert and Macready have proven that if an optimization algorithm works ex-
ceptionally well for one class of optimization problems, its output quality must be
poor for another class [WM97]. Therefore, the goal of this thesis is not to identify
something like “the best” bound handling strategy, as it depends on the optimization
problem which one performs best. Instead, theoretical insights into high-dimensional
particle swarm optimization are provided. Some implications for PSO application
are presented at the end of this chapter. In the next chapter, the theoretical results are
confirmed and extended by a thorough experimental analysis, which explains the ef-
fects of different bound handling methods on a variety of commonly-used benchmark
functions and reveals their major strengths and weaknesses.

In the following, the symbols Θ and Ω belong to the big-O notation for express-
ing asymptotic behavior [Knu97, p. 108ff]. As particle swarm optimization is a
stochastic optimization algorithm, it is often only possible to evaluate the probability
of certain events. The following widely-used notion is applied:

Definition 3.1. A probability p(n) is exponentially small in n if there exists a con-
stant γ > 0 such that p(n) = e−Ω(nγ). An event A(n) happens with overwhelming
probability (w.o.p.) with respect to (w.r.t.) n if P(not A(n)) is exponentially small in
n.

This means that an overwhelming probability w.r.t. n rapidly approaches 1 when n
increases, whilst an exponentially small probability rapidly approaches 0 when n
increases.

3.1 The BCPSO Model

In this section, the box-constrained PSO model (BCPSO model) is introduced, which
is used as basis in the following theoretical analysis. The model comprises both
the box-constrained optimization problem and the PSO algorithm. Further variants,
denoted as extended BCPSO model and simplified BCPSO model are defined when
needed on pages 60 and 74.

In the BCPSO model, the box-constrained optimization problem is represented by
an objective function f : S = [−r,r]n⊂Rn→R. A minimization problem is assumed.
Let~z1,~z2 ∈ S . A total order ≤ f⊆ S ×S is defined on S as:

~z1 ≤ f ~z2 :⇔ f (~z1)≤ f (~z2)

The PSO algorithm is considered as an iterative stochastic process, similar to the
models of Jiang et al. [JLY07a, JLY07b] and Poli et al. [PB07, Pol08]. The original

55



3. Theoretical Analysis of PSO for Box-constrained Problems

PSO equations are kept, and repeated here for convenience:

~vi,t = ω ·~vi,t−1 + c1 ·~r1,i,t� (~pi,t−1−~xi,t−1)+ c2 ·~r2,i,t� (~li,t−1−~xi,t−1) (3.2)
~xi,t =~xi,t−1 +~vi,t (3.3)

where ω, c1, and c2 are constants and t is the iteration counter. The components of
~r1,i,t and~r2,i,t are independently drawn uniformly at random in [0,1]. The components
of ~xi,0 and ~vi,0 are also treated as stochastic variables. They are drawn from random
distributions that are specified by the algorithm’s initialization strategy. Furthermore,
~pi,0 =~xi,0.

An arbitrary neighborhood topology is defined among the particles, i.e., to each
particle i a set of indices Ji,t ⊆ {1,2, . . . ,m} is assigned, where m is the population
size. With the above order relation in mind, ~li,t is defined as ~li,t := min j∈Ji,t{~p j,t}.
Ties are solved by selecting~li,t randomly among the candidates.

After having updated positions and velocities of all particles, the private guides
~pi,t of successful particles are updated, where success can be defined in various ways
(see Section 2.1.5).

The above definitions completely describe the iterative processes {~xi,t} and {~vi,t}
for i = 1, . . . ,m and t ≥ 0. Note that the components of ~xi,t and ~vi,t are functions of
stochastic variables and can therefore be considered as stochastic variables as well.

3.2 Particle Initialization

In this section, it is shown that, when solving a high-dimensional problem, each
particle is initialized very close to the search space boundary with overwhelming
probability. The mathematical proof is simple, however, the fact that particles are
initialized very close to the boundary, or, more generally, that most of the search
space volume is concentrated in a small shell near the surface, is an important step for
understanding high-dimensional particle swarm behavior. It is assumed that particle
positions are initialized uniformly at random in S = [−r,r]n, which is a commonly-
used strategy in PSO implementations.

Theorem 3.1. Consider the BCPSO model, and assume that the components of the
initial particle positions ~xi,0 are independently drawn uniformly at random from
[−r,r] for i = 1, . . . ,m. Then, for an arbitrary constant ε, 0 < ε < r, the probabil-
ity pA(r,n,ε) that the distance of ~xi,0 to the search space boundary is greater than ε

is e−Θ(n).

Proof. The volume of an n-dimensional hypercube with side length 2r is (2r)n. The
volume of the inner search space region with more than ε-distance to the boundary is
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Figure 3.1: The geometric properties of high-dimensional spaces are not intuitive.
pA(r,n,ε) = Vinner cube/Vcube rapidly approaches zero with increasing dimensionality
n.

(2r−2ε)n. See Figure 3.1a for an illustration. Hence, pA(r,n,ε) is given by:

pA(r,n,ε) = Prob(~xi,0 ∈ [−r + ε,r− ε]n) =
(2r−2ε)n

(2r)n

= e
n · ln

(
2r−2ε

2r

)
= e−Θ(n)

Example 3.2. Figure 3.1b shows pA(r,n,ε) for r = 100,ε = 5, and different problem
dimensionalities n.

This result also explains why it is advantageous to not initialize particles with
uniform distribution in some scenarios, as proposed by Richards and Ventura [RV04]:
A global optimum which is located near the center of the search space can more
easily be found if not all particles are placed near the boundary. However, if nothing
is known about the optimization problem beforehand, it makes sense to initialize the
particles with uniform distribution as most of the search space volume is located near
the boundary.

3.3 Particle Explosion in the First Iteration
Theorem 3.1 made clear that particles are initialized very close to the boundary of a
high-dimensional parameter space, with overwhelming probability. In this section,
the next step of a PSO algorithm is analyzed, and a formal proof that, w.o.p., many
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particles become infeasible in the first iteration of a PSO algorithm is derived. The
theoretical study focuses on three different velocity initialization strategies. Surpris-
ingly, even initializing velocities to zero cannot prevent that many particles leave the
feasible region, which implies that the bound handling strategy strongly affects initial
particle swarm behavior. The exact probabilities that a particle becomes infeasible in
the first iteration are given in dependence of the velocity initializaton strategy and the
algorithmic parameters c2 and ω. Apart from giving insights into high-dimensional
particle swarm optimization, these results also have practical implications, which are
discussed in Section 3.6.

The particle trajectories in the first iteration are analyzed for the three velocity
initialization strategies presented in Section 2.1.5 on page 16: uniform, zero, and
half-diff initialization. Two main results are derived:

• When using uniform velocity initialization, all particles become infeasible in
the first iteration, w.o.p.

• When using zero or half-diff initialization, all particles which are outperformed
by at least one neighbor become infeasible in the first iteration, w.o.p., while
all others remain feasible.

For many commonly-used neighborhood topologies and realistic optimization prob-
lems, i.e., problems which do not include too many flat regions, the majority of the
particles is expected to be outperformed by at least one neighbor after the initial-
ization step. W.o.p., the respective particles leave the parameter space in the first
iteration. If distinct fitness values are assumed for the particles, the number of indi-
viduals which are superior to all their neighbors (and which therefore remain feasible
when using zero or half-diff velocity initialization) is bounded by the cardinality of a
maximum independent set of the neighborhood graph. Consider the example topolo-
gies given in Figure 3.2. In a fully connected swarm, all particles except the best
one are outperformed by a neighbor. In the commonly-used ring and grid topolo-
gies, still at least half of the particles are outperformed by a neighbor and leave the
parameter space in the first iteration. When connecting individuals via the so-called
wheel [KE01, Ken99] topology, it is possible that only a single particle is outper-
formed by a neighbor, although it is not very probable. However, the application
of this topology often results in slow convergence, as information is delayed by the
central node. In an experimental study conducted by Kennedy and Mendes [KM02],
the wheel topology was ranked second-last considering 70 distinct social networks
and three different performance meassures. The standard PSO algorithm presented
by Bratton and Kennedy [BK07] utilizes the ring topology.

For the following analysis, the BCPSO model is extended by the subsequent as-
sumptions. Note that, in accordance with the model, particles are connected via an
arbitrary neighborhood topology, e.g., grid, ring, or the fully connected graph.

Assumption 3.1. 1 < c2 ≤ 2, 0 < ω≤ 1, and c2 and ω do not depend on n.
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(a) Fully connected (b) Grid

(c) Ring (d) Wheel

Figure 3.2: For realistic optimization problems, and most commonly-used neigh-
borhood graphs, the majority of the particles is expected to be outperformed by a
neighbor after the initialization. Let the gray nodes represent particles that are su-
perior to all their neighbors. Then, when assuming distinct fitness values, the black
particles are outperformed by at least one neighbor. They become infeasible in the
first iteration, w.o.p., even when initializing velocities to zero or half-diff. When us-
ing the wheel topology, it is possible (although not very probable) that only a single
particle is outperformed by a neighbor.
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3. Theoretical Analysis of PSO for Box-constrained Problems

Assumption 3.2. Particles are initialized uniformly at random in the n-dimensional
search space S = [−r,r]n ⊂ Rn.

Assumption 3.3. For each particle i with ~xi,0 6=~li,0, ~li,0 is distributed uniformly at
random in S = [−r,r]n.

Assumptions 3.1 and 3.2 are true for most PSO applications. However, the position
of a particle’s local guide depends on the optimization problem, even for t = 0. The
relevance of the theoretical results for PSO implementations is therefore investigated
experimentally at the end of Sections 3.3.1, 3.3.2 and 3.3.3. These experiments indi-
cate that Assumption 3.3 is not very restrictive for higher-dimensional problems (cf.
Examples 3.5, 3.8, and 3.10).

The extension of the BCPSO model by Assumptions 3.1, 3.2 and 3.3 is denoted as
extended BCPSO model in the following.

3.3.1 Uniform Velocity Initialization

In this section, it is proven that, w.o.p., all particles become infeasible in the first
iteration if velocities are initialized uniformly at random in S . The exact probablities
that a particle leaves the search space are computed, in dependence of c2, ω, and n.

Theorem 3.3. Consider the extended BCPSO model, and let the components of the
initial particle velocities~vi,0 be independently drawn uniformly at random from [−r,r]
for i = 1, . . . ,m. Then, all particles become infeasible in the first iteration, with over-
whelming probability w.r.t. the search space dimensionality n.

Proof. The proof is divided into two parts:

(i) Each particle i with ~xi,0 =~li,0 becomes infeasible in the first iteration, with
overwhelming probability w.r.t. n.

(ii) Each particle i with ~xi,0 6=~li,0 becomes infeasible in the first iteration, with
overwhelming probability w.r.t. n.

Proof of (i). Let particle i be an arbitrary particle with~xi,0 =~li,0. As ~pi,0 =~li,0 =~xi,0,
its position~xi,1 and velocity~vi,1 in the first iteration evaluate to

~vi,1 = ω ·~vi,0 + c1 ·~r1,i,1� (~pi,0−~xi,0)︸ ︷︷ ︸
~0

+c2 ·~r2,i,1� (~li,0−~xi,0)︸ ︷︷ ︸
~0

= ω ·~vi,0

~xi,1 = ~xi,0 +~vi,1 =~xi,0 +ω ·~vi,0 .

Hence, the d-th component of~xi,1 is xi,1,d = k1 +k2 with k1 = xi,0,d and k2 = ω ·vi,0,d .
The terms k1 and k2 are stochastic variables, which are distributed uniformly at ran-
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3.3 Particle Explosion in the First Iteration

dom in [−r,r] and [−ωr,ωr], respectively, due to the position and velocity initializa-
tion strategies. Their density functions are given by

fk1(z) =

{
1
2r for − r ≤ z≤ r
0 otherwise

fk2(z) =

{
1

2ωr for −ωr ≤ z≤ ωr
0 otherwise .

As k1 and k2 are stochastically independent, the density function of their sum xi,1,d is
trapezoidal and can be determined by convolution:

fxi,1,d(z) =
Z

∞

−∞

fk1(t) · fk2(z− t)dt

=



1
4ωr2 · z+

1
4r

+
1

4ωr
for − r−ωr < z≤ ωr− r

1
2r

for ωr− r < z < r−ωr

− 1
4ωr2 · z+

1
4r

+
1

4ωr
for −ωr + r ≤ z < r +ωr

0 otherwise

(3.4)

Hence, the probability pB(ω) that particle i exceeds the search space boundary in
dimension d is

pB(ω) = Prob(xi,1,d /∈ [−r,r]) =
Z −r

−r−ωr
fxi,1,d(z)+

Z r+ωr

r
fxi,1,d(z) =

ω

4
.

Figure 3.3 shows a schematic illustration of the trapezoidal density function fxi,1,d(z).
Figure 3.4 shows the relevant part of the probability tree that is obtained for the

given situation. The components of ~xi,1 are updated independently, and, according
to Assumption 3.1, ω does not depend on n. Hence, the probability p′B(ω,n) that a
particle that satisfies the above assumptions leaves the search space evaluates to

p′B(ω,n) = Prob(~xi,1 /∈ [−r,r]n) = 1−
(

1− ω

4

)n
= 1− e−Θ(n) .

Example 3.4. Figure 3.5 shows p′B(ω,n) for different settings of ω.
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0 r−ωr r r +ωr
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−r +ωr−r−ωr −r

Figure 3.3: Schematic illustration of the density function fxi,1,d(z) as defined in Equa-
tion (3.4).

xi,1,1 feasible
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ω

4
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ω
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xi,1,1 infeasible

ω

4

Figure 3.4: Probability tree used in the proof of Theorem 3.3, part (i).
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3.3 Particle Explosion in the First Iteration

Proof of (ii). Let particle i be an arbitrary particle with ~xi,0 6=~li,0. As ~pi,0 =~xi,0, its
position~xi,1 and velocity~vi,1 in the first iteration evaluate to

~vi,1 = ω ·~vi,0 + c2 ·~r2,i,1� (~li,0−~xi,0)

~xi,1 =~xi,0 +~vi,1 =~xi,0 +ω ·~vi,0 + c2 ·~r2,i,1� (~li,0−~xi,0)

= ω ·~vi,0 +(~1− c2 ·~r2,i,1)�~xi,0 + c2 ·~r2,i,1�~li,0 . (3.5)

The d-th component of~xi,1 can be written as xi,1,d = k3 + k4 + k5 with k3 = ω · vi,0,d ,
k4 = (1− c2r2,i,1,d) · xi,0,d , and k5 = c2 · r2,i,1,d · li,0,d . The terms k3, k4, and k5 are
stochastic variables, which are non-identically and independently distributed uni-
formly at random in respective intervals. Bradley and Gupta derived a formula for
the computation of the probability density function of the sum of arbitrary many
uniformly distributed random variables [BG02, Theorem 1] (see Appendix A.1).
Using their formula and an appropriate computer algebra system, the probability
q1(r2,i,1,d,c2,ω) that particle i crosses the search space bound in dimension d, i.e.,
the probability that xi,1,d /∈ [−r,r], is computed to:

q1(r2,i,1,d,c2,ω) =
Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz

=



−3ω2+6c2r2,i,1,dω−4c2
2r2

2,i,1,d
−12ω(1−c2r2,i,1,d) if 0≤ r2,i,1,d < ω

2c2

ω2

24(1−c2r2,i,1,d)c2r2,i,1,d
if ω

2c2
≤ r2,i,1,d < 2−ω

2c2

4c2
2r2

2,i,1,d+6ωc2r2,i,1,d−8c2r2,i,1,d+3ω2+4−6ω

12ωc2r2,i,1,d
if 2−ω

2c2
≤ r2,i,1,d < 2+ω

2c2

24+ω2+24c2
2r2

2,d−48c2r2,i,1,d

−24c2r2,i,1,d(1−c2r2,i,1,d) if 2+ω

2c2
≤ r2,i,1,d ≤ 1

(3.6)

The detailed derivation of Equation (3.6) is presented in Appendix A.2. The proba-
bility that particle i becomes infeasible in the first iteration depends on the randomly
chosen values r2,i,1,d , d = 1, . . . ,n. According to our model, each r2,i,1,d is distributed
uniformly at random in [0,1]. Hence, the probability pC(c2,ω) that a particle violates
the boundary in a specific dimension d evaluates to:

pC(c2,ω) =
Z 1

0
q1(r2,i,1,d,c2,ω)dr2,i,1,d =

=



(24ωc2)−1·(−36ω+6ω2 ln(2)−12ω2 ln(2−ω)+5ω2−36ω ln(2)+24ω ln(2−ω)+8ln(2)

−16ln(2−ω)−3ω3 ln(ω)+2ω3 ln(2−ω)+8ln(2+ω)+12ω ln(2+ω)+6ω2 ln(2+ω)

−24ω ln(c2)−ω3 ln(c2)+ω3 ln(2+ω)+ω3 ln(c2−1)+24ωc2) if 2+ω−2c2<0

(12ωc2)−1·(−10ω+6ω2 ln(2)−6ω2 ln(2−ω)+5ω2−12ω ln(2)

+12ω ln(2−ω)+8ln(2)−8ln(2−ω)−ω3 ln(ω)+ω3 ln(2−ω)

+4ln(c2)+6−6ω ln(c2)+3ω2 ln(c2)+6ωc2+2c2
2−8c2) if 2+ω−2c2≥0

(3.7)
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3. Theoretical Analysis of PSO for Box-constrained Problems

The probability pC(c2,ω) solely depends on c2 and ω, and can be computed for spe-
cific settings of these two parameters by using Equation 3.7. In order to prove that
particles leave the search space with overwhelming probability, pC(c2,ω) > 0 must
be shown. Note that pC(c2,ω) does not depend on n. From Equation 3.6, or more
generally from the fact that probabilities are always greater than or equal to zero, it
follows that pC(c2,ω) can be rewritten as the sum of three terms that are greater than
or equal to zero each:

pC(c2,ω) =
Z ω

2c2

0
q1(r2,i,1,d,c2,ω)dr2,i,1,d︸ ︷︷ ︸

l1(c2,ω)≥0

+
Z 2−ω

2c2

ω

2c2

q1(r2,i,1,d,c2,ω)dr2,i,1,d︸ ︷︷ ︸
l2(c2,ω)≥0

+
Z 1

2−ω

2c2

q1(r2,i,1,d,c2,ω)dr2,i,1,d︸ ︷︷ ︸
l3(c2,ω)≥0

For 0 < ω < 1, l2(c2,ω) = ω2·(ln(2−ω)−ln(ω))
12c2

> 0, and for ω = 1, l1(c2,ω) = 1+2ln(2)
24c2

>

0. Hence, pC(c2,ω) > 0, and the probability that a particle leaves the n-dimensional
search space is

p′C(c2,ω,n) = 1− (1− pC(c2,ω))n = 1− e−Θ(n) . (3.8)

Example 3.5. Part (ii) of the proof makes use of the assumption that the components
of each particle’s initial local guide are distributed uniformly at random in [−r,r]
(Assumption 3.3). In order to determine the relevance of the theoretical results for
practical particle swarm optimization, the following experiment, denoted as PSO ex-
periment (PSO Exp.), was performed: The PSO algorithm was applied to the CEC
2005 benchmarks f1–f14 [SHL+05], excluding f4 and f7 because they are either noisy
or unconstrained. More details on the investigated benchmarks can be found in Sec-
tion 4.2.2. For the PSO algorithm, standard settings as presented in Section 4.1 were
used. However, particles are not included in their own neighborhood so that for all
particles ~xi,0 6=~li,0 holds, which is an assumption of part (ii) of the proof. For each
benchmark and dimensionality, 10,000 runs with 49 particles were performed. As
neighborhood topology, a 7×7 grid was used.

The theoretical results were obtained by pasting Equation (3.7) into Equation (3.8).

Theor. result PSO Exp.
p′C(1.496172,0.72984,1) 0.17074 0.15559
p′C(1.496172,0.72984,30) 0.99636 0.99585
p′C(1.496172,0.72984,100) 0.9999999926 1
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Figure 3.5: Consider particle i that satisfies the assumptions of Theorem 3.3 and for
which~xi,0 =~li,0 holds. The probability p′B(ω,n) that particle i becomes infeasible in
the first iteration rapidly approaches 1 with increasing dimensionality n, even if ω is
set to a small constant value. Note, however, that this is not necessarily the case if the
choice of ω depends on n. E.g., limn→∞ p′B(ω,n) = c for a constant c < 1 if ω∼ 1/n.

The only assumption that distinguishes the extended BCPSO model from a real PSO
algorithm is Assumption 3.3. In a realistic PSO application, this assumption is not
true due to the fact that the determination of a particles’ local guide involves function
evaluations. Therefore, the distribution of the particles’ local guides after initializa-
tion depends on the objective function. However, the PSO experiment indicates that
Assumption 3.3 is not very restrictive when solving higher-dimensional problems.
This observation is also confirmed later in Examples 3.8 and 3.10. From a more
general point of view, the PSO experiment confirms part (ii) of the proof: With over-
whelming probability, particles become infeasible in the first iteration, if they satisfy
the given assumptions.

The probability pC(c2,ω) that particle i with~xi,0 6=~li,0 violates a specific boundary
in the first iteration depends on c2 and ω, and is shown in Fig. 3.6. For c2→ 1 and
ω→ 0, pC(c2,ω) approaches zero. However, choosing such small values for c2 and
ω prevents exploration, and can therefore not be recommended.

3.3.2 Zero Velocity Initialization

In this section, it is shown that even initializing particle velocities to zero cannot
prevent that many particles become infeasible in the first iteration. To be more pre-
cise, a formal proof that all particles with ~xi,0 6=~li,0 are affected is given. For many
commonly-used neighborhood graphs and optimization problems, this is the majority
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Figure 3.6: The probability pC(c2,ω) that a particle i with ~xi,0 6=~li,0 violates the
boundary in a specific dimension when using uniform velocity initialization.

of the particles, as discussed at the beginning of this section. The following analy-
sis concludes with an example, which shows that particles are slightly less likely to
leave the search space in the first iteration compared to the use of uniform velocity
initialization.

Theorem 3.6. Consider the extended BCPSO model, and let the particle velocities
be initialized to~vi,0 =~0 for i = 1, . . . ,m. Then,

(i) each particle i with~xi,0 =~li,0 remains feasible in the first iteration, and

(ii) each particle i with ~xi,0 6=~li,0 becomes infeasible in the first iteration, with
overwhelming probability w.r.t. the problem dimensionality n.

Proof of (i). Statement (i) directly follows from~li,0 = ~pi,0 =~xi,0 and~vi,0 =~0:

~vi,1 =ω ·~vi,0︸ ︷︷ ︸
~0

+c1 ·~r1,i,1� (~pi,0−~xi,0)︸ ︷︷ ︸
~0

+c2 ·~r2,i,1� (~li,0−~xi,0)︸ ︷︷ ︸
~0

=~0

~xi,1 =~xi,0 +~vi,1 =~xi,0 ∈ S
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3.3 Particle Explosion in the First Iteration

Proof of (ii). Let particle i be an arbitrary particle that satisfies the assumptions stated
above. Its position and velocity in the first iteration are given by

~vi,1 =ω ·~vi,0︸ ︷︷ ︸
~0

+c1 ·~r1,i,1� (~pi,0−~xi,0)︸ ︷︷ ︸
~0

+c2 ·~r2,i,1� (~li,0−~xi,0) = c2 ·~r2,i,1� (~li,0−~xi,0)

~xi,1 =~xi,0 +~vi,1 = (~1− c2 ·~r2,i,1)�~xi,0 + c2 ·~r2,i,1�~li,0

Hence, the d-th component of the velocity vector computes to

xi,1,d = (1− c2r2,i,1,d) · xi,0,d + c2r2,i,1,d · li,0,d .

With our assumptions, xi,0,d and li,0,d are independent random variables, which are
distributed uniformly at random in [−r,r]. The density function of two non-identically
uniformly distributed random variables is trapezoidal. From r2,i,1,d ≤ 1

c2
, it follows

1− c2r2,i,1,d ≥ 0, and xi,1,d is trapezoidal distributed in interval [a1,b1] with

a1 = (−1+ c2r2,i,1,d) · r− c2r2,i,1,d · r =−r
b1 = (1− c2r2,i,1,d) · r + c2r2,i,1,d · r = r .

This means that, if r2,i,1,d ≤ 1
c2

, particle i does not violate the parameter space bound-
ary in dimension d. If r2,i,1,d > 1

c2
, xi,1,d is rewritten as xi,1,d = k6 + k7 with

k6 = (1− c2r2,i,1,d) · xi,0,d and k7 = c2r2,i,1,d · li,0,d .

Let r2,i,1,d be an arbitrary, but fixed value in [1/c2,1]. Then k6 and k7 are dis-
tributed uniformly at random in [(1−c2r2,i,1,d) ·r,(−1+c2r2,i,1,d) ·r] and [−c2r2,i,1,d ·
r,c2r2,i,1,d · r], respectively. Using Bradley’s and Gupta’s approach [BG02, Theorem
1], the probability density function fxi,t,d for xi,1,d computes to

fxi,1,d(z) =



2z−2r +4rc2r2,i,1,d

−8c2r2,i,1,dr2 +8c2
2r2

2,i,1,dr2
for (1−2c2r2,i,1,d) · r ≤ z≤−r

−4r(1− c2r2,i,1,d)
−8c2r2,i,1,dr2 +8c2

2r2
2,i,1,dr2

for − r < z≤ r

−2z−2r +4rc2r2,i,1,d

−8c2r2,i,1,dr2 +8c2
2r2

2,i,1,dr2
for r < z≤ (−1+2c2r2,i,1,d) · r

0 otherwise

Hence, the probability q2(r2,i,1,d,c2) that particle i crosses the search space boundary
in dimension d is

q2(r2,i,1,d,c2) =


Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz = 1− 1

c2r2,i,1,d
if r2,i,1,d > 1

c2

0 otherwise .
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Figure 3.7: The probability pD(c2) that a particle that satisfies the assumptions of
part (ii) of Theorem 3.6 exceeds the parameter space in a specific dimension is very
small for 1 < c2 ≤ 2. Nevertheless, when solving high-dimensional problems, the
probability that particle i becomes infeasible in the first iteration rapidly approaches
1, as for each problem dimension d there is a probability pD(c2) > 0 that xi,1,d /∈
[−r,r]. Hence, for large n it is very likely that there exists at least one d with xi,1,d /∈
[−r,r].

As r2,i,1,d is distributed uniformly at random in [0,1], the probability pD(c2) that a
particle violates the search space boundary in a specific dimension is given by

pD(c2) =
Z 1

0
q2(r2,i,1,d,c2)dr2,i,1,d =

−1− ln(c2)+ c2

c2
. (3.9)

The probability pD(c2) is shown in Figure 3.7. Inequation pD > 0 holds because
c2 > 1 holds. Hence, the probability p′D(c2) that a particle which satisfies the given
assumptions leaves the n-dimensional search space evaluates to

p′D(c2,n) = 1− (1− pD(c2))n = 1− e−Θ(n) . (3.10)

Example 3.7. For different settings of c2, Figure 3.8 shows that p′D(c2,n) rapidly
approaches 1 with increasing dimensionality n.

Example 3.8. For the theoretical results, Equation (3.9) was pasted in Equation (3.10).
The setup of PSO Exp. is explained in Example 3.5.

Theor. result PSO Exp.
p′D(1.496172,1) 0.06233 0.05176
p′D(1.496172,30) 0.85497 0.83823
p′D(1.496172,100) 0.99840 0.99805
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Figure 3.8: The probability p′D(c2,n) that a particle that satisfies the assumptions of
part (ii) of the proof of 3.6 rapidly approaches 1 with increasing dimensionality n.

The example confirms the relevance of the theoretical results for high-dimensional
PSO application. Although the probability that particles leave the search space is
smaller than with uniform velocity initialization, it rapidly approaches 1 with in-
creasing problem dimensionality.

3.3.3 Half-diff Velocity Initialization
When using half-diff velocity initialization [C+07], the initial velocities are set to

~vi,0 = 1
2 (~zi−~xi,0)

where ~xi,0 is the initial position of particle i, and the vectors ~zi are independently
drawn uniformly at random in S , for i = 1, . . . ,m. An illustration is given in Sec-
tion 2.1.5 on page 16.

Half-diff velocity initialization is conceptually different to uniform and zero initial-
ization due to the use of additional search space positions: each particle is attracted by
a random solution. As the initial velocities point towards feasible solutions, half-diff
initialization might help the particle swarm to stay inside the search space bounds.
On the other hand, the two forces of initial velocity and a particle’s local guide might
accumulate and drive particles beyond the feasible region. The impact of half-diff
velocity initialization on the initial swarm behavior is not clear by intuition. The
theoretical analysis shows that, again, many particles become infeasible in the first
iteration when solving high-dimensional optimization problems. Similar to zero ve-
locity initialization, all particles with~xi,0 6=~li,0 are affected, as stated in the following
theorem.
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Theorem 3.9. Consider the extended BCPSO model, and let the particle velocities
be initialized according to the half-diff strategy as stated above. Then,

(i) each particle i with~xi,0 =~li,0 remains feasible in the first iteration, and

(ii) each particle i with ~xi,0 6=~li,0 becomes infeasible in the first iteration, with
overwhelming probability w.r.t. the problem dimensionality n.

Proof of (i). Let particle i be an arbitrary particle that satisfies the given assumptions.
As ~pi,0 =~li,0 =~xi,0, its position and velocity in the first iteration evaluate to

~vi,1 =ω ·~vi,0 = 1
2 ·ω · (~zi−~xi,0)

~xi,1 =~xi,0 +~vi,1 =
(

1− ω

2

)
·~xi,0 +

ω

2
·~zi ∈ [−r,r]n

Proof of (ii). Let particle i be an arbitrary particle that satisfies the assumptions stated
above. Its position and velocity in the first iteration are given by

vi,1,d =ω · vi,0,d + c2 · r2,i,1,d · (li,0,d− xi,0,d)

xi,1,d =xi,0,d + vi,1,d = ω

2 · zi,d︸ ︷︷ ︸
k8

+c2 · r2,i,1,d · li,0,d︸ ︷︷ ︸
k9

+
(
1− ω

2 − c2 · r2,i,1,d
)
· xi,0,d︸ ︷︷ ︸

k10

for d = 1, . . . ,n. Similar to the proof of Theorem 3.3, part (ii), xi,1,d is rewritten as the
sum of three stochastic variables, which are distributed uniformly at random in their
respective intervals: xi,1,d = k8 + k9 + k10. Again, the probability density function
fxi,1,d of xi,1,d can be computed by using the appraoch of Bradley and Gupta [BG02,
Theorem 1]. The probability q3(r2,i,1,d,c2,ω) that particle i violates the d-th search
space bound is then computed to (see Appendix A.3 for details):

q3(r2,i,1,d,c2,ω) =
Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz

=



0 if 0≤ r2,i,1,d ≤ 2−ω

2c2

(6ωc2r2,i,1,d(2−ω−2c2r2,i,1,d))−1(−ω3−24c2r2,i,1,d

+24c2
2r2

2,i,1,d+24ωc2r2,i,1,d+8−8c3
2r3

2,i,1,d−12ω

+6ω2−6ω2c2r2,i,1,d−12ωc2
2r2

2,i,1,d) if 2−ω

2c2
< r2,i,1,d < 1

c2

ω

6 if r2,i,1,d = 1
c2

−ω3+24ωc2r2,i,1,d−12ω+6ω2−6ω2c2r2,i,1,d−12ωc2
2r2

2,i,1,d

6ωc2r2,i,1,d(2−ω−2c2r2,i,1,d)
if 1

c2
< r2,i,1,d ≤ 1

(3.11)

70



3.3 Particle Explosion in the First Iteration

According to our model, r2,i,1,d is distributed uniformly at random in [0,1]. Hence,
the probability pE(c2,ω) that a particle leaves the search space in a specific dimension
d is

pE(c2,ω) =
Z 1

0
q3(r2,i,1,d,c2,ω)dr2,i,1,d

= (12ωc2(ω−2))−1·(32ω−22ω2+3ω3−16ln(2)+24ω ln(2)+16ln(2−ω)

−24ω ln(2−ω)+24ln(c2)ω−12ω2 ln(2)+12ω2 ln(2−ω)−12ln(c2)ω2+2ω3 ln(2)

−2ω3 ln(2−ω)+2ln(c2)ω3+2ω3 ln(ω)−24ωc2+12ω2c2−2ω3 ln(ω−2+2c2)) .

(3.12)

Due to the fact that the components of a particle’s position vector are updated in-
dependently from each other, the probability p′E(c2,ω) that particle i leaves the n-
dimensional search space in the first iteration is

p′E(c2,ω,n) = 1− (1− pE(c2,ω))n . (3.13)

This probability is overwhelming w.r.t. n if pE(c2,ω) > 0, as pE(c2,ω) does not
depend on n. The probability pE(c2,ω) can be rewritten as

pE(c2,ω) =
Z 1

0
q3(r2,i,1,d,c2,ω)dr2,i,1,d

=
Z R

0
q3(r2,i,1,d,c2,ω)dr2,i,1,d +

Z 1

R
q3(r2,i,1,d,c2,ω)dr2,i,1,d

where R is an arbitrary value in [0,1]. As illustrated in Figure 3.9, it is sufficient to
show the following three properties in order to prove that the probability pE(c2,ω) is
strictly greater than zero:

(a) The function q3(r2,i,1,d,c2,ω) is continuous for r2,i,1,d ∈
(

2−ω

2c2
,1
]
, assuming

that c2 and ω are arbitrary constants that comply with Assumption 3.12,

(b) ∃R, 2−ω

2c2
< R < 1 : q3(R,c2,ω) > 0, and

(c) q3(r2,i,1,d,c2,ω)≥ 0 ∀ r2,i,1,d ∈ [0,1].

Proof of property (a). From Equation (3.11), it is clear that the function q3(r2,i,1,d,c2,ω)
is continuous for

(1) 2−ω

2c2
< r2,i,1,d < 1

c2
,

(2) 1
c2

< r2,i,1,d ≤ 1 .

2Assumption 3.1 specifies that 1 < c2 ≤ 2 and 0 < ω ≤ 1 hold, and that c2 and ω do not depend
on n.
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Figure 3.9: Illustration of probability pE(c2,ω) =
Z 1

0
q3(r2,i,1,d,c2,ω)dr2,i,1,d . The

function q3(r2,i,1,d,c2,ω) is presented in Equation (3.11), and shown for r2,i,1,d ∈
[0,1]. The gray area below q3(r2,i,1,d,c2,ω) corresponds to pE(c2,ω). If the three
properties (a)–(c) are fulfilled, this area must be strictly greater than zero.

Furthermore, it can be shown that q3(r2,i,1,d,c2,ω) is continuous at r2,i,1,d = 1/c2,
too, by computing the respective left- and right-hand limits. See Appendix A.4 for
details.

Proof of property (b). For R = 1/c2, we obtain:

• R ∈
(

2−ω

2c2
,1
)

due to Assumption 3.1, and

• q3(R,c2,ω) = ω/6 > 0.

Proof of property (c). As q3(r2,i,1,d,c2,ω) is a probability, which was obtained by the
integration of density functions (see Equation (3.11)), 0≤ q3(r2,i,1,d,c2,ω)≤ 1 holds
for the given assumptions.

The probability pE(c2,ω) that particle i with ~xi,0 6=~li,0 exceeds the search space
boundary in a specified dimension in the first iteration is plotted in Figure 3.10 for
the relevant ranges of c2 and ω. It approaches zero for ω→ 0 and c2 → 1. How-
ever, as already mentioned during the analysis of uniform velocity initialization in
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Figure 3.10: The probability pE(c2,ω) that a particle i with ~xi,0 6=~li,0 violates the
boundary in a specific dimension when using half-diff velocity initialization.

Section 3.3.1, setting ω and c2 to such small values prevents exploration, and can
therefore not be recommended.

Example 3.10. For the theoretical results, Equation (3.12) was pasted into Equa-
tion (3.13). The experimental setup is explained in Example 3.5.

Theor. result PSO Exp.
p′E(1.496172,0.72984,1) 0.094572 0.083143
p′E(1.496172,0.72984,30) 0.949229 0.943357
p′E(1.496172,0.72984,100) 0.999952 0.999947

Again, the PSO experiment shows that the theoretical results are relevant for practical
PSO application, in particular when solving high-dimensional problems. A compar-
ison with Example 3.5 and Example 3.8 yields that the probability that a particle
becomes infeasible settles between the respective probabilities for uniform und zero
velocity initialization.

3.4 The Impact of Particle Velocities

In the previous section, initial particle swarm behavior was studied, assuming high-
dimensional box-constrained optimization problems. The exact probability that a
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particle becomes infeasible was computed for different velocity initialization strate-
gies. These probabilities depend on the algorithmic parameters ω and c2. In some
scenarios, if ω and c2 are selected w.r.t. the problem dimensionality n, the proba-
bility that a particle leaves the initialization space approaches a constant c < 1 (see
Figure 3.5).

In this section, this topic is approached from a more general point of view, and the
impact of particle velocities on the particles’ tendency to leave the parameter space is
studied. The theoretical results presented in this section suggest that an adjustment of
the particles’ velocities to the problem’s dimensionality can help particles to stay in-
side the feasible region. In particle swarm optimization, the position update equation
of particle i is given by

~xi,t =~xi,t−1 +~vi,t .

As the optimization problem is not restricted to a certain class of problems, the char-
acteristics of the probability density functions for ~xi,t−1 and ~vi,t are unknown. The
following simplifying assumptions are used:

Assumption 3.4. The components of ~xi,t−1 are independently drawn uniformly at
random in [−r,r].

Assumption 3.5. The components of~vi,t are independently drawn uniformly at ran-
dom in [− r

s ,
r
s ], s≥ 1.

Both assumptions are not true for real PSO applications. However, they allow the
computation of the probability that a particle leaves the search space without making
any assumptions on the optimization problem. The explorative behavior of a particle
swarm is controlled by the newly introduced parameter s.

The extension of the BCPSO model by Assumptions 3.4 and 3.5 is denoted as
simplified BCPSO model in the following.

Theorem 3.11. If the simplified BCPSO model is assumed, the probability that an
arbitrary particle i becomes infeasible at time step t is

1−
(

1− 1
4s

)n

.

Proof. Particle i’s position at time step t is computed to

~xi,t =~xi,t−1 +~vi,t .

Let xi,t−1,d and vi,t,d be the d-th components of~xi,t−1 and~vi,t , respectively. As they are
distributed uniformly at random in the given intervals, their density functions fxi,t−1,d
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and fvi,t,d are given by

fxi,t−1,d(z) =

{
1
2r for − r ≤ z≤ r
0 otherwise

fvi,t,d(z) =

{
s

2r for − r
s ≤ z≤ r

s
0 otherwise .

Hence, the d-th component of ~xi,t , xi,t,d , is the sum of two independent uniformly
distributed random variables. The density function fxi,t,d of xi,t,d is trapezoidal and
can be determined by convolution:

fxi,t,d(z) =
Z

∞

−∞

fxi,t−1,d(t) fvi,t,d(z− t)dt

=



Z z+ r
s

−r
fxi,t−1,d(t) fvi,t,d(z− t)dt for − r− r

s
≤ z≤−r +

r
sZ z+ r

s

z− r
s

fxi,t−1,d(t) fvi,t,d(z− t)dt for − r +
r
s

< z < r− r
sZ r

z− r
s

fxi,t−1,d(t) fvi,t,d(z− t)dt for − r
s
+ r ≤ z≤ r +

r
s

0 otherwise

=



s
4r2 z+

s
4r

+
1
4r

for − r− r
s
≤ z≤−r +

r
s

1
2r

for − r +
r
s

< z < r− r
s

− s
4r2 z+

s
4r

+
1
4r

for − r
s
+ r ≤ z≤ r +

r
s

0 otherwise .

It follows that the probability pF(s) that particle i leaves the search space in dimen-
sion d evaluates to

pF(s) =
Z −r

−∞

fxi,t,d(z)dz+
Z

∞

r
fxi,t,d(z)dz =

1
4s

.

As each component of ~xi,t is computed independently, the probability pF(s,n) that
particle i becomes infeasible in iteration t is given by

p′F(s,n) = 1−
(

1− 1
4s

)n

. (3.14)
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Note that 1−
(
1− 1

4s

)n ≈ 1− e−
n
4s holds for large n.

Example 3.12.

p′F(2,2) = 0.23438
p′F(100,100) = 0.22144

p′F(1000,1000) = 0.22122

Theorem 3.11, shows that the probability that a particle leaves the bounded search
space crucially depends on the interval from which the velocities are chosen. For
example, if s is a constant, the probability that a particle becomes infeasible is over-
whelming with respect to the search space dimensionality n. On the other hand, s = n
implies that the probability that a specified particle i exceeds the search space bound
approaches a constant c < 1 for increasing n:

lim
n→∞

(
1−
(

1− 1
4n

)n)
= 1− e−

1
4 ≈ 0.22119922

This theoretical result indicates that restricting the particles’ velocities with respect
to the search space dimensionality can be beneficial when solving high-dimensional
box-constrained optimization problems with particle swarm optimization.

3.5 An Example: The Sphere Function

In the previous sections it was proven that particle positions are initialized very close
to the boundary with overwhelming probability w.r.t. the parameter space dimensio-
nality, and that many particles become infeasible in the first iteration. In this section,
some implications are discussed by providing a thorough analysis of PSO initial-
ization when solving the well-known Sphere benchmark. The additional theoretical
results give further insight into high-dimensional particle swarm optimization, and
are confirmed and extended by experimental investigations at the end of this section.
The Sphere function is decribed by:

f : S = [−r,r]n→ R, f (~x) =
n

∑
d=1

x2
d

where n is the problem dimensionality.
The following theoretical investiation was motivated by experimental observations.

Zhang et al. [ZXB04] mention that there might be premature convergence on the
boundary if Nearest position handling (see page 29) is applied. Own experimental
investigations confirm this observation, and demonstrate that this kind of premature
convergence also occurs when solving problems that are usually considered as rather
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3.5 An Example: The Sphere Function

unchallenging, such as the Sphere benchmark. First analytical steps for explaining
these results are presented in the following. A necessary condition for premature
convergence on~z ∈ S is the absence of better solutions~z′ < f ~z at the beginning of the
optimization process, as otherwise, the swarm would be attracted by them. As a first
step, the particles’ expected initial function values and respective standard deviations
are computed. It is shown that they can easily be outperformed by boundary solu-
tions. Moreover, it is proven that the probability that a particle’s initial function value
is better than the best boundary solution is exponentially small in n. This means that
with overwhelming probability w.r.t. n, the aforementioned necessary condition for
premature convergence on the boundary is fulfilled. As will be clarified later, this
result is rather surprising and not intuitive: Almost certainly, the necessary condition
is not fulfilled when solving two- or three-dimensional problems.

Some position handling strategies such as Nearest and Shrink (see page 29) reset
particles on the search space bounds which might lead to premature convergence
if particles arrive on a good position on the search space boundary. When a particle
converges on one boundary by optimizing all other dimensions, the objective function
value evaluates to f (~x) = r2 which is much better than the expected initial function
value. This is shown in the following theorem:

Theorem 3.13. Let the Sphere function be the given optimization problem. If the
BCPSO model is assumed and the components of the initial particle positions~xi,0 are
independently drawn uniformly at random from [−r,r] for i = 1, . . . ,m, the expected
initial function value of a particle is nr2

3 and its standard deviation is 2
√

nr2

3
√

5
.

Proof. Let y = ∑
n
d=1 x2

i,0,d be the initial function value of particle i. Then, xi,0,1,

xi,0,2, . . . ,xi,0,n are stochastically independent and uniformly distributed in [−r,r] each.
We obtain:

E(y) = n ·E(x2
i,0,d) = n

Z r

−r
x2 1

2r
dx =

nr2

3
and

σy =
√

Var(y) =
√

n(E(x4
i )−E(x2

i )2) =
2
√

nr2

3
√

5

Example 3.14. For n = 100 and r = 100, the particles’ expected initial function value
and respective standard deviation evaluate to:

E(y) ≈ 333 333
σy ≈ 29 814

Whenever the swarm converges on a solution~z∈ S , this means that no better solution
~z′ < f ~z was found during the whole optimization process, because if there was a
better solution, it would have attracted the particle swarm (assuming a connected
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neighborhood graph). This fact is intuitively clear, however, recently, it was also
proven theoretically by Poli and Broomhead [PB07] that the standard deviation of
a particle’s trajectory can only converge to 0 if, in our notation, ~pi,t =~li,t . Hence,
particles keep on moving at least until their private guide equals their local guide.

The Sphere function has the following property:

∀~z1,~z2 ∈ S : |~z1|< |~z2| ⇒ f (~z1) < f (~z2) (3.15)

It is important to note that the results presented below are relevant not only for the
Sphere function but for all functions with the above property. The property is il-
lustrated in Figure 3.11a (top). Assume that the square depicts the two-dimensional
search space, then all solutions that are located on the boundary of the (gray) circle
have the same objective value, which corresponds to the objective value of the best
boundary solution. Solutions inside the circle have a better objective value while
solutions outside the circle are worse. Hence, it seems to be very unlikely that the
aforementioned necessary condition for premature convergence on the boundary is
fulfilled, i.e., that no solution with better quality than a boundary solution was found
during the optimization. In fact, for the two-dimensional example, we evaluate

Circle area
Square area

=
πr2

(2r)2 =
π

4
≈ 0.785

which means, that already in the initialization step, 78.5% of the particles are ex-
pected to lie inside the circle. However, high-dimensional search spaces are not intu-
itive:

Theorem 3.15. Consider the BCPSO model, and assume that the components of the
initial particle positions~xi,0 are independently drawn uniformly at random in [−r,r]
for i = 1, . . . ,m. Then, the probability pG(n) of a particle to be initialized inside a
hypersphere around the origin with radius r is exponentially small in n.

Proof. Extending an approach of Jägersküpper [Jäg02, Appendix A] who evaluated
the hypersurface area of an n-dimensional sphere with radius r ≥ 0 to

Vsurface(r,n) =
Z

π

βn=0

Z
π

βn−1=0
· · ·

Z
π

β3=0

Z 2π

α=0
(r sinβn

. . .sinβ3dα)(r sinβn . . .sinβ4dβ3) . . .(r sinβndβn−1)(rdβn)

= rn−1 ·2π ·
n−2

∏
i=1

Z
π

0
(sinβ)idβ ,

the hypervolume of an n-dimensional sphere with radius r for n≥ 3 is given by

Vsphere(r,n) =
Z r

R=0
Vsurface(R,n)dR =

1
n
· rn ·2π ·

n−2

∏
i=1

Z
π

0
(sinβ)idβ .
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The volume of an n-dimensional hypercube with side length 2r is Vcube(r,n) = (2r)n.
As 0≤ sinβ≤ 1,∀β ∈ [0,π],

g(i) =
Z

π

0
(sinβ)idβ

is a monotonically decreasing function. Furthermore, we evaluate g(1) = 2, g(5) =
16
15 > 1 and g(6) = 5

16π < 1. Hence, the probability that a particle position is initialized
inside the n-dimensional hypersphere with radius r is

pG(n) =
Vsphere(r,n)
Vcube(r,n)

=
1
nrn2π∏

n−2
i=1

R
π

0 (sinβ)idβ

(2r)n

≤ 2π

n2n ·
5

∏
i=1

Z
π

0
(sinβ)idβ ·

n−2

∏
i=6

Z
π

0
(sinβ)idβ

≤ 2π

n2n ·2
5 ·1 = e−Θ(n) .

Example 3.16. Figure 3.11 shows pG(n) for different problem dimensionalities n.

The probability pG(n) rapidly approaches zero for increasing dimensionality n. For
example, for a 30-dimensional problem, pG(n) computes to 2.04 ·10−14. This means
that in the presence of a high-dimensional parameter space bounded by [−r,r]n, par-
ticles are usually initialized outside a sphere around the origin with radius r, which is
a necessary condition for the particles to converge on the boundary when solving an
arbitrary problem with the property given in Eq. (3.15).

In order to demonstrate the studied effects, a particle swarm optimizer was run
on the 2-, 30, 50-, and 100-dimensional Sphere function. 1000 runs per dimen-
sionality were performed. For the PSO algorithm, standard parameters were used:
c1 = c2 = 1.49445 and ω = 0.729 [ES00]. The population size was set to m = 20,
and the neighborhood topology is a fully connected graph. Particle positions and par-
ticle velocities were initialized uniformly at random in [−r,r]n. As bound handling
strategy, Nearest position and Unmodified velocity handling (see pages 29 ff.) were
applied.

When resetting infeasible particles on the boundary, the swarm might be attracted
towards good boundary solutions, and finally converge there, as was already observed
by Zhang et al. [ZXB04]. Based on the theoretical study, we expect that this kind
of premature convergence occurs more often when the problem dimensionality in-
creases. Figure 3.12 shows the number of runs in which the global optimum was
found and the number of runs in which the swarm violated at least one box constraint,
in dependence of the search space dimensionality. The higher the problem dimensio-
nality, the more often particles converged on at least one bound. When solving the
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(a) pG(2)≈ 0.785,
pG(3)≈ 0,524
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(b) pG(n) for different dimensionalities n

Figure 3.11: The geometric properties of high-dimensional spaces are not intuitive:
pG(n) = Vsphere/Vcube rapidly approaches zero with increasing dimensionality n.

two-dimensional Sphere problem, the global optimum was found in all runs. How-
ever, when increasing the dimensionality to 100, only 488 of 1000 optimization runs
succeeded to find the global optimum of the Sphere function, whereas in 512 runs the
particles converged on at least one parametric bound.

Kennedy and Eberhart propose to initialize positions as well as velocities to ran-
dom values [KE01, p. 314], but velocities might also be set to zero at the begin-
ning [Eng05, p. 102]. It was shown theoretically in Theorem 3.6 that nevertheless
many particles leave the high-dimensional search space with overwhelming proba-
bility w.r.t. n in the first iteration. When solving the 30-dimensional Sphere problem
with the above PSO algorithm, but by initializing velocities to zero, the global opti-
mum was found in 980 from 1000 runs. If the dimensionality is increased to n = 100,
the swarm converged on at least one bound in 275 runs. Hence, initializing velocities
to zero yielded better results than uniform velocity initialization when solving the
Sphere benchmark. However, in accordance with the theoretical analysis, zero veloc-
ity initialization cannot always prevent premature convergence on the boundary.

3.6 Consequences for PSO Application

In the previous sections, initial particle swarm behavior was studied in great detail.
The theoretical results presented in Sections 3.2 and 3.3 are based on the (extended)
BCPSO model, which is very close to a real particle swarm optimizer. The main
results are:
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Figure 3.12: Application of a PSO algorithm on the 2-, 30-, 50-, and 100-dimensional
Sphere problem. In accordance with the theoretical study, the frequency of premature
convergence on the search space boundary increased with the problem dimensiona-
lity.
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• With overwhelming probability, particles are initialized very close to the bound-
ary (Section 3.2) when solving high-dimensional problems.

• With overwhelming probability, all particles become infeasible in the first iter-
ation when particle velocities are initialized uniformly at random in the para-
meter space S (Section 3.3.1).

• With overwhelming probability, all particles that are outperformed by at least
one neighbor at the initialization step (i.e., ~xi,0 6=~li,0)) become infeasible in
the first iteration when using zero or half-diff velocity initialization. In many
realistic PSO applications, the majority of the particles is affected. All other
particles remain feasible (Section 3.3.2 and Section 3.3.3).

In the literature, there exist a lot of strategies to cope with infeasible particles (see
Section 2.3). Invalid particles can, for instance, be allowed to explore beyond the
search space boundaries, or repaired by moving them to a feasible position. When
dealing with box constraints, one can easily construct various repair strategies. From
this point of view it is not a problem that particles leave the search space because they
can be repaired.

The main conclusion of the theoretical study is the fact that the bound handling
strategy is not a rarely used procedure of a PSO algorithm, at least at the beginning
of the optimization. Instead, it is applied very often, and therefore strongly affects
particle swarm behavior and the final solution quality, in particular, when solving
high-dimensional problems. It must be noted that the theoretical analysis only gave
thorough results for the first iteration of a PSO algorithm. Although the analysis
provides strong evidence that the bound handling procedure essentially influences
particle swarm performance, the effect is not proven for the later stages of the al-
gorithm. The conclusions drawn in this section are confirmed by the subsequent
extensive experimental investigations.

Due to its importance for particle swarm performance, the bound handling proce-
dure should be chosen with care. As an implication of Wolpert’s and Macready’s no
free lunch theorems [WM97], it strongly depends on the optimization problem which
bound handling strategy performs best. In real world applications, sometimes a pri-
ori knowledge about the optimization problem is available, which can be exploited
to choose an adequate bound handling mechanism. The experimental study in the
next chapter gives insight into the strenghts and weaknesses of many commonly-
used bound handling strategies in order to support the application of PSO algorithms
to box-constrained problems.

The theoretical and experimental investigations presented in Section 3.5 showed
that in some scenarios, bound handling mechanisms that reset particles on the bound-
ary can lead to premature convergence on the boundary. This phenomenon can occur
if good boundary solutions are found at early stages of the algorithm, and was already
noticed experimentally by Zhang et al. [ZXB04]. The theoretical analysis can explain
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this observation: With overwhelming probability, particles are initialized very close
to the boundary, and many of them become infeasible in the first iteration. Further-
more, for a special class of problems it was shown that the probability that a particle’s
initial function value is better than the best boundary solution is exponentially small.
As a consequence for practical PSO application, repair strategies that reset particles
on the boundary should be avoided. If bound resetting is used, at least the particle
velocities in the affected dimensions should be set to zero so that the influence of
their private and local guides drives them back into the feasible parameter space.

An important issue when designing bound handling methodologies is to maintain
the particles’ ability to approach boundary regions. For instance, setting infeasible
particles to a random search space position may distract the swarm from boundary re-
gions: Whenever a particle moves slightly too far, it is possibly placed in a completely
different search space region. Sending infeasible particles to previously visited posi-
tions, e.g., their private guides, may result in slow convergence or even stagnation due
to the fact that many particles are infeasible as soon as in the first iteration. Moreover,
the theoretical study implies that recomputing a particle’s velocity until its position
is feasible is not effective when solving high-dimensional problems. The probability
that a feasible solution is found by this procedure is exponentially small in the first
iteration.

The experimental study in the subsequent chapter suggests that, for instance, re-
flecting particles at the boundary may be a good choice for high-dimensional particle
swarm opimization. However, a lot of different bound handling strategies can be
thought of, and their suitability for the current problem at hand has to be analyzed
carefully.

The careful selection and well-thought design of bound handling procedures is
one possibility to cope with the fact that particles are susceptible to leave the feasible
parameter space. Another approach is to eliminate the importance of bound handling
for high-dimensional particle swarm optimization. This allows particles to perform
their standard movement without being biased by the effects of a bound handling
procedure.

Section 3.4 provides first theoretical results in that direction. The analysis, which
was conducted on the simplified BCPSO model, indicates that restricting the length of
their velocity vectors helps particles to stay inside the feasible region. In particular,
if velocities are restricted with respect to the search space dimensionality, e.g., to
[− r

n , r
n ]n, where [−r,r]n ⊂ R is the underlying parameter space, the importance of

bound handling can be strongly reduced. From this theoretical analysis, a particle
swarm optimizer with velocity adaptation was derived (see Section 5.3). The use
of velocity adaptation diminished the effect of bound handling on particle swarm
performance on the investigated benchmark set.
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4. Experimental Analysis of PSO
for Box-constrained Problems

In this chapter, the results of the theoretical analysis are complemented and con-
firmed by experimental investigations. For this purpose, commonly-used benchmark
functions were used as optimization problems: so-called traditional benchmarks,
including, for instance, Sphere, Rosenbrock and Rastrigin, and CEC 2005 bench-
marks [SHL+05]. The PSO algorithm used in this experimental evaluation is based
on the standard PSO proposed by Bratton and Kennedy [BK07]. The following issues
were studied experimentally:

• Velocity Initialization
In the theoretical study it was proved that none of the investigated velocity
initialization methods is able to prevent that, w.o.p., many particles become
infeasible in the first iteration. Uniform velocity initialization causes all parti-
cles to leave the search space, w.o.p., whereas zero velocity initialization slows
down initial exploration. Half-diff velocity initialization seems to have the
fewest drawbacks. Nevertheless, the initial particle swarm behavior is similar
for all three strategies, and therefore, velocity initialization is expected to have
low impact on overall particle swarm performance. This assumption is con-
firmed by an experimental comparison of the velocity initialization strategies
zero, uniform and half-diff.

• Bound Handling
The theoretical study showed that bound handling strongly influences initial
particle swarm behavior when solving high-dimensional optimization prob-
lems. There exist several strategies to cope with this fact, for instance, the
careful design and selection of bound handling mechanisms. This experiment
focuses on the following two questions:

1. Does bound handling significantly influence particle swarm performance,
as suggested by the theoretical analysis?

2. Which are the strengths and weaknesses of commonly-used bound hand-
ling methods?

First experimental results on these topics were published in [HW08]. The exper-
imental analysis presented in the following is, however, by far more thorough, by
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using more bound handling methods and benchmark functions, and by providing a
detailed evaluation of the strengths and weaknesses of commonly-used bound hand-
ling strategies.

The impact of particle velocities on particle swarm performance is a third im-
portant issue to study, considering the results of the theoretical investigation. This
topic is postponed to Section 5.3, in which a novel particle swarm optimizer, which
was derived from the theoretical insights, is presented: PSO with velocity adapta-
tion [HNW09]. The experimental study of PSO with velocity adaptation shows that
bound handling has less impact on the achieved solution quality if particle velocities
are scaled to a certain length, which is adapted during the optimization. At the same
time, PSO with velocity adaptation provides better results than a standard particle
swarm optimizer for a wide range of benchmark functions.

4.1 Methodology
The strengths and weaknesses of heuristic algorithms as well as their applicability for
certain problems is often analyzed experimentally. The experimental investigations
presented in this thesis were carried out according to the following procedure, as
described by Barr et al. [BGK+95]:

1. Define the goals of the experiment.

2. Choose measures of performance and factors to explore.

3. Design and execute the experiment.

4. Analyze the data and draw conclusions.

5. Report the experiment’s results.

It is important that the goals of an experimental investigation are clearly defined
beforehand. This issue is also highlighted in the context of statistics and hypothesis
testing (e.g., by Curran-Everett et al. [CETK98]) in order to prevent that regularities,
which occur in any data set simply by chance, are misinterpreted. Moreover, a pre-
defined goal has strong impact on the design of an experimental study. The goals of
an experiment decide, for instance, about the data that has to be collected and about
suitable (statistical) methods for the analysis of the experimental output.

When applied on realistic optimization problems, the most expensive part of a
stochastic search algorithm usually is the evaluation of the objective function. Often,
time-consuming computations (see, e.g., Chapter 6) or simulations take place. Hence,
in the experimental study, the algorithms’ performance is meassured in terms of ob-
jective value in dependence of the number of executed function evaluations. Two
different algorithmic factors are explored: velocity initialization and bound handling.
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All parameters besides velocity initialization and bound handling strategy were
kept fixed throughout the experimentation. The setup is presented below and sum-
marized in Table 4.1. The experiments were conducted on the testfunctions described
in Section 4.2. The problem size is varied in order to investigate the impact of dimen-
sionality on particle swarm optimization, which is a main topic of this thesis.

The data was analyzed by common statistical methods such as the computation of
average values, standard deviations, standard errors and confidence intervals, and by
means of statistical hyposthesis tests.

4.1.1 Setup

Before presenting the statistical tools that were used for the data analysis, the experi-
mental setup is described in this section. The algorithmic parameters are divided into
variated parameters and fixed parameters.

Setup – Variated Parameters

In the first experiment, the three velocity initialization strategies of the theoretical
analysis are considered:

• Zero velocity initialization,

• half-diff velocity initialization, and

• uniform velocity initialization.

From the large number of bound handling strategies that are available in the lit-
erature (see, e.g., [Cle06a, ABEF05, ZXB04, RRS04, BK07]), a representative subset
had to be chosen for the second experiment. The following strategies were selected.
They are decribed in detail in Section 2.3.2.

• Hyperbolic [Cle06a], which is a special velocity operator.

• RandomBack as described by Clerc [Cle06a]: Nearest position handling, and
Invert velocity handling with z drawn uniformly at random in [0,1].

• Nearest-Z, Nearest-A, Nearest-U:
Nearest position handling and Zero/Adjust/Unmodified velocity handling.

• Random-Z, Random-A, Random-U:
Random position handling and Zero/Adjust/Unmodified velocity handling.

• Reflect-Z, Reflect-A, Reflect-U:
Reflect position handling and Zero/Adjust/Unmodified velocity handling.
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• Infinity as used in the standard PSO algorithm of Bratton and Kennedy [BK07].

• Infinity-C: Infinity with velocity clamping. Let S = [lb1,ub1]× [lb2,ub2]×
. . .× [lbn,ubn] be the search space of the optimization problem. The maximum
velocity per component, Vmax,i, is set to Vmax,i = (ubi− lbi)/2 for i = 1, . . . ,n
(see Section 2.1.5 for details about velocity clamping).

Hyperbolic and RandomBack were found as two good performing methods with
quite oppositional characteristics by Clerc [Cle06a]. Nearest, Random, and Reflect
are simple and straightforward repair methods with different properties: While Near-
est resets particles on the boundary, and is therefore biased towards the boundary
(even causing premature convergence on the boundary sometimes [ZXB04,HW07]),
Random distracts particles from the boundary [HW07]. Reflect might be a compro-
mise. Infinity was proposed by Bratton and Kennedy as standard method [BK07], and
is therefore included in the experimentation. Own preliminary experimental results
as well as those of Eberhart and Shi [ES00] suggest that the performance of Infinity
can be considerably improved sometimes if velocity clamping is used. Therefore,
Infinity-C was regarded as well.

Setup – Fixed Parameters

A standard particle swarm optimizer similar to the one of Bratton and Kennedy
[BK07] was used for the experimental investigations. The algorithmic parameters
c1, c2, and ω were set to c1 = c2 = 1.496172 and ω = 0.72984 [BK07]. As proposed
by Kennedy and Mendes, the swarm is connected via the so-called von Neumann
topology, a two-dimensional grid with wrap-around edges [KM02], as shown in Fig-
ure 2.4 on page 19. A particle is included in its own neighborhood, i.e., each particle
has five neighbors (top, bottom, left, right, and itself). Bratton and Kennedy suggest
to use 50 particles, however, in this study, the population size was set to m = 49 so
that the particles can be arranged in a regular 7×7 grid. As opposed to the standard
PSO [BK07], all private guides are updated at the same time after the position and
velocity updates, in order to simulate particles that act in parallel. If a particle’s pri-
vate guide and its current position evaluate to the same objective value, the private
guide is updated to the current position with probability 1/2. If a particle has more
than a single best neighbor, its local guide is randomly chosen among the candidates.

For all benchmarks, particles were initialized uniformly at random in the whole
search space. Historically, individuals are often initialized in a subspace of the fea-
sible region in order to avoid that the performance of algorithms with center bias
is overestimated. E.g., the initialization space of the Sphere function may be set
to [50,100]n whereas the parameter space is [−100,100]n [BK07]. However, in the
following experiments, asymmetric initialization ranges are not used due to the fol-
lowing two reasons: First, the CEC 2005 benchmarks do not have their global opti-
mum at the center of the search space, and partly are shifted and rotated versions of
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standard test problems. Hence, variety is increased if additionally, traditional bench-
marks with centered optima are used. Second, when solving real world problems, it
is mostly not desirable that particles explore regions beyond the initialization space,
which is defined by the box constraints, as solutions outside the search space bound-
aries are infeasible. In the experimental study, each configuration was repeated 100
times, and each run was terminated after 300,000 function evaluations.

The velocity initialization strategies were examined by using the bound handling
strategies Nearest-Z and Random-Z. In the second experiment, velocities were ini-
tialized with half-diff initialization.

Table 4.1: Setup for the experimental analysis.

PSO parameters
Population size 49

Neighborhood topology 7×7 grid (self included, undirected)
Accelaration coefficients c1 and c2 1.496172

Inertia weight ω 0.72984
Craziness (mutation, turbulence) no

Particle initialization Uniformly at random in the search space
Variated PSO parameters

Velocity initialization Uniform, zero, half-diff
Hyperbolic, RandomBack

Nearest-Z, Nearest-A, Nearest-U
Bound handling Random-Z, Random-A, Random-U

Reflect-Z, Reflect-A, Reflect-U
Infinity, Infinity-C

Experimentation parameters
Function evaluations per run 300,000

Number of runs per configuration 100

4.1.2 Basic Statistical Methods

In statistics, there is a clear distinction between the statistical population and a sam-
ple [Lap90, page 7], [CETK98]. A statistical population is defined as the collection
of all possible observations. This could, for instance, be the final solution quality of
all possible runs of a particle swarm optimizer with a certain setting. As it is often
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not possible to obtain the whole population, its parameters such as mean value and
standard deviation are estimated based on a sample. A sample is a portion of the
whole population, which is usually selected randomly.

Let {X1,X2, . . . ,XN} be a sample with N observations1. The population mean µ is
estimated by the sample mean X [Lap90, CETK98, OM88]:

X =
∑

N
i=1 Xi

N

The population standard deviation σ is estimated by the sample standard deviation
s [Lap90, CE08, OM88]:

s =

√
∑

N
i=1
(
Xi−X

)2

N−1

The standard error of the mean, sX , can be estimated by sX = s/
√

N [CETK98,
OM88]. While the sample standard deviation estimates the variability of the pop-
ulation, the standard error is related to the accuracy of the obtained sample mean.
The more samples are observed, the more confident one can be that the sample mean
reflects the population mean, and the smaller is the resulting standard error.

The standard error of the mean is used to construct the so-called confidence in-
terval for the population mean µ. The aim is a statement like “with a confidence of
pci = 95%, the population mean µ is located in

[
X−a,X +a

]
”. The actual mean-

ing is the following [Lap90]: If the sampling procedure was repeated, approximately
95% of the constructed confidence intervals would contain the population mean µ.
If the population standard deviation σ is unknown, and estimated with the sample
standard deviation s instead, the Student t distribution is used for the computation of
the interval bounds [Lap90, CETK98]:

a = t(α/2,n−1) · sX

where α = 1− pci, and t(α/2,n−1) is the 100(1−α/2)th percentile from a Student
t distribution with n− 1 degrees of freedom. The values for t(α/2,n− 1) can be
found in respective tables (e.g., [Lap90, Appendix A, Table G]). In the subsequent
experiments, sample means of final objective values and 95% confidence intervals
are visualized as shown in Figure 4.1. The graphical representation was inspired by
Tufte’s way of drawing box plots [Tuf07, Chapter 6].

The statistical analysis was carried out by using R [R D08]. For the computa-
tion of sample mean, sample standard deviation, and standard error of the mean, the
functions rowMeans, sd, and se (library sciplot) were utilized, respectively.
Confidence intervals were obtained by calling t.test with a single sample.

1In the following experiments, the sample size is N = 100 (number of runs per configuration).
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Figure 4.1: Example for a compact representation of sample means and confidence
intervals of different strategies (Uniform, Zero, Half-diff).

4.1.3 Statistical Hypothesis Testing

In addition to these standard methods, the population was investigated by statistical
hypothesis testing [Lap90, HS06, CE09, OM88, BT78]. There are two hypothesis
involved in each test: A null hypothesis H0 and an alternative hypothesis H1. A null
hypothesis might, for instance, claim that the mean values of two populations are
identical while the alternative hypothesis says the contrary. If the null hypothesis can
be rejected due to the results of a hypothesis test, there is statistical evidence that
the alternative hypothesis is true. The strength of this claim depends on the so-called
significance level α = Prob(reject H0 |H0 is true), which specifies the probability that
the null hypothesis is rejected although it is true (type I error). Conducting a type I
error is usually considered worse than accepting the null hypothesis although it is
false, which is referred to as type II error. The significance level is typically set to
α = 0.05 or α = 0.01.

The existing hypothesis tests differ in their test statistic, a quantity that is computed
from the observed data, and used for the decision whether the null hypothesis is
rejected or not.

For the subsequent experiments, the so-called Wilcoxon rank sum test [Wil45,
MW47, HS06, Lap90] was utilized. The aim of this test is to find out if two sam-
ple sets A and B were derived from the same population (null hypothesis). For
this purpose, a joint set is built from the two sample sets, and ranks are assigned
to each observation: the smallest observation gets rank 1, the second-smallest rank
2, and so on. Then, the joint set is split again into the sets A and B. W.l.o.g., the
ranks of the members of set A are considered. If, for example, each set A and B
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had N = 3 members, 20 sets of ranks are possible for the members of sample A:
{1,2,3},{1,2,4}, . . . ,{2,3,4}, . . . ,{4,5,6}. If A and B were derived from the same
population, each of these rank sets had the same probability of occuring. This fact is
the core of the Wilcoxon rank sum test. The test statistic W is the sum of the ranks
that belong to the observations in sample set A [Lap90, Wil45]. Obviously, if the
null hypothesis is true, very low or very high rank sums are not as probable as inter-
mediate ones: there is, for instance, only a single set of ranks that yields rank sum
(N +1) ·N/2 (the smallest possible rank sum) or (3N +1) ·N/2 (the largest possible
rank sum), but more than one set for intermediate rank sums. For large sample sizes
and given that the null hypothesis is true, the distribution of the rank sums approaches
the normal distribution [HS06, MW47].

In the one-sided test that is used in the experiments, null and alternative hypothesis
are given by (adapted from [HS06]):

H0 :P(XA < XB)≤ 1
2

(4.1)

H1 :P(XA < XB) >
1
2

(4.2)

where XA and XB are arbitrary observations from the underlying populations of A and
B, respectively. The null hypothesis is rejected if the rank sum of sample set A is
extremely low. Let pr, r = (N + 1) ·N/2, . . . ,(3N + 1) ·N/2, be the probability that
rank sum r occurs, given that each ranking has the same probability. The p-value is
computed to p = ∑

W
i=(N+1)·N/2 pi, and equals the probability that the observed value

for the test statistic or a more extreme value is obtained if the null hypothesis was
true. The null hypothesis is rejected iff p < α. Illustrative examples are given in
Appendix B.1.

Note that the Wilcoxon rank sum test is equivalent to the so-called Mann and Whit-
ney U test [MW47]. The only difference is a transformation of the test statistic, but
the results are identical [Lap90, HS06, OM88]. Ties in the observed data are solved
by assigning the mean rank value to the respective observations [Wil45]. However, a
correction of the test statistic might be necessary [HS06].

In the experiments, sample set A and sample set B are the final solution qualities
of N = 100 runs of algorithms A and B. If the null hypothesis is rejected, algorithm A
significantly outperformed algorithm B, based on the one-sided Wilcoxon rank sum
test (assuming a minimization problem). The probability of making a type I error is
given by the significance level α, which, if not stated otherwise, is set to α = 0.01.

When considering the results of multiple statistical hypothesis tests, it is very prob-
able that some type I errors occur due to chance. If, for instance, 200 independent
Wilcoxon rank sum tests are carried out, 2 type I errors are expected on average if
all null hypotheses are true. The probability that there is at least one type I error
computes to 1− (1−α)200 = 1− 0.99200 ≈ 0.866 (assuming true null hypotheses).
This fact has to be kept in mind when interpreting the results of multiple statistical
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tests. Sometimes, correction methods such as the sequential Bonferroni procedure as
proposed by Holm [Hol79] are used to cope with this situation. However, there are
severe mathematical, logical and practical arguments against such methods [Mor03],
and they are therefore not used in this thesis. Instead, the statistical results are inter-
preted with care and with this issue in mind.

For the computation of the Wilcoxon rank sum test, the function wilcox.exact
(library exactRankTests, one-sided alternative "less") of R [R D08] was used.
Subsequently, the results of multiple Wilcoxon rank sum tests are often presented in
tables. An example is given in Table 4.2.

Table 4.2: Example results of multiple one-sided Wilcoxon rank sum tests. For each
algorithmic combination (A, B), the matrix shows on which functions algorithm A
performed significantly better than algorithm B. The total number of benchmarks is
18.
Example: Entry {f5, f6} in the first row shows that Uniform significantly outper-
formed Zero (2) on benchmarks f5 and f6.

1 2 3
Uniform (1) {} {f5, f6} {}

Zero (2) {Ackley, f2, f11, f12, f14} {} {}
Half-diff (3) {Ackley, Rastrigin, f2, f3, f12, f14} {Ackley, Rastrigin, f3} {}

4.2 Test Functions

For the experimental evaluation, traditional benchmarks from the continuous opti-
mization literature (e.g., [BK07, Cle06b, Men04, ES00]) and CEC 2005 benchmarks
[SHL+05] were used.

4.2.1 Traditional Benchmarks

The benchmark functions presented in this section are widely used in the PSO com-
munity, e.g., [BK07, Cle06b, Men04, ES00]. However, they have some drawbacks.
First, the global optimum is often located at or very close to the center of the fea-
sible space. Second, many of the problems are separable, i.e., their parameters do
not influence each other. Algorithms can easily exploit separability by optimizing
each functional parameter separately. When solely using benchmark functions that
have their global optimum at or near the search space center, individuals are often
initialized in a subspace of the feasible region in order to avoid that the performance
of algorithms with center bias is overestimated [BK07]. E.g., the initialization space
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of the Sphere function may be set to [50 . . .100]n whereas the parameter space is
[−100 . . .100]n, where n denotes the search space dimensionality. As the CEC 2005
benchmarks contain shifted and rotated versions of the traditional benchmarks, asym-
metric initialization ranges are not used in the subsequent experimental study. That
way, the variability of the investigated problems is increased: Most problems do not
have their global optimum at the center of the search space, but exceptions exist.
Hence, center bias can easily be identified.

A function f (x1,x2, . . .xn) is called unimodal if and only if it has a single local
optimum which then, of course, also is the global optimum. Otherwise, it is called
multimodal.

Sphere

Sphere is a very simple, separable, unimodal problem. The global minimum is
f (0, . . . ,0) = 0.

Function description: f (~x) =
n

∑
i=1

x2
i

Search space: S = [−100,100]n

Rosenbrock

The global optimum of the Rosenbrock function, f (1, . . . ,1) = 0, is located in a long,
narrow, banana shaped valey, as depicted in Figure 4.2 (bottom, right). Rosenbrock
is a non-separable problem.

Function description: f (~x) =
n−1

∑
i=1

(
100 ·

(
xi+1− x2

i
)2

+(1− xi)
2
)

Search space: S = [−30,30]n

Ackley

The Ackley function has many local optima, and a deep value near the center of the
feasible space. It is rather flat elsewhere. The global optimum is located at the origin:
f (0, . . . ,0) = 0.

Function description: f (~x) =−20exp
(
−0.2

√
1
n ∑

n
i=1 x2

i

)
−exp

(1
n ∑

n
i=1 cos(2πxi)

)
+20+ e

Search space: S = [−32,32]n
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Figure 4.2: Top: The Sphere function. Bottom: The Rosenbrock function.
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Figure 4.3: The Ackley function.
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Figure 4.4: The Griewank function.

Griewank

Griewank is a multimodal problem with many regularly distributed local minima.
From far, Griewank resembles the Sphere function, as shown in Figure 4.4. The
global optimum is f (0, . . . ,0) = 0.

Function description: f (~x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos
(

xi√
i

)
+1

Search space: S = [−600,600]n

Rastrigin

Rastrigin is a highly multimodal problem. There exist many local optima, which are
regularly distributed over the feasible parameter space. Due to the high number of
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local optima, Rastrigin is suited to test the exploration capabilities of optimization
algorithms. It is a separable problem. The global minimum is f (0, . . . ,0) = 0.

Function description: f (~x) = 10 ·n+
n

∑
i=1

(
x2

i −10 · cos(2 ·π · xi)
)

Search space: S = [−5.12,5.12]n

-5 -2.5 0 2.5 5 -5
-2.5

0
2.5

5

0
50

100

O
bj

ec
tiv

e
va

lu
e

x1

x2 -1 -0.5 0 0.5 1 -1
-0.5

0
0.5

1

20
40

O
bj

ec
tiv

e
va

lu
e

x1

x2

Figure 4.5: The Rastrigin function.
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Figure 4.6: The Schwefel function.

Schwefel 2.6

Schwefel is the only problem of the traditional benchmarks whose global optimum
is not located at or near the center of the feasible space. Instead, the global minimum

97



4. Experimental Analysis of PSO for Box-constrained Problems

is located at x∗ = (420.9687, . . . ,420.9687), f (x∗) = −n · 418.9829. Schwefel is a
separable multimodal problem with many local optima.

Function description: f (~x) =
n

∑
i=1

(
−xi · sin

(√
|xi|
))

Search space: S = [−500,500]n

4.2.2 CEC 2005 Benchmarks
In 2005, the so-called CEC 2005 benchmarks were published [SHL+05], which cover
many different kinds of optimization problems. The CEC 2005 benchmarks are based
on known functions like Sphere, Rosenbrock, Griewank, and Rastrigin. However,
the functions were shifted by randomly generated offsets. This means that the global
optima are distributed uniformly at random in the search space. It can be proved that,
with overwhelming probability with respect to the search space dimensionality, they
are located very close to the boundary:

Theorem 4.1. Let f be a benchmark problem and x? be a global optimum chosen
uniformly at random in the n-dimensional search space bounded by [−r,r]n. Then,
the probability p(r,n,ε) that the distance of x? to its nearest border is less than ε is
1− e−Θ(n).

Proof. Similarly to Theorem 3.1, p(r,n,ε) evaluates to

p(r,n,ε) =
(2r)n− (2r−2ε)n

(2r)n = 1− e−Θ(n)

The CEC 2005 benchmarks were designed to provide problems with various different
features:

• Uni- and multimodality

• Separable and non-separable functions

• Benchmarks with and without noise

• Continuous and non-continous functions

• Benchmarks with and without search space boundaries

Additionally, each problem is scalable with respect to the search space dimensiona-
lity.

In the experimental analysis, the CEC 2005 benchmarks f1–f14 are considered.
Functions without search space boundaries and with noise were excluded. The re-
maining problems are summarized in Table 4.3. More details, including function
descriptions, can be found in the technical report of Suganthan et al. [SHL+05], in
which the CEC 2005 benchmarks were first defined.
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Table 4.3: Summary of CEC 2005 benchmarks f1–f14 [SHL+05]. Each parameter is
bounded by the values given in the column named Range, and f (x∗) denotes the best
objective value. The functions f4 and f7 were excluded because they either do not
have box constraints or are noisy.

Unimodal functions
f1 Shifted Sphere Function
f2 Shifted Schwefel’s Problem 1.2
f3 Shifted Rotated High Conditioned Elliptic Function
f5 Schwefel’s Problem 2.6 with Global Optimum on Bounds
Multimodal functions
f6 Shifted Rosenbrock’s Function
f8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds
f9 Shifted Rastrigin’s Function
f10 Shifted Rotated Rastrigin’s Function
f11 Shifted Rotated Weierstrass Function
f12 Schwefel’s Problem 2.13
Expanded multimodal functions
f13 Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2)
f14 Shifted Rotated Expanded Shaffer’s F6

f (x∗) Range Features
Unimodal functions
f1 −450 [−100,100] Unimodal, separable
f2 −450 [−100,100] Unimodal, non-separable
f3 −450 [−100,100] Unimodal, non-separable
f5 −310 [−100,100] Unimodal, non-separable, global optimum on bound-

ary
Multimodal functions
f6 390 [−100,100] Multimodal, non-separable
f8 −140 [−32,32] Multimodal, non-separable, global optimum on bound-

ary, needle-in-haystack character
f9 −330 [−5,5] Multimodal, separable, many local optima
f10 −330 [−5,5] Multimodal, non-separable, many local optima
f11 90 [−0.5,0.5] Multimodal, non-separable
f12 −460 [−π,π] Multimodal, non-separable
Expanded multimodal functions
f13 −130 [−5,5] Multimodal, non-separable
f14 −300 [−100,100] Multimodal, non-separable
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4.3 Velocity Initialization
In the theoretical analysis, three different velocity initialization strategies were in-
vestigated: uniform, zero, and half-diff. It was proved that none of the strategies
prevents that many particles become infeasible in the first iteration, with overwhelm-
ing probability. If initial particle velocities are distributed uniformly at random in
the underlying search space, almost certainly all particles leave the high-dimensional
space. On the other hand, if velocities are initialized to zero, each particle i with
~xi,0 = ~pi,0 =~li,0 is unable to move until one of its neighbors improves. It seems that
half-diff velocity initialization has the fewest drawbacks. Nevertheless, based on the
theoretical analysis, similar results are expected for all three initialization strategies.

The effects of velocity initialization on particle swarm performance were inves-
tigated experimentally, by using 100-dimensional benchmarks, two different bound
handling mechanisms, and the parameter set given in Table 4.1. As bound handling
methods, Nearest-Z and Random-Z were chosen due to their complementary features:
While particles with Nearest position handling preferably explore boundary regions,
Random position handling often distracts particles from the boundary (see [HW07]
and Section 4.4.2). Sample mean, respective 95% confidence intervals, and sample
standard deviations s of the obtained final objective values from N = 100 runs per
benchmark are given in Tables B.2 and B.3 in the Appendix. Note that the standard
errors sX can easily be computed to sX = s/

√
N = s/10.

Sample means and confidence intervals are additionally depicted in Figures 4.7
and 4.8. These plots show that most of the time, the sample means of the different
velocity initialization strategies are similar. However, there are some notable excep-
tions, e.g., half-diff initialization achieves much better results on Rastrigin than the
other two initialization procedures with Nearest-Z bound handling (see Figure 4.7).
The statistical significance of visible differences in the obtained sample means was
assessed by conducting one-sided Wilcoxon rank sum tests, as described in Sec-
tion 4.1.3. In order to reduce the probability of type II errors (the probability that
the null hypothesis is not rejected although it is false) the significance level was in-
creased to α = 0.05. The summarized results are shown in Tables 4.4 and 4.5.

When Random-Z bound handling is utilized, none of the velocity initialization
strategies performed particularly good or bad compared to the other strategies, con-
sidering the results of the Wilcoxon rank sum tests (see Tables 4.4 and 4.5). On the
investigated testproblems, the impact of velocity initialization is increased when us-
ing Nearest-Z bound handling: Significant differences were observed on a total of 9
benchmark functions. In this setting, half-diff velocity initialization produced slightly
better results than the other two methods on many benchmarks. Possible reasons were
discussed above. Due to this argumentation, from the investigated methods half-diff
velocity initialization can be recommended for practical PSO application, although
usually, large performance differences are not expected.
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Figure 4.7: Comparison of velocity initialization strategies: Uniform (U), Zero (Z),
and Half-diff (H). Sample mean of final objective values (dot) and corresponding 95%
confidence intervals (X) are shown for each 100-dimensional benchmark. Nearest-Z
bound handling was used.
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Figure 4.8: Comparison of velocity initialization strategies: Uniform (U), Zero (Z),
and Half-diff (H). Sample mean of final objective values (dot) and corresponding 95%
confidence intervals (X) are shown for each 100-dimensional benchmark. Random-
Z bound handling was used.
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Table 4.4: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.05. For each algorithmic combination (A, B), this matrix shows on which
functions A performed significantly better than B. The total number of benchmarks
is 18.

Nearest-Z
1 2 3

Uniform (1) {} {f5, f6} {}
Zero (2) {Ackley, f2, f11, f12, f14} {} {}

Half-diff (3) {Ackley, Rastrigin, f2, f3, f12, f14} {Ackley, Rastrigin, f3} {}

Random-Z
1 2 3

Uniform (1) {} {Griewank} {f9}
Zero (2) {f6} {} {f6}

Half-diff (3) {} {Griewank} {}

Table 4.5: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.05. For each algorithmic combination (A, B), this matrix shows how often
algorithm A performed significantly better than algorithm B. The total number of
benchmarks is 18.

Nearest-Z
1 2 3

Uniform (1) 0 2 0
Zero (2) 5 0 0

Half-diff (3) 6 3 0

Random-Z
1 2 3

Uniform (1) 0 1 1
Zero (2) 1 0 1

Half-diff (3) 0 1 0
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4.4 Bound Handling
The experimental analysis presented in this section has two main purposes: First, the
significance of bound handling for particle swarm optimization is analyzed, in order
to back up the theoretical results obtained in Section 3. Second, a more practical
issue is addressed: The strengths and weaknesses of several commonly-used bound
handling strategies are analyzed.

The first topic is discussed in Section 4.4.1 by studying five different bound hand-
ling strategies on the chosen benchmark set. To investigate the impact of problem
dimensionality on the significance of bound handling, the parameter space dimensio-
nality is set to 2, 30, 100, and 500. Clearly, considering the theoretical results, we
expect that the significance of bound handling increases with the problem dimensio-
nality. First experimental results on the importance of bound handling were published
previously [HW08]. In the following, these results are extended by using additional
bound handling methods and problem dimensionalities.

The characteristics of 13 commonly-used bound handling strategies are analyzed
in Sections 4.4.2 and 4.4.3. Guidelines for PSO application on high-dimensional
problems with box constraints are derived.

Throughout this section, the algorithmic parameters were chosen according to Ta-
ble 4.1. Particle velocities were initialized with half-diff initialization due to the fact
that it provided slightly better results than zero and uniform in the experiments pre-
sented in Section 4.3.

4.4.1 Significance of Bound Handling

The theoretical study showed that many particles become infeasible at the beginning
of the optimization process. As bound handling is applied to each of these particles,
the chosen strategy to cope with infeasible solutions has strong impact on particle
swarm behavior, at least in the early steps of a PSO algorithm. In this section, the
significance of bound handling for particle swarm optimization is investigated exper-
imentally.

Five bound handling strategies (RandomBack, Nearest-Z, Random-Z, Reflect-Z,
and Infinity) were studied on the benchmarks that were presented in the previous sec-
tion. Descriptions of the applied bound handling methods can be found on page 87
and in Section 2.3.2. Velocity handling is analyzed seperately in Section 4.4.3. There-
fore, Nearest-A, Nearest-U, Random-A, Random-U, Reflect-A, and Reflect-U were
excluded from this experiment. Hyperbolic and Infinity-C are not bound handling
methods in the strong sense because they are not only applied to infeasible parti-
cles but to all particles. As this fact could already lead to significant performance
differences, Hyperbolic and Infinity-C were excluded from the experiment as well.

Tables of sample means, 95% confidence intervals, and standard deviations can
be found in Appendix B.3. The tables include Hyperbolic and Infinity-C because
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these results are needed in the subsequent section. However, the performance of
Hyperbolic and Infinity-C is disregarded for the conclusions drawn in this section.

A comparison of the obtained sample means shows that bound handling strongly
influenced particle swarm performance on the higher-dimensional problems. Se-
lected results are presented in Table 4.6 for convenience. The obtained average ob-
jective values hardly differ from one another for two-dimensional problems. This is
partly due to the fact that the two-dimensional problems are comparatively easy to
solve, and the PSO algorithm was mostly able to find the global minimum. When
solving 30-dimensional problems, the performance differences are more noticeable
(Tables 4.6, B.14, and B.15) and significant (Tables 4.7 and B.7). The impact of
bound handling on the final solution quality increased further with the problem di-
mensionality. The observed performance differences are significant from a statistical
point of view: Table 4.7 shows the summarized results of the one-sided Wilcoxon
rank sum test for 30- and 500-dimensional problems, using Random-Z, Reflect-Z,
and Infinity bound handling. The complete results of the Wilcoxon rank sum tests
are presented in Appendix B.3. A large number of significant performance differ-
ences was observed, especially when considering the higher-dimensional benchmark
sets.

Figure 4.9 shows how often a bound handling strategy significantly outperformed
another strategy, for each dimensionality. Two main conclusions can be drawn: First,
this number increases with the problem dimensionality, as suggested by the theoret-
ical analysis. Second, bound handling significantly influenced particle swarm per-
formance in this experimental investigation. For instance, a pairwise comparison of
the studied bound handling strategies led to 127 observed significant performance
differences for the 100-dimensional benchmarks, while the greatest possible number
of significant results is 180.

Summarized, this experiment shows that bound handling not only influences parti-
cle swarm behavior in the early steps of a PSO algorithm, as proved in the theoretical
study, but also has strong impact on the final solution quality of a particle swarm op-
timizer, in particular, when solving high-dimensional problems. Hence, the choice of
a suitable bound handling mechanism is important for practical PSO application. In
the subsequent section, the characteristics of seven commonly-used bound handling
methods are analyzed in detail, to assist in the process of selecting an appropriate
bound handling strategy for a given problem.

4.4.2 Strengths and Weaknesses of Selected Strategies
In this section, the characteristics of seven commonly-used bound handling strategies
are analyzed in detail, by using both traditional and CEC 2005 benchmarks. The pa-
rameter space dimensionality was varied and set to 2, 30, 100, and 500 dimensions
for each problem. The main goal of this investigation is to provide guidelines for the
selection of a suitable bound handling strategy for a given problem. Sometimes, a pri-
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Table 4.6: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies for
selected benchmarks (full results can be found in Appendix B.3). The best objective
values are presented together with the function name.

2D Rastrigin (0) f1 (-450) f10 (-330)
Hyperbolic 4.3e-12±7.1e-13 (3.6e-12) -450 (0) -330 (0)

RandomBack 4.4e-12±9.4e-13 (4.7e-12) -450 (0) -330 (0)
Nearest-Z 3.6e-12±8.2e-13 (4.1e-12) -450 (0) -330 (0)
Random-Z 4.2e-12±8.0e-13 (4.0e-12) -450 (0) -330 (0)
Reflect-Z 3.8e-12±7.1e-13 (3.6e-12) -450 (0) -330 (0)
Infinity 4.2e-12±9.1e-13 (4.6e-12) -450 (0) -330 (0)

Infinity-C 3.6e-12±7.4e-13 (3.7e-12) -450 (0) -330 (0)
30D Rastrigin (0) f1 (-450) f10 (-330)

Hyperbolic 28.874±1.4589 (7.3523) -450 (0) -206.7±4.493 (22.64)
RandomBack 42.684±1.9667 (9.9118) -450 (0) -263.8±3.17 (15.98)

Nearest-Z 51.549±2.7688 (13.954) -450 (0) -264.9±3.265 (16.45)
Random-Z 40.783±1.9356 (9.7552) -450 (0) -266.5±3.200 (16.13)
Reflect-Z 52.474±2.7422 (13.82) -450 (0) -274.6±2.582 (13.02)
Infinity 49.529±2.4716 (12.456) -450 (0) -228.17±5.41 (27.24)

Infinity-C 38.973±2.0172 (10.166) -450 (0) -254.76±3.63 (18.31)
100D Rastrigin (0) f1 (-450) f10 (-330)

Hyperbolic 105.46±4.1927 (21.13) -450 (0) 478.7±15.56 (78.4)
RandomBack 337.09±8.0286 (40.462) -450 (0) 104.2±13.0 (65.51)

Nearest-Z 366.22±7.7675 (39.146) -447.36±5.2478 (26.447) 49.19±12.66 (63.79)
Random-Z 259.75±6.483 (32.673) -450 (0) 102.2±14.47 (72.9)
Reflect-Z 355.61±7.7081 (38.847) -450 (0) 8.256±12.61 (63.54)
Infinity 745.71±58.688 (295.77) 188740±20674 (104190) 1905±73.08 (368.3)

Infinity-C 262.51±6.5867 (33.195) -450 (0) 285.3±21.16 (106.7)
500D Rastrigin (0) f1 (-450) f10 (-330)

Hyperbolic 467.81±12.732 (64.167) -417.69 ±2.2298 (11.238) 7320±61.41 (309.5)
RandomBack 2360.3±40.692 (205.08) 3350.5±481.59 (2427.1) 5940.5±122.5 (617.4)

Nearest-Z 2435.5±33.708 (169.88) 7009.6±938.12 (4727.9) 5043.5±99.93 (503.6)
Random-Z 1804.2±34.68 (174.78) 23251±1449.8 (7306.5) 5684.7±103.1 (519.3)
Reflect-Z 2341.1±31.406 (158.28) 2269.2±349.6 (1761.9) 4460.7±112.8 (568.3)
Infinity 6727.1±20.394 (102.78) 2184100±11527 (58096) 16910±69.90 (352.3)

Infinity-C 6725.7±20.941 (105.54) 2174800±13203 (66538) 16871±74.97 (377.8)
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Table 4.7: Summary of one-sided Wilcoxon rank sum test with significance level 0.01
for the bound handling strategies Random-Z, Reflect-Z, and Infinity. For each algo-
rithmic combination (A, B), this matrix shows on which benchmarks A performed
significantly better than B. B denotes the set of all 18 benchmarks.

30D Random-Z Reflect-Z Infinity
Random-Z {} {Ra, f12} {Ra, Schw, f5, f9, f10,

f11, f12, f13, f14}
Reflect-Z {Schw, f5, f10} {} {Schw, f5, f9, f10, f11,

f13, f14}
Infinity {f3} {f3} {}
500D Random-Z Reflect-Z Infinity

Random-Z {} {Sphere, Rosenbrock,
Ackley, Griewank,
Rastrigin, f5, f13}

B

Reflect-Z {Schwefel, f1, f2, f3,
f6, f10, f11, f12}

{} B

Infinity {} {} {}

ori knowledge is available when solving real world problems, which can be exploited
in the parameter selection process. If a priori knowledge is not available, adaptive
particle swarm optimizers can be used. Two adaptive approaches are presented in
Chapter 5.

A Modified Velocity Update Operator: Hyperbolic

In Section 2.3.2, the existing bound handling strategies were classified into repair
methods, special problem representations, and special velocity update operators. Hy-
perbolic is a special velocity update operator, which, by adjusting the particles’ veloc-
ities according to the given box constraints, prevents that particles become infeasible.

The sample means of the obtained final objective values and the results of the
Wilcoxon rank sum test (see Appendix B.3, selected results are presented in Table 4.6
for convenience) show that Hyperbolic often clearly outperformed the other bound
handling strategies when solving high-dimensional problems. There are only three
functions on which Hyperbolic was repeatedly outperformed by other methods: f9,
f10, and Schwefel. The situation is different when solving two-dimensional prob-
lems: Hyperbolic was significantly outperformed by the other strategies on Schwe-
fel and f8. These two functions have their global optimum located at or near the
search space boundary. Note that only few significant results were observed in the
two-dimensional case (see Table B.4). Hence, the weak performance on some two-
dimensional problems is a clear drawback of Hyperbolic.
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Figure 4.9: The higher the problem dimensionality, the more frequently signifi-
cant performance differences were observed among the investigated bound handling
strategies. The greatest possible number of significant observations is 180.

A possible reason for the good performance of Hyperbolic on the higher-dimen-
sional benchmarks can directly be derived from the theoretical analysis. The results
presented in Section 3.4 indicate that small particle velocities are advantageous when
solving high-dimensional problems. The Euclidean distance of each particle’s move-
ment was logged per iteration, and averaged at the end of an optimization run. Sample
means and corresponding standard errors are shown in Table 4.8 for a representative
set of 100-dimensional benchmarks. With Hyperbolic bound handling, particle ve-
locities were relatively small. Small velocities lead to diminished exploration, but
enhanced exploitation capabilities.

Although Hyperbolic provided outstandingly good solutions for most high-dimen-
sional problems, there are exceptions: Schwefel, f9, and f10. The CEC benchmarks
f9 and f10 have a huge number of local optima [SHL+05]. The swarm might be
attracted to one of these local optima too early due to the small particle velocities.

The experimental study suggests that, from the investigated methods, Hyperbolic
can be recommended for high-dimensional problems with a moderate number of local
optima. Hyperbolic can be disadvantageous for low-dimensional problems, and it
seems that Hyperbolic is unable to cope with a large number of local optima.

Bound Resetting Methods: RandomBack and Nearest-Z

Nearest position handling might lead to premature convergence on the boundary, as
pointed out previously [ZXB04, HW07] (see also Section 3.5). This effect can be
reduced by choosing the algorithmic PSO parameters such that exploration is in-
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Table 4.8: With Hyperbolic bound handling, particles move considerably slower
through the search space. In this table, the average distance a particle moved through-
out the run and corresponding 95% confidence interval are shown for some 100-
dimensional problems.

f1 f6 f10 f14
Hyperbolic 3.467±0.009267 4.284±0.02203 1.704±0.02669 59.94±0.5966

RandomBack 14.19±0.04910 21.45±0.1021 7.152±0.07178 318.0±1.998
Nearest-Z 11.33±0.03892 17.15±0.1333 5.552±0.05691 242.5±1.431
Random-Z 15.01±0.05398 20.23±0.1032 5.702±0.05052 211.0±1.117
Reflect-Z 9.598±0.03077 14.2±0.0537 4.944±0.04254 201.2±1.182
Infinity 723.2±4.109 714.3±4.702 36.04±0.2082 801.9±3.766

Infinity-C 18.19±0.1513 22.31±0.1364 5.294±0.06076 191.6±1.277

creased, for instance, by using a sparsely connected neighborhood graph. Moreover,
the inversion of an infeasible particle’s velocity, as it is done in RandomBack, can
help to prevent this kind of premature convergence. Nevertheless, the search is bi-
ased towards the boundary. This holds in particular if the underlying parameter space
is of high dimensionality due to the fact that the probability of infeasible particles
increases in that case (at least at the beginning of the optimization, as shown in the
theoretical study in Section 3.3). This means that boundary solutions are evaluated
comparatively often, which biases the search in that direction. Note that there are
scenarios in which this swarm behavior can pay off, e.g., if good solutions are lo-
cated on the boundary. However, generally, the preference of boundary regions is not
a desired feature.

Both RandomBack and Nearest-Z only showed mediocre performance in the ex-
perimental investigation, considering both sample means and the results of the Wilco-
xon rank sum test (see Appendix B.3). There are only very few benchmarks on which
Nearest-Z or RandomBack significantly outperformed Reflect-Z (500-dimensional
Ackley, 30- and 100-dimensional Rastrigin), which suggests that Reflect-Z might be
the better choice for many scenarios.

Random-Z

Random position handling might distract particles from the boundary, and lead to
poor performance if good solutions are located at or near the search space border, as
observed earlier [HW07]. The reason is clear: Whenever a particle approaches the
boundary, but moves slightly to far, it is possibly replaced at a completely different
position in the parameter space, which can lead to a very exploratory, rather ran-
dom swarm behavior. The swarm’s difficulty to approach the boundary can already
be observed when solving two-dimensional problems: Random-Z was significantly
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outperformed by most other approaches on f5 and f8 (see results of the Wilcoxon
rank sum test, Table B.4). Both functions have their global optimum at the bound-
ary [SHL+05]. Considering f5, Random-Z was the only strategy that had not found
the global optimum in all runs.

The previous argumentation is confirmed by the results of the 500-dimensional
benchmarks: Random-Z often significantly outperformed the other bound handling
strategies, in particular on Sphere, Rosenbrock, Ackley, Griewank, and Rastrigin,
which have their global optimum at or near the search space center. On the other
hand, Random-Z is often significantly outperformed on Schwefel and some CEC
2005 benchmarks. These results indicate that the application of Random-Z biases the
particle swarm towards the search space center.

Due to its exploration capabilities, Random-Z might be a good choice for highly
multimodal problems. However, this thought was not confirmed by experimental re-
sults. The performance on f9 and f10 was not competitive with, for instance, Reflect-
Z, considering the sample means obtained for the 30-, 100-, and 500-dimensional
benchmarks (see Appendix B.3).

In Theorem 4.1 it was shown that in high-dimensional spaces, the global optimum
is located very close to the boundary if its position is assumed to be distributed uni-
formly at random in the search space. Moreover, in high-dimensional spaces, most
of the volume is concentrated in a small shell near the surface (see Theorem 3.1).
This means that an optimization algorithm should be able to explore regions near the
boundary. Therefore, Random-Z bound handling might be detrimental when solving
high-dimensional problems. Moreover, if good solutions are located at or near the
search space boundary, particles using Random-Z bound handling can have difficul-
ties to approach them. However, Random-Z often achieved very good results on the
traditional benchmarks that have their global optimum (and other good solutions) at
or near the search space center.

Reflect-Z

Reflect-Z was among the best performing strategies in this experimental investiga-
tion. Its design does neither prevent particles from approaching the search space
borders nor explicitly attract particles towards the boundary. It seems that Reflect po-
sition handling carries none of the disadvantages that were observed when applying
Random or Nearest. Moreover, in contrast to the periodic search space of Zhang et
al. [ZXB04] (see also Section 2.3.2) there are no new discontinuities at the boundary,
and the search space volume is not increased.

Particle velocities are in the same order of magnitude as those of Random-Z or
Nearest-Z bound handling (see Table 4.8). This is probably the reason why Hyper-
bolic often significantly outperformed Reflect-Z on many higher-dimensional prob-
lems. However, Reflect-Z performed best (once: second-best) on the 30-, 100-, and
500-dimensional Schwefel, f9, and f10 (the results are presented in Appendix B.3).
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The performance of Reflect-Z might be improved if velocities are decreased. For
instance, velocity adaptation as presented in Section 5.3 can be used.

Special Problem Representation: Infinity and Infinity-C

In this experimental study, Infinity could not compete with the other strategies on
higher-dimensional problems. On the 100- and 500-dimensional benchmarks, Infin-
ity was significantly outperformed by all other strategies on all investigated testfunc-
tions. The obtained average objective values were very poor (see Tables 4.6 and 4.7,
complete results can be found in Appendix B.3). Note that each run of the PSO al-
gorithm was terminated after 300,000 function evaluations. The evaluation step was
skipped for infeasible particles which means that the number of iterations can be
higher with Infinity bound handling than with, for instance, a repair method.

In the theoretical study presented in Section 3.3, it was shown that many par-
ticles become infeasible in the first step of a PSO algorithm, when solving high-
dimensional problems. This means that many particles mainly explore infeasible
space at the beginning of the optimization if Infinity bound handling is applied. Al-
though the evaluation step is skipped, this might have impact on the interactions that
usually take place in a particle swarm, as infeasible particles do not update their
private guides. Moreover, particle velocities were comparatively high with Infinity
bound handling, as shown in Table 4.8.

On the 100-dimensional benchmarks, velocity clamping strongly improved parti-
cle swarm performance. Mostly, both the obtained average objective values and the
average distances covered by a particle’s movement were roughly in the same order of
magnitude than those of the repair mechanisms. However, velocity clamping did not
significantly improve particle swarm performance on the 500-dimensional problems
(see results of the Wilcoxon rank sum test presented in Appendix B.3).

The performance of Infinity and Infinity-C was competitive with those of the other
bound handling strategies on the two- and 30-dimensional benchmarks.

Conclusion

The experimental analysis presented in this section revealed some of the strengths
and weaknesses of diverse commonly-used bound handling strategies. In some real
world applications, a priori knowledge is available about the properties of the opti-
mization problem. This knowledge can be exploited when selecting the algorithmic
PSO parameters.

Summarized, Hyperbolic often performed very good on the high-dimensional prob-
lems, as illustrated in Figure 4.10, possibly due to the fact that particle velocities are
very small. Nevertheless, as exemplarily shown in Figure 4.11, there exist excep-
tions, for instance f9 and f10, which have a large number of local optima. The bound
resetting methods RandomBack and Nearest-Z showed mediocre performance in this
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4. Experimental Analysis of PSO for Box-constrained Problems

experimental investigation. Random position handling can distract particles from the
boundary. However, good results were achieved on most traditional benchmarks,
which have their global optimum and other good solutions near the search space
center. Reflect-Z showed good overall performance, but was not competitive with
Hyperbolic on most high-dimensional problems. The performance of Reflect-Z can
be improved by using the velocity adaptation mechanism presented in Section 5.3.
Both Infinity, which was proposed as bound handling strategy for standard particle
swarm optimization [BK07], and Infinity-C were significantly outperformed by all
other strategies on all 100- and 500-dimensional benchmarks. The obtained average
objective values were by far worse than the ones obtained by the other strategies (see
also Figures 4.10 and 4.11).

1000

10000

100000

1e+06

1e+07

0 100000 200000 300000

O
bj

ec
tiv

e
va

lu
e

Function evaluations

f13

Infinity
Infinity-C
Nearest-Z

RandomBack
Reflect-Z

Random-Z
Hyperbolic

Figure 4.10: Convergence plot for the 500-dimensional f13 problem. Often, Hyper-
bolic led to considerably superior results than the other investigated methods. Infinity
was significantly outperformed by all other methods on most high-dimensional (100
and 500 dimensional) problems. In the plot, sample means and standard deviations
(vertical bars) are shown. Note that a logarithmic scale is used.
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Figure 4.11: Convergence plot for the 500-dimensional f10 problem (shifted rotated
Rastrigin). Hyperbolic significantly outperformed most bound handling strategies
on many problems. However, on f9, f10, and Schwefel, Hyperbolic bound handling
performed significantly worse than most other strategies.

4.4.3 Velocity Handling
In Section 2.3.2, several commonly-used bound handling methods were presented,
among them repair algorithms. In particle swarm optimization, repair algorithms
affect both a particle’s position and its velocity. In the following experiment, the
impact of velocity handling on particle swarm performance is examined, and the
consequences for practical PSO application are discussed. The following strategies
are considered, and tested on all 100-dimensional benchmarks2:

• Nearest-Z, Nearest-A, Nearest-U

• Random-Z, Random-A, Random-U

• Reflect-Z, Reflect-A, Reflect-U

The remaining parameters of the PSO algorithm are given in Table 4.1. Half-
diff velocity initialization was used. Sample means, 95% confidence intervals, and

2Remember that -Z, -A, and -U are abbreviations for Zero, Adjust, and Unmodified. These velocity
handling methods are described in Section 2.3.2 on page 30.
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sample standard deviations of the obtained final objective values from N = 100 runs
per benchmark are presented in Tables B.21, B.22, and B.23 in the Appendix. The
results of the one-sided Wilcoxon rank sum tests with significance level α = 0.01 are
summarized in Tables B.20 and 4.9.

Table 4.9: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01. The total number of benchmarks is 18.

1 2 3
Nearest-Z (1) 0 8 11
Nearest-A (2) 0 0 10
Nearest-U (3) 0 0 0

4 5 6
Random-Z (4) 0 5 12
Random-A (5) 2 0 12
Random-U (6) 1 1 0

7 8 9
Reflect-Z (7) 0 1 12
Reflect-A (8) 0 0 12
Reflect-U (9) 1 1 0

Table 4.9 shows that Unmodified velocity handling cannot compete with the other
two strategies on the tested benchmark set. The sample means obtained by Nearest-
U, Random-U and Reflect-U were often considerably worse than those obtained with
Zero and Adjust velocity handling. There are manifold reasons that explain these
experimental results:

• Nearest position handling: If particle i is infeasible in iteration t, it violates the
upper or lower search space boundary in at least a certain dimension d. Assume
that the upper search space boundary is violated, then xi,t,d > ubd holds before
the particle is repaired. Furthermore, lbd ≤ xi,t−1,d ≤ ubd holds at the end of
iteration t−1 as infeasible particles are repaired. As xi,t,d was computed from
Equation (2.2) to xi,t,d = xi,t−1,d + vi,t,d , vi,t,d > 0 holds. As xi,t,d = ubd after
the application of the repair mechanism, the particle is again attracted towards
infeasible space in the next iteration if vi,t,d > 0 is not altered. This may lead to
premature convergence on the boundary, in particular, if a densely connected
neighborhood topology is used. The phenomenon of premature convergence
on the boundary was already experimentally observed earlier [ZXB04], and
investigated theoretically in Section 3.5.

A similar argumentation explains why also Adjust velocity handling was dis-
advantageous in conjunction with Nearest position handling (see Tables B.20,
B.21, B.22, and B.23).

Alvarez-Benitez et al. [ABEF05] propose a bound handling strategy called SHR
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(Shrink) which scales an infeasible particle’s velocity vector such that the par-
ticle exactly arrives on the boundary. This method is similar to Nearest-A and
was therefore not included in the experimentation. Note, however, that from
the three investigated velocity handling methods, Zero should preferably be
used in combination with Shrink due to the above argumentation, which holds
for Shrink as well.

• Random and Reflect position handling: With Unmodified velocity handling,
particle velocities are generally much larger than with Zero or Adjust velocity
handling, as shown in Table 4.10. As a consequence, particles more often be-
come infeasible. Table 4.11 shows how often bound handling was applied on
average, for each strategy. This quantity equals the number of infeasible par-
ticles throughout an optimization run. Clearly, Unmodified velocity handling
led to the highest number of infeasible particles for all three position handling
strategies. Both the theoretical study and the experimental results have demon-
strated that small velocities are advantageous for high-dimensional optimiza-
tion problems, which explains the bad performance of Unmodified velocity
handling on the given testfunctions.

The comparison of Zero and Adjust velocity handling leads to the following con-
clusions: In combination with Nearest position handling, Zero velocity handling is
to be preferred due to the argumentation stated above and the experimental results.
If Reflect position handling is utilized, Zero and Adjust velocity handling performed
equally well on the tested benchmark set (see Tables 4.9 and B.23). When using
Random position handling, Zero performed slightly better than Adjust (Tables 4.9
and B.22).

Summarized, in this experimental setup, Unmodified performed significantly worse
than the other two methods, while Zero velocity handling constantly resulted in com-
paratively good solution quality. In combination with Reflect position handling, both
Zero and Adjust velocity handling can be used.

4.5 Concluding Remarks
In this chapter, the results of the theoretical study were confirmed and complemented
by thorough experimental analyses. Thirteen bound handling mechanisms were in-
vestigated on 18 benchmark functions. The experimental outcome was analyzed by
statistical methods, such as hypothesis testing and the computation of confidence in-
tervals.

As suggested by the theoretical analysis, velocity initialization had only slight im-
pact on particle swarm performance, while bound handling significantly influenced
the final solution quality provided by a particle swarm optimizer. This means that
bound handling strategies have to be carefully selected, in accordance to the given
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Table 4.10: Average distance a particle moved per iteration and corresponding 95%
confidence intervals.

f1 f6 f10 f14
Nearest-Z 11.332±0.07722 17.149±0.26444 5.552±0.11291 242.52±2.839
Nearest-A 11.269±0.1079 17.404±0.3119 5.188±0.093979 224.91±2.952
Nearest-U 11.715±0.1416 18.236±0.32019 5.000±0.08303 218.82±2.861
Random-Z 15.014±0.1071 20.225±0.20486 5.702±0.10024 210.99±2.217
Random-A 21.287±0.2541 26.735±0.3641 5.988±0.097678 224.31±2.363
Random-U 244.24±1.480 225.57±1.3066 9.618±0.15988 323.04±2.674
Reflect-Z 9.5978±0.06105 14.198±0.1065 4.9439±0.084414 201.18±2.345
Reflect-A 9.5088±0.0566 14.227±0.1345 4.9256±0.093283 198.34±2.227
Reflect-U 175.59±2.419 177.32±2.037 8.7806±0.15187 272.02±2.507

Table 4.11: Average number of infeasible particles for some 100-dimensional bench-
marks and 95% corresponding confidence intervals.

Rastrigin f1 f10 f13
Nearest-Z 97287±4148.6 10003±134.5 128630±2369.1 17683±1464.8
Nearest-A 95815±4174.6 14395±901.36 141400±2150.9 16855±1225.7
Nearest-U 102170±4289.4 41647±2868.4 164480±2372.1 18234±1112.5
Random-Z 84221±3821.3 16608±192.2 118800±3026.6 12731±1037.4
Random-A 87382±3275.6 28275±486.63 126370±3087.9 13256±961.52
Random-U 104370±3383.7 299370±198.8 254730±4092.3 29184±1748.8
Reflect-Z 90476±3866.2 7794.5±85.46 104220±1773 12507±951.82
Reflect-A 94022±4128 8645.3±105.71 116130±2290.1 11839±766.67
Reflect-U 100530±3635.1 285850.0±1681.6 253540±2944 20626±1588.5

optimization problem. In order to assist in this process, the characteristics of several
commonly-used bound handling strategies were analyzed in detail. Some guidelines
for practical PSO application were derived. If the properties of the optimization prob-
lem are not available, the algorithmic parameters can be automatically adapted during
the optimization process by using the adaptive Multi-Swarm PSO with Migration,
which is presented in the next chapter.
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5. Adaptive Particle Swarm
Optimization

Most theoretical analyses of particle swarm optimization consider the convergence,
stability, or runtime behavior of a particle swarm (see Section 2.4). Convergence
analyses [CK02, Tre03, JLY07a] focus on the question under which circumstances,
i.e., parameter setting, a particle swarm will eventually converge. However, often the
quality of the best found solution is not considered. Mostly, simplified, e.g., deran-
domized or one-dimensional, models of particle swarm optimization are analyzed.
Runtime analyses, which take the solution quality into account, are mostly restricted
to selected functions and very specific PSO approaches [PL07, SW08, Wit09]. How-
ever, the selection of a good or even optimal parameter setting strongly depends on
the optimization problem to be solved. Although both convergence and runtime anal-
yses provide guidelines for the parameter selection process, and standard parameter
settings were derived [BK07], they do not offer any strict rules for choosing the PSO
parameters for a specific practical application.

Parameter selection is a difficult task for other meta-heuristic optimzation ap-
proaches like evolutionary algorithms or ant colony optimization, too. Evolution
strategies therefore optimize both the algorithmic parameters and the problem pa-
rameters during runtime, by, for instance, applying the 1/5-th rule of Rechenberg
[Rec73] or using mutative strategy parameter control [Rec94] (see Section 2.6.1).

In the subsequent section, existing adaptive particle swarm optimizers are briefly
discussed. Afterwards, two novel adaptive particle swarm optimizers, the so-called
Multi-Swarm PSO with Migration (MPSO) [JHW08] and Particle Swarm Optimiza-
tion with Velocity Adaptation [HNW09] are presented.

5.1 Related Work

The existing adaptation mechanisms of particle swarm optimization can be classi-
fied into two categories: Time-dependent adaptations and problem-dependent adap-
tations.

The goal of most time-dependent adaptations is to modify the algorithmic parame-
ters of a particle swarm optimizer such that initial exploration is gradually replaced by
exploitation. However, problem-specific knowledge gathered during the optimization
process is not taken into account. The adaptation is solely based on a time measure
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like the current number of iterations in relation to the maximum number of iterations
allowed. In contrast, problem-dependent adaptations use problem-specific measures,
e.g., the particles’ success rates, for the adapation procedure. The target is to adjust
the PSO algorithm and its parameters to the characteristics of the specific optimiza-
tion problem under consideration.

Time-dependent Adaptations

In the literature, there exist several approaches for time-dependent modifications of
the algorithmic PSO parameters. When introducing the inertia weight ω in 1998,
Eberhart and Shi proposed to linearly decrease ω from ω = 1.4 to ω = 0 [SE98].
Thus, velocities tend to be larger at the beginning of the optimization than in the final
iterations. Later, the same authors used a slightly shorter interval: The inertia weight
was linearly decreased from ω = 0.9 to ω = 0.4 [SE99].

Ratnaweera et al. propose a similar strategy for the adaptation of the accelera-
tion coefficients c1 and c2 [RHW04]. Again, the goal is to replace exploration by
exploitation during the optimization process. Hence, the influence of a particle’s pri-
vate guide is gradually decreased, e.g., c1 is reduced from an initial value of c1 = 2.5
to c1 = 0.5. The impact of a particle’s local guide is, however, increased: c2 is, for
instance, raised from c2 = 0.5 to c2 = 2.5. The aim of these adaptations is to force
particles to converge on the same solution in the later steps of the algorithm.

Besides inertia weight and acceleration coefficients, the structure of the neighbor-
hood graph can be modified according to a time-dependent adaptation mechanism.
The more neighbors a particle has, the faster its private guide is distributed among
the other swarm members. If all particles are connected, each particle uses the same
search space position as local guide, and the swarm often converges very fast. In
order to enhance the exploration ability of a particle swarm, more sparsely connected
neighborhood graphs, e.g., the ring topology in which each particle has exactly two
neighbors, can be used1.

In order to replace inital exploration by exploitation, both Suganthan [Sug99] and
Richards and Ventura [RV03] suggest to adapt the particles’ social network. Initially,
a sparsely connected neighborhood graph like the ring topology is used. Then, step-
by-step, new edges are added until the swarm is fully connected. As a second variant,
Suganthan proposes to utilize the search space distances among the particles for the
definition of the neighborhood graph: At the beginning of the optimization, only
nearby particles are used for the evaluation of a particle’s local guide. Gradually,
more distant particles are included, until all particles share their information in the
final steps of the PSO algorithm.

1See Section 2.2 for more details on neighborhood topologies. The fully connected graph and the
ring topology are depicted in Figure 2.3 on Page 18.
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Problem-dependent Adaptations

The adaptive approaches presented above adjust selected PSO parameters with re-
spect to a time measure, usually the current number of iterations in relation to the
total number of iterations used for the optimization run. However, the characteristics
of the objective function are not taken into account. The following PSO variants adapt
the algorithmic parameters considering problem-dependent measures, and hence aim
at finding suitable parameters for the current problem to be solved.

As already mentioned, for evolution strategies2 there exist several approaches to
adapt the algorithmic parameters to the current problem, e.g., mutative strategy para-
meter control [Rec94]. Miranda and Fonseca combined concepts of evolution strate-
gies and particle swarm optimization. The resulting adaptive optimization algorithm
is called Evolutionary Particle Swarm Optimization (EPSO) [MF02a,MF02b]. In this
adaptive PSO variant, each particle i maintains its personal values for the parameters
ω, c1 and c2, which are adapted during the optimization process. The following PSO
update equations are used [MF02a]:

~vi,t = ωi,t ·~vi,t−1 + c1,i,t · (~pi,t−1−~xi,t−1)+ c2,i,t · (~l∗i,t−1−~xi,t−1) (5.1)

~xi,t =~xi,t−1 +~vi,t (5.2)

where t is the iteration counter, and ~l∗i,t−1 is the mutated position of particle i’s lo-
cal guide ~li,t−1. Mutation can for instance take place by adding a vector with nor-
mally distributed values to ~li,t−1. Note that, compared to the standard PSO update
equations shown in Equations (2.1) and (2.2), the stochastic components ~r1 and ~r2
were removed. ωi,t , c1,i,t and c2,i,t can either be scalar values as presented in Equa-
tion (5.1) [MF02a], or vectors [MF02b]. In the latter case, component-wise multipli-
cation is used.

The parameters ωi,t , c1,i,t and c2,i,t can be mutated before updating a particle’s
position and velocity, similar to mutative strategy parameter control used in evolution
strategies [MF02a]:

ωi,t = ωi,t−1 + τ ·N(0,1)
c1,i,t = c1,i,t−1 + τ ·N(0,1)
c2,i,t = c2,i,t−1 + τ ·N(0,1)

(5.3)

where N(0,1) is drawn from the standard normal distribution, and τ is a so-called
learning parameter, which can either be set to a fixed value or be treated as algorith-
mic parameter and undergo mutation. If vectors are used for the parameters, Equa-
tion (5.3) is adjusted so that normally distributed values are added to each compo-
nent [MF02b]. Following the concept of evolutionary algorithms, a selection process
concludes each iteration: Instead of moving each particle to its new position, the
individuals that form the next iteration are chosen based on their solution quality.

2See Section 2.6.1 for more details on evolution strategies.
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Due to the mutation of the algorithmic parameters and the selection procedure,
particles with parameters that produced solutions of good quality are more likely to
survive for the next generation while unsuccessful settings disappear. Like in evo-
lution strategies, the aim is to learn appropriate parameters for the current problem
to be solved during the optimization. Summarized, the EPSO algorithm repeats the
following five steps in each iteration [MF02b]:

• Replication: Each particle is replicated r times.

• Mutation: Each new particle i mutates its parameters ωi,t , c1,i,t , and c2,i,t ac-
cording to Equation (5.3).

• Reproduction/Movement: Each particle (original or mutated) moves to a new
position according to Equations (5.1) and (5.2).

• Evaluation: Each particle evaluates its fitness.

• Selection: The individuals of the next generation are selected based on their
solution quality.

The EPSO algorithm was tested on commonly-used benchmark functions and on a
practical application and yielded very good results [MF02a, MF02b].

Another example for PSO with problem-dependent adaptation is the Efficient Multi-
Objective PSO (EMOPSO) of Toscano-Pulido et al. [PCSQ07]. EMOPSO uses the
selection mechanisms of evolutionary algorithms for parameter adaptation. However,
in contrast to EPSO, the algorithmic parameters are neither mutated nor recombined.
Instead, all possible parameter values are specified at the beginning of the optimiza-
tion, e.g., ω = 0, ω = 0.5, and ω = 1. Each of these settings has a fitness value which
is adapted during the optimization: The more non-dominated solutions a particu-
lar parameter value has produced, the higher is its fitness. With these definitions in
mind, the values for ω, c1, and c2 are chosen based on their respective fitness values
whenever a particle is updated.

While EPSO and EMOPSO try to adjust the continuous parameters ω, c1 and c2,
Clerc proposes a PSO variant called Tribes, in which the number of particles and their
social network is adapted during the optimization process [Cle03,Cle06b]. Based on
the particles’ performance, individuals are added to or removed from the swarm. All
particles that were constructed at the same iteration are collected to form a so-called
tribe. Inside a tribe, a densely (e.g., fully) connected neighborhood graph is used.
In each iteration, the tribes are divided into good tribes and bad tribes according to
specific rules, which take the performance of the particles into account. Each good
tribe has to remove its worst particle. The neighborhood graph is adjusted so that the
swarm is still connected. Each bad tribe generates a particle, and connects itself to
it. As already mentioned, all particles constructed in the same iteration form a new
tribe.
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The adaptive Tribes algorithm deletes particles which are probably not important
for the remaining search process in order to save function evaluations. It is assumed
that good tribes can improve without their worst particles. On the other hand, bad
tribes need more information because they seem to be stuck in local optima or are
unable to converge. Therefore, bad tribes are connected to a newly generated tribe,
which hopefully provides new directions for the search.

In the Tribes algorithm, the classical PSO equations as presented in Equations (2.1)
and (2.2) were replaced. Instead, depending on a particle’s quality, one of two so-
called pivot methods is chosen [Cle03]. The algorithmic parameters of the pivot
methods are adjusted according to the objective values of a particle’s private and local
guide. This way, they are indirectly adapted to the current problem to be solved, and
no further user-specified parameters are needed.

Janson and Middendorf [JM05] propose a Hierarchical Particle Swarm Optimizer
that uses a dynamic tree as neighborhood graph. In each iteration, the tree is re-
structured according to the particles’ performance, which is meassured by taking the
fitness values of their private guides into account. Good particles move towards the
root of the tree, gaining more influence on other particles this way. Furthermore,
different update rules can be used in different levels of the trees. As an additional
time-dependent adaptation, Janson and Middendorf suggest to gradually decrease the
tree’s branching degree during the course of optimization.

5.2 Multi-Swarm PSO with Migration (MPSO)

The experimental study in the previous section showed that the algorithmic PSO para-
meters, such as the bound handling strategy, strongly influence particle swarm perfor-
mance. Each parameter setting has its specific strengths and weaknesses, and is suited
for a certain class of optimization problems. If the characteristics of the optimization
problem are known beforehand, this problem-specific knowledge can be exploited
for the manual adjustment of the algorithmic PSO parameters to the problem at hand
by an expert. Parameter self-adaptation is useful if problem-specific knowledge is
not available, hard to obtain, or hard to exploit (due to problem complexity, monetary
costs, or time constraints, for instance).

The goal of Multi-Swarm PSO with Migration (MPSO) [JHW08], which is pre-
sented in this section, is to dynamically adapt the algorithmic PSO parameters to the
given problem. This way, the practical application of particle swarm optimization is
simplified. In contrast to other adaptive PSO algorithms, MPSO is a very general ap-
proach, which is able to adapt different kinds of parameters, such as binary, discrete,
or continuous ones, to the given optimization problem. The algorithm is detailed in
the next section. Experimental results are presented afterwards.
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Figure 5.1: Adaptive Multi-Swarm PSO with Migration. The particle swarm is
divided into several subswarms that cannot directly communicate with each other.
From time to time, particle migration takes place.

5.2.1 The Algorithm

In Multi-Swarm PSO with Migration, the particle swarm is divided into a prede-
fined number of competing subswarms that cannot directly communicate with each
other. Each subswarm maintains its own parameter configuration, for instance, its
own setting for the inertia weight, the acceleration coefficients, the bound handling
strategy, and/or the neighborhood topology. From time to time, the performance of
the subswarms is assessed according to specified criteria, and, based on this evalua-
tion, particles are migrated from one subswarm to another. The goal is to increase the
number of particles in promising subswarms, and to reduce the number of particles
in subswarms with comparatively bad performance. Migrating particles keep their
position, velocity, and their private guide, but they adopt the parameter configuration
of the new subswarm. The algorithm is schematically illustrated in Figure 5.1.

The migration procedure consists of two steps: a particle has to be deleted from its
old and added to its new subswarm. Different strategies are possible for this process,
for example, the topologies of the involved subswarms can be rearranged every time a
particle migrates. However, in this case, it can happen that the neighborhood of many
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particles is modified, and their search trajectories are disturbed. Therefore, particle
insertion and deletion were designed such that, as far as possible, only a particle’s
immediate neighbors are affected. For the commonly-used fully connected graph
and the ring and grid topologies, the following strategies can be applied:

• Fully connected neighborhood graph:

– Deletion: Remove a particle and its communication links.
– Insertion: Add a communication link from the inserted particle to each

particle in the new subswarm.

• Ring topology:

– Deletion: Remove a particle and its communication links. Connect its
two neighbors with a new communication link.

→
– Insertion: Insert the particle at a random position. Alternatively, insert the

particle into a gap that arose from previous deletion processes (note that
the gaps have to be logged in this case), or at a predefined position.

• Grid topology:

– Deletion: Remove a particle and its communication links. Add two new
communication links, from its top to its bottom neighbor, and from its left
to its right neighbor.

– Insertion: Insert the particle into a gap that arose from previous deletion
processes. If no gaps are available, insert the particle at the end of the
grid, by possibly expanding it in one dimension.

These grid insertion and deletion procedures are used in the subsequent exper-
iments. An example is given in Figure 5.2.

For the migration process, a particle has to be selected from the emitting subswarm.
Several strategies are possible, e.g., the worst or the best particle can be chosen.
For simplicity, and due to the assumption that this choice does not greatly influence
particle swarm behavior, the migrating particle is drawn uniformly at random from
the ceding subswarm.

Based on this general MPSO framework, two adaptive particle swarm optimizers
were developed [JHW08]. They are presented in the following.

MPSO-1

MPSO-1 is a rather simple, yet effective realization of the MPSO concept. The al-
gorithm was specifically developed with the design goal simplicity in mind: easy to

123



5. Adaptive Particle Swarm Optimization

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

35 36 37 38 39

40 41 42 43 44

45 46 47 48

(a) Initialization: 49 particles are divided into two subswarms of similar size.
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(b) Particles 41 and 28 are deleted from the subswarm on the right-hand side
(in this order). As the left subswarm has no gaps in the grid topology yet,
they are added at the end of the grid.
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(c) The left subswarm lost particles 6, 7, 18, and 10 in the next iterations. First,
the gaps are filled with particles 6 and 7. The remaining particles are added at
the end of the grid.

Figure 5.2: Example of particle migration in a grid topology.
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understand, easy to implement, and easy to apply, which in this case means that only
a single new parameter is introduced.

In MPSO-1, each subswarm memorizes as its fitness value the best objective value
that was ever carried as private guide by one of its members. In order to increase the
number of particles in subswarms with better fitness, particle migration periodically
takes place every k1 iterations, where k1 is the user-defined parameter. Every k1
iterations, a random particle migrates from the subswarm with worst fitness to one
with best fitness.

MPSO-2

In this realization, the concept of penalty points is introduced. Instead of periodically
triggering migration after a certain number of iterations, penalty points are assigned
to subswarms that perform bad on a specified criterion. As soon as the amount of a
subswarm’s penalty points exceeds a user-defined limit Plimit , particle migration takes
place.

Let f (~y j,t) be the best objective value observed by subswarm j until iteration t, and
let k2 and Cmax be user-defined parameters. Then, the criterion value of subswarm j
is defined as:

crit j =


f (~y j,t−k2)/ f (~y j,t)−1 if f (~y j,t−k2) > 0 and f (~y j,t) > 0
f (~y j,t)/ f (~y j,t−k2)−1 if f (~y j,t−k2) < 0 and f (~y j,t) < 0
0 otherwise .

criterion j =min{crit j,Cmax}

Obviously, 0 ≤ criterion j ≤ Cmax holds. The greater criterion j, the more progress
was achieved by subswarm j during the last k2 iterations. Subswarms that make
more progress than their competitors are rewarded with additional particles, while
the others have to give up some of their particles. The criterion value is bounded
by Cmax, usually set to a very small value, which means that the performance of all
subswarms that strongly improved their best found objective value in the last period
is considered as equally good.

For the computation of the amount of penalty points that is added to a subswarm’s
penalty record, the criterion values of all subswarms are compared pairwise. If the
ratio criterioni/criterion j is greater than a user-defined limit Pratio > 1, a penalty
point is added to subswarm j.

In each iteration, the subswarms’ criterion values are computed, and their penalty
records are updated. In order to determine which subswarms are favored for the inser-
tion of emitted particles, all subswarms are sorted according to their current criterion
value. Then, if applicable, a particle is migrated from every subswarm whose penalty
record exceeds the limit Plimit to another subswarm in this order. The penalty records
of the emitting subswarms are reset.
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5.2.2 Experimental Results

The aim of Multi-Swarm PSO with Migration is to provide an algorithm that is able
to choose an appropriate parameter configuration for the problem at hand during run-
time, from a set of predefined configurations. While MPSO-1 was designed with
simplicity in mind, MPSO-2 uses penalty points to control the parameter adaptation.

The goals of the experimental analysis can be formulated as follows:

• Is MPSO able to adapt to a promising parameter configuration?

• Are there significant performance differences between MPSO-1 and MPSO-2?

In order to find out whether MPSO is able to adapt to a parameter configuration that
is suited for the given problem, two complementing bound handling strategies were
selected for the subswarms: Reflect-Z and Hyperbolic. Although, in the experimental
investigation presented in Section 4.4.2, Hyperbolic showed very good performance
on most of the 100-dimensional problems, it had severe difficulties with Schwefel,
f9, and f10. On these three functions, Reflect-Z performed best. Hyperbolic and
Reflect-Z already perfectly cover the given benchmark set: On each function, either
Reflect-Z or Hyperbolic provided the best average results (see Tables B.16 and B.17
in the appendix on page 195). Hence, a third configuration is not needed.

Complete PSO algorithms such as Stereotyping (see Section 2.2.3) and Ranked
FIPS (see Section 2.2.5) can also be used as subswarm configurations. In an ex-
perimental study using complete algorithms as subswarms, the inclusion of a third
parameter configuration often did not pay off [JHW08]. With each additional para-
meter set, the size of the subswarms decreases, which means that less ressources are
spent per configuration. Therefore, and due to the fact that there is no obvious third
candidate, only two bound handling strategies were used as subswarm configurations
in this study.

The PSO parameters were set to standard values according to Table 4.1 on page 89.
The population of 49 particles was split into two nearly equally-sized subswarms, as
shown in Figure 5.2a. Half-diff velocity initialization was used. The test functions
are given in Section 4.2. The performance of MPSO-1 and MPSO-2 was investigated
on both traditional benchmarks such as Sphere, Rosenbrock, and Rastrigin, and on
CEC 2005 benchmarks [SHL+05]. The problem dimensionality was set to n = 100.
When solving 100-dimensional problems, significant performance differences were
observed between the selected bound handling methods (see Chapter 4), which allows
the examination of the first experimental goal. For MPSO-1, k1 was set to k1 =
n = 100, if not stated otherwise. The parameters of MPSO-2 were set to k2 = 200,
Cmax = 0.01, Plimit = n/2 = 50, and Pratio = 2.

Both MPSO-1 and MPSO-2 were mostly able to adapt the algorithmic PSO para-
meters to the current problem at hand. Table 5.1 shows that often the sample mean
of the final objective values achieved by Multi-Swarm PSO with Migration settled

126
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between the means of its components (i.e., the strategies used in the subswarms), as
expected, especially when solving CEC 2005 benchmarks. For instance, on Rastrigin
and f2, the performance of MPSO approaches Hyperbolic, while on Schwefel and f9
it approaches Reflect-Z, as illustrated in Figures 5.3 and 5.4. Note that an adaptive
algorithm is usually not supposed to produce better results than its constituents, but
to more reliably provide satisfactory results on a broad variety of different problems.
The main benefit is the reduction of the need of manual parameter adjustment to the
current problem at hand.

Although both algorithms are based on the same framework, the swarm behavior
differs. In MPSO-1, sooner or later all particles migrated to the same subswarm.
Figure 5.5 shows how often the final number of particles in the first subswarm (in
this case the one with Reflect-Z bound handling) reached certain values. Note that a
logarithmic scale is used in this plot. In most runs, namely in 1,787 out of 1,800 runs,
the first subswarm was either full (49 particles) or empty (0 particles). Only very few
exceptions exist. Mostly, the better-performing bound handling strategy was chosen,
e.g., Hyperbolic on Rastrigin and f2, and Reflect-Z on Schwefel and f9.

A different behavior was observed in MPSO-2. Due to the fact that not perfor-
mance but the subswarm’s ability to improve the current best solution is rewarded,
particles do not migrate anymore if both subswarms converged. This is visible in
the broad variety of final subswarm sizes observed with MPSO-2 (see Figure 5.6).
However, note that again a logarithmic scale is used in this plot. In most runs, the
final subswarm size was either 0, 25, or 49.

On some functions, for instance on f2, both Hyperbolic and Reflect-Z steadily
improve the best found solution, as depicted in Figure 5.4 (bottom). Since both
strategies are equally successful considering the criteria of MPSO-2, particles do not
migrate. Figure 5.7 shows the frequency of final subswarm sizes for some selected
benchmarks. As already mentioned, when solving f2, particles did not migrate, and
hence, the final subswarm size of the first subswarm was still 25 at the end of the
optimization in each run.

When solving Rastrigin, particles often rapidely converge. Hence, a broad spec-
trum of final subswarm sized was observed for this function (see Figure 5.7). The
sample mean and the median of the final subswarm size of the first subswarm were
19.58 and 24, respectively. The standard deviation of the sample mean was relatively
high (approximately 12.52).

On Schwefel and f9, Reflect-Z mostly produced better results than Hyperbolic
velocity update in the previous experiments presented in Section 4.4.2. Figure 5.4
shows that in particular on f9, the solution quality can be still improved in the later
stages of the optimization when using Reflect-Z bound handling. Accordingly, in
most runs all particles migrated to the respective subswarm (see Figure 5.7).

Despite the different swarm behavior of MPSO-1 and MPSO-2, the performance
of the two algorithms was mostly comparable on the tested benchmark functions.
The obtained average objective values were similar (see Table 5.1), and significant
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Table 5.1: Sample mean of final objective values, 95% confidence intervals, and stan-
dard deviations (in brackets) for the 100-dimensional benchmarks. The best objective
values are presented together with the function name.

Sphere (0) Rosenbrock (0)
Hyperbolic 5.9506e-06±1.6691e-07 (8.412e-07) 152.94±9.4227 (47.488)
Reflect-Z 6.0293e-06±1.7838e-07 (8.9898e-07) 176.34±10.406 (52.445)
MPSO-1 1.1077e-06±7.5428e-08 (3.8014e-07) 187.1±9.5036 (47.896)
MPSO-2 1.4448e-06±7.2735e-08 (3.6657e-07) 170.05±9.1775 (46.253)

Ackley (0) Griewank (0)
Hyperbolic 0.37429±0.12799 (0.64502) 3.5747e-03±1.3876e-03 (6.9929e-03)
Reflect-Z 1.6946±0.13572 (0.68397) 3.8688e-03±1.6439e-03 (8.2849e-03)
MPSO-1 1.7576±0.12814 (0.64582) 8.5606e-03±4.9031e-03 (0.02471)
MPSO-2 1.9617±0.097992 (0.49386) 4.1591e-03±2.7326e-03 (0.013772)

Rastrigin (0) Schwefel (≈ -41898.3)
Hyperbolic 105.46±4.1927 (21.13) -24848±333.63 (1681.4)
Reflect-Z 355.61±7.7081 (38.847) -30569±305.32 (1538.7)
MPSO-1 123.61±5.3266 (26.845) -29715±337.31 (1700)
MPSO-2 122.04±5.2901 (26.661) -29684±378.53 (1907.7)

f1 (-450) f2 (-450)
Hyperbolic -450 (0) 3348.3±123.56 (622.7)
Reflect-Z -450 (0) 23506±1217.5 (6135.7)
MPSO-1 -450 (0) 3689.3±147.04 (741.06)
MPSO-2 -450 (0) 4012.3±148.64 (749.1)

f3 (-450) f5 (-310)
Hyperbolic 12062000±446790 (2251700) 27956±572.45 (2885)
Reflect-Z 3.613e+07±1841200 (9279000) 27456±697.98 (3517.7)
MPSO-1 12706000±446140 (2248400) 29708±673.38 (3393.7)
MPSO-2 11726000±565350 (2849200) 30174±587.33 (2960)

f6 (390) f8 (-140)
Hyperbolic 570.68±8.9378 (45.045) -118.71±6.4444e-03 (0.032478)
Reflect-Z 583.66±10.556 (53.201) -118.71±5.8188e-03 (0.029325)
MPSO-1 567.62±10.023 (50.515) -118.71±6.1638e-03 (0.031064)
MPSO-2 571.89±10.174 (51.277) -118.71±6.393e-03 (0.032219)

f9 (-330) f10 (-330)
Hyperbolic 264.95±9.7299 (49.036) 478.7±15.556 (78.397)
Reflect-Z 3.579±10.44 (52.615) 8.2564±12.608 (63.541)
MPSO-1 68.915±13.298 (67.02) 101.54±17.918 (90.302)
MPSO-2 81.999±13.201 (66.528) 100.68±18.914 (95.32)

f11 (-460) f12 (90)
Hyperbolic 214.65±1.5314 (7.7177) 173200±15811 (79686)
Reflect-Z 218.24±1.2826 (6.4642) 599230±54540 (274870)
MPSO-1 217.79±1.4298 (7.2058) 229570±22491 (113350)
MPSO-2 216.53±1.503 (7.5748) 227710±26306 (132570)

f13 (-130) f14 (-300)
Hyperbolic -102.77±0.93404 (4.7074) -254.18±0.11919 (0.60069)
Reflect-Z -65.84±2.7268 (13.742) -253.44±0.079587 (0.4011)
MPSO-1 -87.593±1.8549 (9.3484) -253.88±0.10943 (0.55149)
MPSO-2 -88.907±1.6569 (8.3506) -253.85±0.14126 (0.7119)
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Figure 5.3: On many functions, both MPSO-1 and MPSO-2 were able to adapt to
the best suited parameter configuration. For instance, on Rastrigin and f2, the per-
formance of Hyperbolic was approached. In the plot, average values and standard
deviations (vertical bars) are shown.
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Figure 5.4: Mostly, the solution quality of MPSO-1 and MPSO-2 settled between the
ones of its two constituent subswarm configurations, notwithstanding if Hyperbolic
or Reflect-Z produced better results on the given benchmark problem (compare also
to Figure 5.3). Note that a logarithmic scale is used in the second plot, which makes
the standard deviations of the algorithms with better performance appear larger.
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Figure 5.5: The histogram shows how frequently the final number of particles in the
first subswarm (Reflect-Z bound handling) reached certain values. The data of all
runs was used to generate this histogram. In 1,787 out of a total number of 1,800
runs, all particles belonged to the same subswarm at the end of the optimization.
Note that a logarithmic scale is used in this plot.
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Figure 5.6: The histogram shows how frequently the final number of particles in the
first subswarm (Reflect-Z bound handling) reached certain values. The data of all
runs was used to generate this histogram. Note that a logarithmic scale is used in this
plot.

performance differences were only observed in four cases, which is almost negligible
due to the high number of statistical tests performed in this setup. The results of the
Wilcoxon rank sum test are summarized in Table 5.2.

Summarized, both MPSO-1 and MPSO-2 were often able to adapt to the most
promising parameter configuration. The obtained final solution quality mostly set-
tled between the one of its components (i.e., the algorithms used in the subswarms),
which is the minimum requirement of an adaptive algorithm. Often, MPSO almost
achieved the performance of the best predefined parameter configuration by means
of adaptation. Compared with each other, MPSO-1 and MPSO-2 showed differences
in their swarm behavior, however, solutions of similar quality were achieved in this
experimental investigation. Nevertheless, the efforts spent on the design of MPSO-2
might pay of in other scenarios, for instance, if complete PSO algorithms are used as
subswarm configurations [JHW08].

In MPSO-1, particle migration takes place every k1 iterations. In the following, the
impact of the parameter k1 on the swarm’s solution quality is briefly discussed. Ex-
periments were conducted with k1 = 5,50,100,200,500. Sample means, correspond-
ing 95% confidence intervals and standard deviations can be found in Appendix B.5
in Tables B.24 and B.25. The summarized results of the Wilcoxon rank sum test are
presented in Table 5.3.

The experimental results show that both too small and too large adaptation intervals
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Figure 5.7: The histograms show how frequently the final number of particles in the
first subswarm (Reflect-Z bound handling) reached certain values on four selected
test functions, using MPSO-2.
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Table 5.2: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which bench-
marks A performed significantly better than B.

Hyperbolic Reflect-Z MPSO-1 MPSO-2
Hyperbolic {} {Ro, Ack, Ra,

f2, f3, f11, f12,
f13, f14}

{Ro, Ack, Ra,
f2, f5, f11, f12,

f13, f14}

{Ro, Ack, Ra,
f2, f5, f12, f13,

f14}
Reflect-Z {Schw, f9, f10} {} {Schw, f5, f9,

f10}
{Ack, Schw, f5,

f9, f10}
MPSO-1 {Sph, Grie,

Schw, f9, f10}
{Sph, Grie, Ra,
f2, f3, f12, f13,

f14}

{} {Sph, Ack, f2}

MPSO-2 {Sph, Grie,
Schw, f9, f10}

{Sph, Grie, Ra,
f2, f3, f12, f13,

f14}

{f3} {}

Table 5.3: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which bench-
marks A performed significantly better than B.

1 2 3 4 5
MPSO-1-5 (1) {} {Ack, f5,

f13}
{Ro, Ack,
f3, f5, f13,

f14}

{Ack, Grie,
f2, f3, f5,
f13, f14}

{Sph, Ack,
Grie, Ra,

f2, f5, f13,
f14}

MPSO-1-50
(2)

{Schw, f9,
f10}

{} {Ro} {Ack, Grie,
f9, f13,

f14}

{Sph, Ack,
Grie, f2,

f13}
MPSO-1-100

(3)
{Schw, f9,

f10}
{} {} {f9} {Sph, Ack,

f13}
MPSO-1-200

(4)
{Schw, f9,

f10}
{} {} {} {Sph}

MPSO-1-500
(5)

{Schw, f9,
f10}

{} {Ro} {} {}
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can deteriorate the performance of MPSO-1. For instance, a small adaptation interval
of k1 = 5 was disadvantegous for Schwefel, f9, and f10 (see Table 5.3). In these
cases, the sample means were comparatively high (Tables B.24 and B.25) so that in
general larger adaptation intervals are recommended. When using a small adaptation
interval, e.g., k1 = 5 (MPSO-1-5), particles rapidly migrate to the subswarm that
it most successful at the beginning of the optimization. This can lead to premature
convergence, as shown in the convergence plot for f9 in Figure 5.8 (top). On the other
hand, if the selected strategy is also successful in the later steps of the optimization,
ressources are effectively used from the beginning, and not wasted for unsuccessful
configurations. For instance, k1 = 5 worked fine for f13 as depicted in Figure 5.8
(bottom).

Although the usage of very high adaptation intervals (k1 = 200 and k2 = 500) led to
significant performance losses in some cases (e.g., Ackley and f13), the obtained sam-
ple means are still acceptable. The sample means obtained with k1 = 50,100,200,500
are similar for most benchmarks (see Tables B.24 and B.25). Summarized, in this ex-
perimental investigation the selection of the newly introduced parameter k1 did not
greatly influence particle swarm performance, as long as the adaptation interval is not
chosen very small (k1 = 5) or very high (k1 = 500).

5.3 Particle Swarm Optimization with Velocity
Adaptation

Multi-Swarm PSO with Migration can be used to adapt the particles’ bound hand-
ling strategy to the problem at hand. The algorithm is particularly beneficial if the
characteristics of the problem are unknown beforehand. Instead of parameter adap-
tation, approaches that reduce or even eliminate the effect of certain PSO parameters
on particle swarm performance are useful as an alternative. In the theoretical anal-
ysis presented in Chapter 3, it was proved that the selected bound handling strategy
strongly influences initial particle swarm behavior when solving high-dimensional
problems. The complementing experimental study (Chapter 4) showed that these ef-
fects are often also visible in the final solution quality provided by a PSO algorithm.
As a solution to these observed effects, the algorithm presented in this section was
developed to reduce the impact of bound handling on particle swarm performance.
It is based on the theoretical results presented in Section 3.4, and was specifically
designed for higher-dimensional problems.

The analysis presented in Section 3.4 showed that the probability that a particle
becomes infeasible heavily depends on the length of its velocity vector. By using
a simplified PSO model, it was proved that the probability of a particle becoming
infeasible is constant if velocities are, for instance, chosen uniformly at random in
[− r

n , r
n ]n. However, the usage of such small velocities can prevent search space ex-
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Figure 5.8: Convergence plots for the MPSO-1 algorithm with different values of k1.
E.g., MPSO-1-5 means that MPSO-1 was used with k1 = 5. In this experimental in-
vestigation, good results were obtained with k1 = 50,100,200,500 for a broad variety
of different benchmarks. As long as not chosen too small or too large, the selection
of k1 did not greatly influence the performance of MPSO-1.
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ploration. In contrast, large velocities lead to better exploration capabilities of the
particle swarm, at the expense of an increased probability that particles become in-
feasible.

In Particle Swarm Optimization with Velocity Adaptation [HNW09], particle ve-
locities are adapted to the search process by analyzing the success of the particle
swarm. The adaptation procedure is based on the 1/5-rule of Rechenberg [Rec73].

Particle velocities have strong impact on particle swarm behavior and particle
swarm performance. The inclusion of a constant componentwise maximum particle
velocity, also denoted as velocity clamping, was often found to improve the solution
quality of a PSO algorithm [ES00]. Cui et al. [CZS06, CCZ09] propose to use a dy-
namic threshold for particle velocities. Their approach is inspired by evolutionary
programming, but does, however, not take the swarm’s success into account when
updating maximum particle velocities.

In order to accelerate the convergence speed of a particle swarm, which can be
useful if function evaluations are extremely expensive, Fan [Fan02] suggests to de-
terministically decrease particle velocities during the course of optimization from a
given starting value Vmax,d (for the d-th component of a particle’s velocity vector) to
zero:

Vmax,t,d = (1− (t/T )h) ·Vmax,d

where t is the current time step, h is a user-defined parameter, and T is the maximum
number of time steps. This approach does not take the swarm behavior into account
either, and can therefore be categorized as a time-dependent adaptation.

Takahama and Sakei [TS06] extended their ε-constrained PSO with a componen-
twise adaptive maximum particle velocity. In their algorithm, particles are divided
into subswarms. The performance of the subswarms is assessed with respect to the
number of feasible particles. In each iteration, the maximum velocity of the worst
subswarm is modified such that it approaches the maximum velocity of the best sub-
swarm.

Fourie and Groenwold [FG02] adapt the maximum particle velocity based on the
particles’ success. Whenever the best found solution was not improved during a
certain period of time, the maximum particle velocity is decreased:

Vmax,t,d = β ·Vmax,t−1,d

where 0 < β < 1. This approach resembles PSO with Velocity Adaptation. There
are, however, some major differences: (1) Fourie and Groenwold never increase par-
ticle velocities again, (2) their maximum velocity is altered and applied component-
wise, and (3) they only take the best found solution into account for determining the
swarm’s success.

Particle Swarm Optimization with Velocity Adaptation is detailed in the subsequent
section. Afterwards, experimental results are discussed.

137



5. Adaptive Particle Swarm Optimization

x

f (x)

(a)

f (x)

x
(b)

Figure 5.9: Illustration of the velocity adaptation strategy. Figure (a) depicts a situ-
ation in which large velocities are advantageous due to the fact that (often computa-
tionally expensive) function evaluations can be saved. Figure (b) shows a situation in
which smaller velocities are necessary in order to approach the local optimum.

5.3.1 The Algorithm

The theoretical analysis presented in Section 3.4 showed how the probability that par-
ticles become infeasible depends on the intervals from which the particle velocities
are chosen. The smaller a particle’s velocity, the less likely it becomes infeasible.
However, too small velocities lead to stagnation and a reduced explorative behavior
of the particle swarm. For search space exploration, large velocities are needed.

In Particle Swarm Optimization with Velocity Adaptation, the particles’ velocities
are dynamically adapted to the search progress. The velocity adaptation mechanism
is conceptually similar to the 1/5-rule of Rechenberg [Rec73], which was introduced
in the field of evolution strategies.The idea is to increase particle velocities as long
as the best found solutions are constantly improved, and to decrease velocities if the
swarm is currently not successful. If improvements are achieved repeatedly, the situ-
ation may be similar to the one depicted in Figure 5.9a. In this case, larger velocities
are beneficial due to the fact that (often computationally expensive) function evalu-
ations can be saved. On the other hand, if the swarm is not successful, it possibly
overshoots local optima, as shown in Figure 5.9b. In such a situation, smaller steps
can lead to further improvements. In order to adapt the particles’ velocities to the
optimization process, an adaptive particle step size, denoted as lv (length of velocity
vector), is introduced. Whenever a particle updates its velocity, it is scaled such that
its absolute value is exactly lv.

For the adaptation of the step size lv, each particle’s success is measured according
to the following definition:

Definition 5.1 (Success). A particle i is called successful in iteration t if f (~xi,t) <

138



5.3 Particle Swarm Optimization with Velocity Adaptation

f (~pi,t−1), where f is the objective function to be minimized, and ~xi,t and ~pi,t are the
particle’s current position and private guide, respectively. If f (~xi,t) = f (~pi,t−1), the
particle is called successful with a probability of 1/2.

A particle is called successful if and only if its private guide is updated to its current
position.

PSO with velocity adaptation is detailed in Algorithm 5.1. Let SuccessCounter
denote the total number of successes achieved by m particles in the latest n iterations.
Note that SuccessCounter≤ n ·m holds. Every n iterations, the success rate is updated
to

SuccessRate =
SuccessCounter

n ·m
.

If the success rate exceeds a given threshold ρ, 0 ≤ ρ ≤ 1, the step size lv is dou-
bled, otherwise it is halved. In accordance to the 1/5-rule introduced by Rechen-
berg [Rec73], the threshold can be set to ρ = 0.2. Different settings are analyzed in
the subsequent experimental study.

In some PSO algorithms, a componentwise maximum particle velocity is used.
In the presented PSO with velocity adaptation, velocity vectors are scaled such that
their absolute values are equal to the current step size lv. Due to the scaling strategy,
the search direction is not modified if a particle’s velocity exceeds its limits. Ve-
locities are not only reduced if they exceed a specified maximum velocity, but they
are also scaled up if they are too small. This way, the adaptation process controls
the exploration and exploitation behavior of the particle swarm, in contrast to situa-
tions in which only a maximum velocity is used. Experimentation (presented below)
confirms that the introduced up- and down-scaling mechanism is important for the
success of the new algorithm.

5.3.2 Experimental Results

In order to analyze the new algorithm, a variety of experiments was performed. The
main goals were to compare PSO with velocity adaptation to a standard PSO algo-
rithm, and to analyze the impact of the newly introduced parameters on the algo-
rithm’s performance.

Experiment 1: Comparison with a Standard PSO

The first experiment focuses on two questions:

• Are there significant performance differences between PSO with velocity adap-
tation and a standard PSO?

• Is the new algorithm less sensitive to the choice of the bound handling strategy
than a standard particle swarm optimizer?
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Algorithm 5.1 PSO with velocity adaptation
Require: Objective function f : S ⊆ Rn→ R, ρ ∈ [0,1], Initial step size l

1: Initialize particle positions, velocities, and private guides
2: Initialize neighborhood graph
3: SuccessCounter← 0
4: lv← l
5: t← 0
6: for each particle i (i = 1, . . . ,m) do
7: Scale initial velocity~vi,0 such that |~vi,0|= lv
8: end for
9: repeat

10: t← t +1
11: for each particle i (i = 1, . . . ,m) do
12: Velocity update according to Eq. (2.1):

~vi,t = ω ·~vi,t−1 + c1 ·~ri,t,1� (~pi,t−1−~xi,t−1)+ c2 ·~ri,t,2� (~li,t−1−~xi,t−1)
13: Scale velocity~vi,t such that |~vi,t |= lv
14: Position update according to Eq. (2.2): ~xi,t =~xi,t−1 +~vi,t
15: end for
16: for each particle i (i = 1, . . . ,m) do {Private guide update}
17: if (success(~xi,t ,~pi,t−1)) then
18: ~pi,t ←~xi,t
19: SuccessCounter← SuccessCounter +1
20: end if
21: end for
22: if t mod n = 0 then {Adaptation of lv}
23: SuccessRate← SuccessCounter

n·m
24: if SuccessRate > ρ then
25: lv← 2 · lv
26: else
27: lv← lv/2
28: end if
29: SuccessCounter← 0
30: end if
31: until termination criterion met
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5.3 Particle Swarm Optimization with Velocity Adaptation

For the experimental study, the same benchmarks as in the previous section and in
Chapter 4 were used. They are outlined in Section 4.2. PSO with velocity adaptation
was compared to a standard PSO algorithm similar to the one of Bratton and Ken-
nedy [BK07], as described in detail on page 88 in Section 4.1. For both approaches,
the parameter settings summarized in Table 5.4 was used. Velocity clamping, which
means that the particle velocities are componentwise limited by a minimum and max-
imum value, was often found to improve the solution quality obtained by particle
swarm optimization (e.g., [ES00], and own experiments). In order to provide fair
comparison, velocity clamping was introduced in the standard particle swarm opti-
mizer for the following experimental investigations. If S = [lb1,ub1]×·· ·× [lbn,ubn]
is the search space of the optimization problem, the d-th component of each particle’s
velocity vector is restricted by (ubd− lbd)/2. Note that, of course, this static velocity
clamping scheme was not used in PSO with velocity adaptation.

Both standard PSO and PSO with velocity adaptation were run with two different
bound handling mechanisms: Reflect-Z and Infinity. Furthermore, the performance
of the new algorithm was also compared to standard PSO with Hyperbolic veloc-
ity update (without velocity clamping), as this configuration was among the best-
performing algorithms in the experiments presented in Chapter 4. The threshold for
the success rate was set to ρ = 0.2, and the initial step size of PSO with velocity
adaptation was set to half of the average search space range:

l =
∑

n
d=1

ubd−lbd
2

n
(5.4)

Note that, if the search space is an n-dimensional cube S = [−r,r]n, then l = r holds.
Each run terminated after 300,000 function evaluations, and each configuration was
repeated 100 times. The following abbreviations are used:

• Reflect-S: Standard PSO with velocity clamping and Reflect-Z bound handling.

• Infinity-S: Standard PSO with velocity clamping and Infinity bound handling
(same setting as Infinity-C in Chapter 4).

• Reflect-A: PSO with velocity adaptation and Reflect-Z bound handling.

• Infinity-A: PSO with velocity adaptation and Infinity bound handling.

• Hyperbolic: Standard PSO with Hyperbolic velocity update and without ve-
locity clamping (same setting as Hyperbolic in Chapter 4).

PSO with velocity adaptation was tested and compared to a standard PSO algo-
rithm on all 100- and 500-dimensional benchmarks. Sample means of the obtained
final objective values, respective 95% confidence intervals and standard deviations
are presented in Tables 5.5, B.28, and B.29. The results of the Wilcoxon rank sum
tests can be found in Tables 5.6, B.26, and B.27.
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5. Adaptive Particle Swarm Optimization

Table 5.4: Setup for the experimental analysis.

PSO parameters
Population size 49

Neighborhood topology 7×7 grid (self included, undirected)
Accelaration coefficients c1 and c2 1.496172

Inertia weight ω 0.72984
Craziness (mutation, turbulence) no

Particle initialization Uniformly at random in the search space
Velocity initialization Half-diff initialization

On most benchmarks, the adaptive particle swarm optimizers Reflect-A and Infinity-
A clearly outperformed their non-adaptive counterparts. An example is given in Fig-
ure 5.10. Out of in total 18 benchmarks per dimensionality, Reflect-A significantly
outperformed Reflect-S on 14 100-dimensional and on 15 500-dimensional prob-
lems. Even more frequently, Infinity-A significantly outperformed Infinity-S (see
Table 5.6). The obtained final objective values were often considerably improved
(see Table 5.5). Moreover, PSO with velocity adaptation often produced significantly
better results than Hyperbolic velocity update although this algorithm performed ex-
ceptionally well in the experiments presented in Chapter 4.

Summarized, the new algorithm provided significantly better results than a stan-
dard particle swarm optimizer on most benchmarks. However, on Schwefel, f9, and
f10, PSO with velocity adaptation cannot compete with Reflect-S. An example con-
vergence plot is shown in Figure 5.11. These are the same benchmarks that were
only comparatively poorly solved with Hyperbolic velocity update in high dimen-
sions. Both f9 and f10 have a huge number of local optima [SHL+05]. When solving
Schwefel, f9, or f10, particle velocities often rapidely decrease towards zero, di-
minishing the exploration capabilitiy of the PSO algorithm, which is crucial for the
successful optimization of highly multi-modal problems. In such a situation, the in-
troduction of a maximum number of velocity reduction steps might be beneficial.

PSO with velocity adaptation was designed on the basis of the theoretical results
presented in Section 3.4 with the aim of reducing the effect of bound handling on par-
ticle swarm performance when solving high-dimensional problems. From Table 5.6,
the following information can be extracted for the 100-dimensional benchmarks:

• 100-dimensional benchmarks: Standard PSO

– Reflect-S significantly outperformed Infinity-S on 5 benchmarks
– Infinity-S significantly outperformed Reflect-S on 5 benchmarks
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Table 5.5: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated algorithms on various 100-
dimensional benchmarks. The best objective values are presented together with the
function name.

Sphere (0) Rosenbrock (0) f1 (-450)
Hyperbol. 5.95e-06±1.7e-07 (8.4e-07) 152.9±9.423 (47.49) -450 (0)
Reflect-S 6.17e-06±1.9e-07 (9.4e-07) 201.3±11.53 (58.11) -450 (0)
Reflect-A 1.04e-06±1.4e-08 (6.9e-08) 114.2±7.311 (36.85) -450 (0)
Infinity-S 6.07e-06±1.9e-07 (9.5e-07) 199.8±10.72 (54.02) -450 (0)
Infinity-A 1.05e-06±1.4e-08 (6.9e-08) 123.3±7.78 (39.21) -450 (0)

Griewank (0) Rastrigin (0) Schwefel (≈ -41898.3)
Hyperbol. 3.57e-03±1.4e-03 (7.0e-03) 105.5±4.193 (21.13) -24848±333.6 (1681)
Reflect-S 4.72e-03±3.9e-03 (0.02) 296.6±8.581 (43.25) -31015±280.2 (1412)
Reflect-A 6.42e-04±5.5e-04 (2.7e-03) 93.61±3.512 (17.7) -25448±285.2 (1437)
Infinity-S 3.13e-03±1.1e-03 (5.6e-03) 261.8±6.92 (34.88) -23923±312.3 (1574)
Infinity-A 1.09e-03±6.7e-04 (3.4e-03) 91.61±2.927 (14.75) -22832±222.9 (1123)

f3 (-450) f2 (-450) f9 (-330)
Hyperbol. 1.21e+07±446800 (2.25e+06) 3348±123.6 (622.7) 264.95±9.73 (49.04)
Reflect-S 3.57e+07±1.87e+06 (9.4e+06) 21047±1037 (5228) -0.73678±9.63 (48.54)
Reflect-A 8.18e+06±345800 (1.74e+06) 333.2±33.56 (169.2) 119.05±13 (65.51)
Infinity-S 1.76e+07±1.06e+06 (5.34e+06) 10696±640.9 (3230) 228.93±13.94 (70.25)
Infinity-A 7.14e+06±279300 (1.41e+06) 264.6±36.15 (182.2) 159.68±12.28 (61.9)

f8 (-140) f6 (390) f5 (-310)
Hyperbol. -118.71±6.444e-03 (0.03248) 570.7±8.938 (45.04) 27956±572.4 (2885)
Reflect-S -118.7±5.315e-03 (0.02679) 584.6±9.83 (49.54) 27310±765.7 (3859)
Reflect-A -118.93±8.091e-03 (0.04078) 514.4±6.908 (34.81) 23575±611.2 (3080)
Infinity-S -118.7±5.987e-03 (0.03017) 592.3±10.54 (53.1) 34700±896.7 (4519)
Infinity-A -118.92±8.069e-03 (0.04066) 515.3±7.359 (37.09) 26909±518.5 (2613)

Ackley (0) f10 (-330) f11 (-460)
Hyperbol. 0.37429±0.128 (0.645) 478.7±15.56 (78.4) 214.65±1.531 (7.718)
Reflect-S 1.5427±0.173 (0.8721) 4.413±10.03 (50.57) 217.99±1.213 (6.116)
Reflect-A 3.68e-06±2.4e-08 (1.2e-07) 59.53±17.3 (87.2) 184.69±1.595 (8.037)
Infinity-S 1.7253±0.1398 (0.7047) 280.8±22.33 (112.6) 223.3±1.434 (7.229)
Infinity-A 3.70e-06±2.5e-08 (1.2e-07) 174.4±11.56 (58.27) 184.9±1.721 (8.675)

f14 (-300) f13 (-130) f12 (90)
Hyperbol. -254.18±0.1192 (0.6007) -102.8±0.934 (4.707) 173200±15810 (79690)
Reflect-S -253.46±0.0754 (0.38) -68.4±3.052 (15.38) 559510±48170 (242800)
Reflect-A -254.1±0.1119 (0.5641) -112.1±0.6355 (3.203) 238170±34790 (175300)
Infinity-S -253.63±0.08549 (0.4308) -65.19±2.592 (13.06) 293280±23700 (119500)
Infinity-A -254.02±0.1039 (0.5237) -112.4±0.5849 (2.948) 163930±16330 (82310)
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Table 5.6: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows how often A per-
formed significantly better than B. The total number of benchmarks is 18.

100-dimensional benchmarks
1 2 3 4 5

Hyperbolic (1) 0 10 13 1 1
Reflect-S (2) 3 0 5 3 3
Infinity-S (3) 2 5 0 0 1
Reflect-A (4) 15 14 17 0 4
Infinity-A (5) 14 13 16 3 0

500-dimensional benchmarks
1 2 3 4 5

Hyperbolic (1) 0 14 18 6 4
Reflect-S (2) 3 0 18 3 3
Infinity-S (3) 0 0 0 0 0
Reflect-A (4) 12 15 18 0 3
Infinity-A (5) 13 15 18 4 0

⇒ In total 10 significant differences

• 100-dimensional benchmarks: PSO with velocity adaptation

– Reflect-A significantly outperformed Infinity-A on 4 benchmarks
– Infinity-A significantly outperformed Reflect-A on 3 benchmarks
⇒ In total 7 significant differences

Hence, the impact of bound handling on the final solution quality was hardly re-
duced by velocity adaptation when solving 100-dimensional benchmark problems.
The situation is different for the 500-dimensional benchmarks: these problems were
only poorly solved by Infinity-S, despite the fact that velocity clamping was used.
Accordingly, Reflect-S significantly outperformed Infinity-S on all 18 benchmarks,
while only 7 significant differences occured between Reflect-A and Infinity-A (see
Table 5.6). This means that there is some evidence that the significance of bound
handling can be reduced by velocity adaptation, but further investigation is needed.
Therefore, the following algorithms were introduced in this experiment:

• Nearest-S: Standard PSO with velocity clamping and Nearest-Z bound hand-
ling.

• Random-S: Standard PSO with velocity clamping and Random-Z bound hand-
ling.

• Nearest-A: PSO with velocity adaptation and Nearest-Z bound handling.

• Random-A: PSO with velocity adaptation and Random-Z bound handling.

The results of the Wilcoxon rank sum test are summarized in Table 5.7 for the 500-
dimensional problems. They show that bound handling becomes less important for
a PSO algorithm if velocity adaptation is used: 90 versus 44 significant performance
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Figure 5.10: On many 100- and 500-dimensional functions, the adaptive PSO al-
gorithms significantly outperformed their non-adaptive counterparts, as exemplarily
shown for the 100-dimensional f13 benchmark. PSO with velocity adapation often
also significantly outperformed PSO with Hyperbolic velocity update. In the plot,
average values and standard deviations (vertical bars) are shown.

differences. However, the final solution quality still strongly depended on the bound
handling method in some cases (see Table B.30). In particular, Random-A was of-
ten outperformed by the other adaptive algorithms in higher dimensions. Using this
bound handling method can lead to a very exploratory, rather random swarm behavior
on high-dimensional problems, as already discussed in Section 4.4.2. Moreover, the
particle swarm might have difficulties to approach boundary regions (see discussion
in Section 4.4.2 for more details). The experimental results suggest that these effects
were not completely eliminated by velocity adaptation. It can be concluded that PSO
with velocity adaptation is less sensitive to the choice of the bound handling method
than a standard particle swarm optimizer. However, invariance was not achieved. Ex-
periment 5 will show that a smaller initial step size can decrease the importance of
bound handling, but can also deteriorate the algorithm’s performance.

Summarized, PSO with velocity adaptation yielded superior results than a standard
PSO on most of the investigated 100- and 500-dimensional benchmarks. The impact
of bound handling on particle swarm performance was reduced.
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Figure 5.11: Reflect-S produced significantly better results than its adaptive counter-
part on the 100- and 500-dimensional Schwefel, f9, and f10. Only once, Infinity-
S significantly outperformed Infinity-A (100-dimensional Schwefel benchmark).
The plot shows average results and standard deviations (vertical bars) for the 100-
dimensional benchmark f10. Note that a logarithmic scale is used.

Table 5.7: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows how often A per-
formed significantly better than B (500-dimensional benchmarks).
Left: Detailed results. Right: Sum of significant performance differences in the cor-
responding areas.

1 2 3 4 5 6 7 8
Reflect-S (1) 0 18 9 9 3 3 3 8
Infinity-S (2) 0 0 0 0 0 0 0 0
Nearest-S (3) 2 18 0 9 3 3 3 8
Random-S (4) 4 18 3 0 3 3 3 7
Reflect-A (5) 15 18 15 15 0 3 2 9
Infinity-A (6) 15 18 15 15 4 0 4 10
Nearest-A (7) 15 18 15 15 0 2 0 10
Random-A (8) 10 18 10 10 0 0 0 0
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Experiment 2: Threshold ρ

In accordance to Rechenberg’s 1/5-rule [Rec73], the threshold for the success rate
was set to ρ = 0.2 in the first experiment. In this experiment, additional settings are
analyzed: ρ = 0.01,0.1,0.5,0.8.

Sample means of the obtained final objective values per setting, corresponding
95% confidence intervals, standard deviations, and the results of the Wilcoxon rank
sum tests are presented in the appendix in Tables B.33, B.34, B.32, and B.31. Se-
lected results are shown in Table 5.8 for convenience. In Figure 5.12, the convergence
plots of two representative runs are shown.

Velocity adaptation has strong impact on the behavior of a particle swarm. Each
n = 100 iterations, i.e., after each 100 · 49 = 4,900 function evaluations, adaptation
takes place. These periodic adaptation steps are often clearly visible in the conver-
gence plots, as shown for f6 in Figure 5.13. In the top figure, the complete con-
vergence plot is shown, while the bottom figure only shows the initial steps of the
PSO algorithm. The first adaptation took place after 4,900 function evaluations. At
that point, particle velocities were often doubled if ρ ∈ {0.01,0.1,0.2}, and halved if
ρ = 0.5 or ρ = 0.8, when solving the benchmark problem f6. The differences in the
swarm behavior are visible as a split of the convergence graphs in Figure 5.13 (bot-
tom). The next splits occured after 200 ·49 = 9,800 and 300 ·49 = 14,700 objective
function evaluations.

When choosing a high threshold ρ, particle velocities often rapidly approach zero,
which prevents thorough search space exploration, and which can lead to premature
convergence. Accordingly, setting ρ to 0.5 or 0.8 resulted in poor average objective
values on most benchmarks (see Tables 5.8, B.33, and B.34).

The performance of Reflect-A-0.1 (i.e., ρ = 0.1 and Reflect-Z bound handling) and
Reflect-A-0.2 was quite similar with slight advantage for Reflect-A-0.1, considering
average objective values and the result of the Wilcoxon rank sum tests. The behavior
of choosing ρ = 0.01 differs from the other settings: The convergence speed was of-
ten too slow to obtain satisfactory results during 300,000 function evaluations (which
already is quite much). An example is given in Figure 5.12 (top). A similar behav-
ior was observed on approximately 8 other functions (Sphere, Rosenbrock, Ackley,
Griewank, f1, f3, f6, f12). When using such small values for ρ, particle velocities are
comparatively high. In Table 5.9, the average distance a particle moved per iteration
is shown for a representative set of benchmark functions. The smaller ρ, the higher
were the particle velocities. High particle velocities can lead to a rather random be-
havior of the whole swarm and considerably slow down the convergence speed. On
the other hand, the same behavior is advantageous for other problems, see Figure 5.12
(bottom): In these cases, the use of high thresholds led to premature convergence, as
velocities are decreased further and further if the swarm is not successful. However,
the swarms with ρ = 0.01 kept exploring and finally found solutions of much better
quality than the other variants on approximately 7 of the investigated 18 benchmark
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Table 5.8: Sample mean of final objective values, 95% confidence intervals, and stan-
dard deviations (in brackets) of the investigated bound handling strategies on selected
100-dimensional benchmarks. The best objective values are presented together with
the function name.

f2 (-450) f6 (390) f9 (-330)
Reflect-A-0.01 22994±575.93 (2902.5) 798.4±43.341 (218.43) -78.783±9.1213 (45.97)
Reflect-A-0.1 1685.9±96.253 (485.09) 500.15±5.1833 (26.123) 90.245±9.0306 (45.51)
Reflect-A-0.2 333.15±33.564 (169.15) 514.39±6.9077 (34.813) 119.05±13 (65.52)
Reflect-A-0.5 2102±282.69 (1424.7) 554.58±9.7745 (49.261) 182.24±10.041 (50.60)
Reflect-A-0.8 14435±841.11 (4239) 581.78±10.02 (50.498) 186.59±8.6135 (43.41)

Table 5.9: Average distance a particle moved per iteration and corresponding 95%
confidence intervals for a representative set of 100-dimensional benchmarks.

f2 f6 f9 f11
Reflect-A-0.01 77.2±0.55 63.5±1.90 4.74±0.0939 0.154±0.00262
Reflect-A-0.1 17.5±0.094 18.0±0.00208 0.434±8.61e-04 0.0196±0.000827
Reflect-A-0.2 11.8±0.030 10.2±0.0999 0.331±0.0116 0.0164±9.70e-07
Reflect-A-0.5 4.39±0.0089 4.26±0.185 0.164±1.98e-05 0.0164±8.38e-07
Reflect-A-0.8 3.65±0.0038 3.29±0.000396 0.164±6.04e-06 0.016±8.37e-07

functions (Schwefel, f5, f8, f9, f10, f11, f13).
Summarized, the use of very small or very high values for the threshold ρ cannot

be recommended. Using a very low threshold sometimes led to exceptionally good
results, but also often deteriorated particle swarm performance. However, selecting
ρ = 0.1 or ρ = 0.2 delivered solutions of good quality for most investigated problems.

Experiment 3: Scaling Strategy

As already mentioned, and in contrast to previously proposed (static and dynamic)
velocity clamping methods, PSO with velocity adaptation involves a so-called up-
and down-scaling mechanism. This means that not only too large velocities are cut,
but also too small velocities are increased. This way, the particle swarm’s explo-
ration and exploitation behavior can more directly be controlled. In this experiment,
the proposed up- and down-scaling approach is compared to the use of an adaptive
maximum particle velocity, which can be described as follows: Particle velocities
that exceed the given adaptive velocity limit lv are decreased, small velocities are,
however, not scaled up. As effectively a maximum step size is used, this setting is
denoted as maximum velocity or, abbreviated, as maxvel in the following tables.

The results of the one-sided Wilcoxon rank sum test are shown in Tables 5.10
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Figure 5.12: Representative runs (top: f2, bottom: f9) of the adaptive PSO algorithm
with different settings of ρ (Experiment 2). In the plot, average objective values are
shown. Vertical bars depict the standard deviation.

149



5. Adaptive Particle Swarm Optimization

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

0 100000 200000 300000

O
bj

ec
tiv

e
va

lu
e

Function evaluations

f6

Reflect-A-0.01
Reflect-A-0.8
Reflect-A-0.5
Reflect-A-0.2
Reflect-A-0.1

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

0 5000 10000 15000 20000

O
bj

ec
tiv

e
va

lu
e

Function evaluations

f6

Reflect-A-0.01
Reflect-A-0.1
Reflect-A-0.2
Reflect-A-0.5
Reflect-A-0.8

Figure 5.13: Velocity adaptation has strong impact on the algorithmic behavior. The
adaptation steps are often clearly visible in the convergence plots, as exemplarily
shown for f6. Top: Convergence plot for 300,000 function evalutions. Bottom: Initial
steps of the PSO algorithm when solving f6 (sample means).
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Table 5.10: Summary of the most relevant information obtained by the Wilcoxon
rank sum tests for Experiment 3. Detailed results are presented in Table B.35. The
table is read as follows.
Example: The first row shows that on 13 benchmarks, Reflect-A (which used the
proposed up- and down-scaling mechanism) significantly outperformed Reflect-A-
maxvel, while Reflect-A-maxvel never significantly outperformed Reflect-A.

up- and down-scaling : maximum velocity
Reflect 13 : 0
Infinity 13 : 0

and B.35. Using a maximum step size instead of the proposed up- and down-scaling
mechanism led to significantly worse final objective values on most tested benchmark
problems. On the other hand, Reflect-A-maxvel and Infinity-A-maxvel never signif-
icantly outperformed their up- and down-scaling counterparts. The performance dif-
ference is also clearly visible when considering the obtained average objective values
for both settings (see Table B.36). Figure 5.14 shows the convergence plot for f10 as
an example.

Hence, the proposed up- and down-scaling mechanism is necessary to control the
search strategy of the particle swarm. It is therefore an important feature of PSO with
velocity adaptation.

Experiment 4: Personal vs. Global Step Size

PSO with velocity adaptation as presented in Algorithm 5.1 uses a global step size
lv, which is adapted to the optimization process by considering the success of the
entire particle swarm. Each particle scales its velocity vector to the same length
lv. However, it is also possible that each particle i has its personal (or individual)
step size li,v to which its velocity is scaled, and which is adapted according to the
particle’s personal success. If a particle’s personal success rate exceeds the threshold
ρ, its step size is doubled, otherwise it is halved. Again, adaptation takes place every n
iterations. In the following tables, this approach is abbreviated as ind (for individual).

This alternative setting was tested by using the given benchmark set. The results
of the Wilcoxon rank sum tests, which are given in Table B.37 and summarized in
Table 5.11, are inconclusive: there is no clear winner. However, when considering the
obtained final objective values, the use of a global step size can be slightly preferred.
The complete results are given in Table B.38, while selected results are presented in
Table 5.12. For most benchmark functions, solutions of similar quality were achieved
by both algorithms. As an example, consider the results obtained for benchmark f2.
However, there are two functions for which the use of a global step size considerably
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Figure 5.14: Convergence plot of PSO algorithms with different scaling strategies
(Experiment 3) for benchmark function f10. On most benchmarks, the proposed up-
and down-scaling mechanism led to significantly better results than the usage of an
adaptive maximum value for the particles’ velocities. The latter setting is denoted as
maxvel.

152



5.3 Particle Swarm Optimization with Velocity Adaptation

Table 5.11: Summary of the most relevant information obtained by the Wilcoxon
rank sum tests for Experiment 4. Detailed results are presented in Table B.37. The
table is read as described in the caption of Table 5.10 on page 151.

global step size : individual step size
Reflect 4 : 4
Infinity 2 : 3

Table 5.12: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated strategies (Experiment 4) on se-
lected 100-dimensional benchmarks. The best objective values are presented together
with the function name.

f2 (-450) f9 (-330) f10 (-330)
Reflect-A 333.2±33.56 (169.2) 119.1±13 (65.52) 59.53±17.30 (87.20)

Reflect-A-ind 364.8±36.79 (185.4) 166.1±9.531 (48.033) 176.9±19.79 (99.72)
Infinity-A 264.6±36.15 (182.2) 159.7±12.28 (61.898) 174.4±11.56 (58.28)

Infinity-A-ind 279.2±28.79 (145.1) 196.1±9.598 (48.37) 304.85±19.51 (98.31)

improved the final solution quality: f9 and f10. Therefore, the use of a global step
size is recommended for PSO with velocity adaptation, although this setting mostly
did not strongly affect the algorithmic behavior.

Experiment 5: Initial Step Size

In the previous experiments, the particles’ step sizes were initialized according to
Equation (5.4). If the search space S is an n-dimensional cube S = [−r,r]n, l = r
holds. This roughly corresponds to a order of r/

√
n per problem dimension. In

the theoretical analysis presented in Section 3.4, it was shown that the probability
that a particle becomes infeasible at time step t is 1−

(
1− 1

4s

)n
, assuming that the

particle velocities are drawn uniformly at random in [− r
s ,

r
s ], s≥ 1. For s =

√
n, this

probability approaches 1 with increasing n.
In this experiment, the initial step size was set to l = r/

√
n, or, more generally, to

l =
∑

n
d=1

ubd−lbd
2√

n
(5.5)

if the search space is S = [lb1,ub1]× . . .× [lbn,ubn]. This setting corresponds to a
order of r/n per dimension, and should result in less particles to become infeasible,
since 1−

(
1− 1

4n

)n
approaches the constant 1− e−

1
4 < 1 for large n. Both initializa-
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Table 5.13: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows how often A per-
formed significantly better than B on the 100-dimensional benchmarks. The total
number of benchmark functions is 18.

1 2 3 4
Reflect-A (1) 0 4 10 8
Infinity-A (2) 3 0 10 10

Reflect-A-init2 (3) 3 3 0 1
Infinity-A-init2 (4) 3 3 2 0

tion strategies were analyzed on the given benchmark set. The method presented in
Equation (5.5) is denoted as init2.

A comparison of the obtained average objective values, which are presented in
Table B.40, suggests that setting the initial step size to l = r is to be preferred over
l = r/

√
n. On most benchmarks, significantly better results were achieved if the

initial step size was set to the larger value l = r. As an example, the convergence
plot for the Schwefel function is depicted in Figure 5.15. Especially for Schwefel, f9
and f10, great performance losses were recognized if the initial step size was set to
l = r/

√
n.

However, as indicated by the theoretical study presented in Section 3.4, choosing
l = r/

√
n (which corresponds to the order r/n per dimension) resulted in a PSO al-

gorithm whose performance is more independent to the choice of the bound handling
method: Table 5.13 shows that there were less significant performance differences
between Reflect-init2 and Infinity-init2 than between Reflect-A and Infinity-A.

Considering Table 5.13 (more details are given in Table B.39), it is clear that
Reflect-A and Infinity-A more often significantly outperformed the corresponding
init2 algorithms than vice versa. In the three cases (Sphere, Ackley, and Griewank) in
which the init2 variants produced significantly better solutions than the adaptive PSO
with l = r, both settings provided a satisfactory average solution quality very close
to the global optimum. Hence, the experimental results suggest to set the initial step
size rather to l = r than to l = r/

√
n, although more particles are expected to leave

the feasible space. The higher the initial step size, the more exploration takes place
at the beginning of the optimization, which is mostly a desired feature of a search
heuristic.
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Figure 5.15: Convergence plot of PSO algorithms with different initial step sizes
(Experiment 5) for the Schwefel benchmark.
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6. Application of PSO to Relative
Positioning

The previous chapters were dedicated to the theoretical analysis of PSO for box-
constrained problems, thorough experimentation on artifical benchmarks, and the
derivation of two adaptive PSO algorithms. In this chapter, these studies are com-
plemented by a real-world PSO application, the solving of the so-called relative
positioning problem. The results presented in this chapter were mostly published
in [SWHP07, GWHK09]. The investigated optimization task is a six-dimensional
box-constrained problem. The impact of bound-handling on this rather low-dimen-
sional optimization problem is analyzed. Furthermore, both adaptive algorithms pre-
sented in the previous chapter were applied on relative positioning, and compared
with standard particle swarm optimization.

6.1 Background

The optimization problem investigated in this chapter is settled in the field of toler-
ance analysis in mechanical engineering. Figure 6.1 shows a flowchart of the tol-
erance analysis process as described by Pierce and Rosen [PR97] and Wittmann et
al. [WSP07]. The approach can for instance be used for the development of car com-
ponents or machine parts. The first step is the design of the ideal assembly, also
denoted as model, with computer-aided design (CAD) software or other means. As
an example, the model of a crossbeam and its surrounding parts (also denoted as its
environment), a car underbody, is shown in Figure 6.21. However, parts with ideal
geometry cannot be produced. Instead, small deviations appear during the manufac-
turing process. If the deviations are too large, functional or aesthetic requirements
might be violated. Therefore, allowed ranges for the deviations, so-called tolerances,
are specified by the product designer.

The definition of appropriate tolerances is an important step in product develop-
ment. The tighter the defined tolerances, the better is the quality of the product, but
the higher are usually the manufacturing costs. In order to find a good trade-off, the
effects of the defined tolerances on product functionality and appearence are ana-

1The author likes to thank Stefan Wittmann from the Department of Mechanical Engineering,
University of Erlangen-Nuremberg, for Figures 6.2, 6.3, and 6.4.
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6. Application of PSO to Relative Positioning

lyzed. The results of the analysis are then used to redefine the specified tolerance
ranges if necessary.

In the given process, the impact of the defined tolerances is analyzed by using sta-
tistical approaches [NT95] and/or visualization methods [WSP07]. For the analysis,
sample manufactured parts (part variants) are needed, which can for instance be ob-
tained by a simulation of the manufacturing process or by measurements conducted
on real, manufactured parts. In order to analyze and visualize the impact of the de-
fined tolerance ranges, the part variants have to be positioned in the environment.
This step is called relative positioning [Tur90]. Figure 6.3 shows the model of an
ideal crossbeam (bright color) and a simulated, positioned crossbeam (dark color) in
their environment. The part variants have to be positioned such that several criteria
are fulfilled, for instance, non-interference with the environment and proximity to
other parts. The relative positioning step can therefore be formulated as an optimiza-
tion task [Tur90, PR97, SWHP07]. After the relative positioning step, the statistical
and visual analysis takes place. If necessary, tolerances are redefined afterwards and
the process is repeated (see Figure 6.1).

6.2 Problem Description and Optimization
Framework

The optimization problem considered in this section is called relative positioning.
The task is to position a simulated or measured part in its environment such that
several criteria, for instance, closeness to the environment and non-interference, are
fulfilled. If a single part is to be positioned in a three-dimensional space, the search
space has six dimensions: three translational and three rotational ones.

Turner [Tur90] and Sodhi and Turner [ST94] used a mathematical programming
approach for the relative positioning of parts in the context of tolerance analysis. For
different assemblies they propose different objective functions, for instance, the min-
imization of the maximum distance between two neighboring parts. Non-interference
of the participating parts is formulated as a set of constraints. Under certain circum-
stances, the task can be formulated as a linear programming problem and solved
efficiently. Otherwise, it can be approached by metaheuristic optimization algo-
rithms. Pierce and Rosen [PR97] used simulated annealing for this purpose. Alterna-
tively, evolution strategies or particle swarm optimization can be utilized [SWHP07,
GWHK09].

In various medical imaging and computer vision applications, images must be
aligned such that their mutual distance is minimized. This task, known as registra-
tion, is similar to relative positioning (see [ZF03] for a survey on image registration).
However, general registration methods, such as the widely-used ICP algorithm of
Besl and McKay [BM92] are not applicable in the given scenario due the presence
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Design model with CAD

Define tolerances

Generate sample part variants

Position sample part variants

Visualize and analyze the
effects of the defined tolerances

Figure 6.1: Flowchart of the tolerance analysis process as described by Pierce and
Rosen [PR97] and Wittmann et al. [WSP07]. PSO was used for the highlighted step
in this flowchart, for the so-called relative positioning of simulated part variants.
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6. Application of PSO to Relative Positioning

Figure 6.2: Model of crossbeam and its environment, a car underbody.

Figure 6.3: Ideal (bright color) and non-ideal, positioned (dark color) crossbeam and
its environment.
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6.2 Problem Description and Optimization Framework

Figure 6.4: Model of ideal crossbeam, and corresponding triangle mesh.

of the non-interference constraint. Moreover, by using metaheuristic optimization
approaches for the relative positioning problem instead of a (modified) registration
technique, the optimization framework is by far more flexible: Additional problem-
specific objectives, such as gravity or tolerance definitions that affect the relative
positions of the parts, can easily be included [SWHP07].

In the following case study, a crossbeam is to be positioned relative to its envi-
ronment, a car underbody. The ideal situation without manufacturing deviations is
depicted Figure 6.2. Both crossbeam and car underbody are represented as fine-
grained triangle meshes as shown in Figure 6.4. The fine-granularity of the triangle
mesh is important to be able to introduce small deviations in the model [SWM09].
After modeling, triangularization, and the definition of tolerances, the first step is to
generate non-ideal parts, for instance, by a simulation of the manufacturing process.
This task was done by using the methodology of Stoll [Sto06] (see also [SWM09]):
In order to generate a non-ideal part, the vertices of the triangle mesh are slightly
modified such that the shape of the resulting part still complies with the tolerance
definition.

Subsequently, the non-ideal part is to be positioned in its environment, in order to
visually and statistically investigate the impact of the introduced deviations on prod-
uct functionality and aesthetics. The following objectives were defined [SWHP07]:

• Non-interference: The part must not interfere with its environment. This ob-
jective is represented as a binary function g(~x):

g(~x) =

{
1 if the non-ideal part interferes with its environment
0 otherwise

(6.1)

The input parameter ~x is a six-dimensional vector (if a single part is to be
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positioned in a three-dimensional space) defining the translations and rotations
of the non-ideal part.

• Distance minimization: The part should be positioned such that its final po-
sition is as close as possible to the ideal part position. This means that the
distance between non-ideal and ideal part is to be minimized. The assembly is
represented as a fine-grained triangle mesh.

– Hausdorff distance: Let A and B be two finite sets of points. The directed
Hausdorff distance from set A to set B is given by (see, e.g., [HKR93]):

dh(A,B) = max
a∈A

min
b∈B
{d(a,b)}

where d(a,b) is the distance of points a and b using any appropriate dis-
tance measure (e.g., Euclidean distance).
The Hausdorff distance of two sets A and B is then defined as (see, e.g.,
[HKR93, EM97]):

dH(A,B) = max{dh(A,B),dh(B,A)} (6.2)

An example is given in Figure 6.5.
In the relative positioning framework, a slightly modified definition of
the Hausdorff distance was used, in order to better take the geometry of
the participating parts into account. Instead of using the raw node sets
of the involved triangle meshes, point-to-surface distances are computed.
Let A = {a1,a2, . . . ,a|A|} and B = {b1,b2, . . . ,b|B|} be the node sets of the
non-ideal and ideal part’s triangle mesh, respectively. Furthermore, for
each ai, let b′i be the closest point on the ideal part’s surface, by using an
appropriate distance measure, e.g., the Euclidean norm, and let BA be the
set BA = {b′1,b′2, . . . ,b′|A|}. Analogously, the set AB is computed from A
and B. The distance of non-ideal and ideal part is then defined as

d′H(A,B) = max{dh(A,BA),dh(B,AB)} . (6.3)

– Summed square distance: The summed square distance is similar to the
mean square distance used in the ICP algorithm [BM92]. It is defined as
follows: For each node of the non-ideal part’s triangle mesh, the minimum
distance to the surface of the ideal part is computed. These distances are
then squared and summed up. More formally, let A and B be the node sets
of the non-ideal and ideal part’s triangle mesh, respectively, and let BA
be defined as above. The summed square distance of non-ideal and ideal
part computes to

ssd(A,BA) =
|A|

∑
i=1

d(ai,b′i)
2 (6.4)

where d(ai,b′i) is the distance of points ai and b′i.
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Figure 6.5: For the computation of the distance between two point sets A and
B, the Hausdorff distance (directed or undirected) can be used.
(a) For each element of set A, the minimum distance to an element of
set B is computed (shown as dashed edges). The maximum of these dis-
tances is the directed Hausdorff distance from set A to set B: dh(A,B) =
maxa∈A minb∈B d(a,b) =

√
2. In this example, d(a,b) denotes the Euclidean

distance between the two points a and b.
(b) dh(B,A) = maxb∈B mina∈A d(b,a) = 2
The (undirected) Hausdorff distance is then given by the maximum of the two
directed Hausdorff distances: dH(A,B) = max{dh(A,B),dh(B,A)}= 2.
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For large assemblies with very fine-grained triangle meshes, the computation of the
summed square distance is computationally expensive. The evaluation can be sped
up by sampling, which means that only a certain fraction ASample ⊆ A is used for
the computation of the summed square distance [GWHK09]. The estimated summed
square distance is given by

essd(A,BA) =
|A|

|ASample| ∑
ai∈ASample

d(ai,b′i)
2 . (6.5)

where BA is defined as above, and, for each ai ∈ ASample, b′i is the closest point on the
ideal part’s surface. The factor |A|/|ASample| was added to allow a better comparison
of ssd and essd. The correlation of essd and ssd is investigated in Section 6.3 for the
assembly depicted in Figures 6.2 and 6.3.

The presented approach for the relative positioning problem is very flexible due to
the use of metaheuristic optimization algorithms. Additional objectives can be inte-
grated easily. Let f1(~x), . . . , fk(~x) be the objective functions, each to be minimized2.
The optimization goal is to minimize the weighted sum f (~x) of these objectives:

f (~x) =
k

∑
i=1

wi · fi(~x)

where w1, . . . ,wk are user-defined weights. Hence, the optimization problem with
multiple objective functions is transformed into a single-objective one by using a
weighted sum approach. Optimization algorithms that approximate the Pareto front
and return a set of solutions are not applicable in this context as the major analyses
performed on the basis of this framework involve Monte Carlo simulations. This
means that hundreds or thousands of parts have to be positioned for a single analysis.
The weighted sum approach allows a fully automated positioning process without the
need of a human decision maker once the weights are defined. The relative position-
ing framework is depicted in Figure 6.6.

When positioning large assemblies that are represented by fine-grained triangle
meshes, the computation of certain objective functions is very time-consuming. On
the other hand, the maximum translation and rotation that has to be applied to the
non-ideal part in order align it with the ideal part can often be roughly estimated
based on the simulation process that was used to obtain the part variants. In order
to speed up the relative positioning process, these bounds were introduced as box
constraints in the optimization problem.

2Note that ~x is a six-dimensional vector, which describes the translations and rotations of the
non-ideal part, as mentioned at the beginning of this section. If, for instance, one of the objectives is
the summed square distance ssd(A,BA), the sets A and BA have to be computed by using this vector.
Similar transformations might be necessary for other objectives.
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Particle Swarm
Optimizer

Relative Positioning
Problem

f (~x) = ∑
k
i=1 wi fi(~x)

~x

f (~x)

Figure 6.6: Interaction of the particle swarm optimizer and the relative positioning
problem. The PSO algorithm determines sample search space positions ~x according
to its search strategy, which are evaluated by the relative positioning problem. The
result f (~x) influences the subsequent search behavior.

6.3 Experimental Results
In this section, the presentation of particle swarm optimization for box-constrained
relative positioning is concluded by experimental investigations. Two issues were
addressed:

• The goal of the first experiment is to analyze the correlation of the summed
square distance (ssd) and the estimated summed square distance (essd).

• The goal of the second experiment is to compare the performance of adaptive
particle swarm optimization as introduced in Chapter 5 and standard particle
swarm optimization. Additionally, different strategies to cope with the box
constraints were examined.

Setup

For the experimental analysis, the assembly shown in Figure 6.2 was used. The
following parts are involved:

• Environment: The environment is a car underbody (dark color in Figure 6.2),
which is described by 50,037 triangles.

• Ideal crossbeam: The ideal crossbeam (bright color in Figure 6.2) is repre-
sented by a triangle mesh with 14,440 triangles.

• Simulated, non-ideal crossbeam: The non-ideal part was obtained by introduc-
ing sinusoidal deviations into the model of the ideal crossbeam according to
the method of Stoll [Sto06,SWM09]. The resulting non-ideal part is described
by 49,030 triangles. The high number of triangles was necessary to represent
the curved surface.
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The particle swarm optimizer was instantiated with the same parameter set used
in the previous experiments: A population of 49 particles was connected via a 7×7
grid topology, and initialized uniformly at random in the bounded search space. The
parameters of the PSO equations were set to c1 = c2 = 1.496172 and ω = 0.72984.
The bound handling strategy was varied in the second experiment, but set to Reflect-
Z in the first experiment due to its good performance in the previous experimental
study. Velocities were initialized according to half-diff initialization, and neither
velocity clamping nor turbulence was used.

Correlation Analysis

The correlation of ssd and essd was investigated by performing ten runs of a particle
swarm optimizer using essd with |ASample| = b0.0025 · |A|c = 122 on the assembly
depicted in Figures 6.2 and 6.3 and described above. The results of the correlation
analysis of course only apply to the investigated assembly. However, the method can
easily be used for other assemblies as well. As one of the main application areas of the
relative positioning framework is to perform Monte Carlo analyses, it is acceptable
to perform preliminary runs to determine a suitable value for |ASample| and to study
the correlation of ssd and essd. If the correlation is high, ssd can be replaced with
essd. A modification of the optimization algorithm is not necessary.

As a second objective, interference of the non-ideal part with the environment has
to be avoided. Therefore, the optimization goal is to minimize the weighted sum of
g(~x) and ssd(A,BA):

f (~x) = w1 ·g(~x)+w2 · ssd(A,BA)

The sets A and BA have to be constructed from ~x. If the summed square distance is
estimated, the objective function is replaced by

fessd(~x) = w1 ·g(~x)+w2 · essd(A,BA) .

In both cases, the weights were chosen to w1 = 100,000 and w2 = 1. The weight w1
was set to a comparatively high value due to the fact that colliding parts do not com-
ply with real world restrictions. The optimiziation terminated after 10,000 objective
function evaluations.

The nodes of ASample should be chosen such that they are evenly distributed on
the triangle mesh. This can, for instance, be obtained by drawing them uniformly at
random from A, or by making use of the underlying (possibly sorted) data structure
of the triangle mesh. In this case study, the latter method was used. It makes sense
to choose ASample only once, at the beginning of the optimization, as otherwise, the
optimization problem would be noisy, and strategies to cope with noisy environments
had to be incorporated into the optimization algorithm. For more information on opti-
mization in noisy environments, the reader is referred to the surveys of Beyer [Bey00]
and Jin [Jin05].
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For the correlation analysis, the Pearson product-moment correlation coefficient,
which is a widely-used statistical measure, was computed in conjunction to a visual
inspection. Pearson’s correlation coefficient is defined as follows [RN88, OM88]:

r =
∑

N
i=1[(Xi−X) · (Yi−Y )]√

∑
N
i=1(Xi−X)2 ·∑N

i=1(Yi−Y )2
(6.6)

where {X1,X1, . . . ,XN} and {Y1,Y2, . . . ,YN} are observations, and X and Y are the
respective sample means. The correlation coefficient r is bounded by [−1,1]. Values
near 1 indicate a strong positive correlation whereas values near −1 indicate a strong
negative correlation.

Figure 6.7 summarizes the results of the ten optimization runs. The correlation of
ssd and essd was investigated both visually and statistically. The two-dimensional
plots already indicate that ssd and essd are strongly correlated. For each search space
position ~x visited during an optimization run, the pair ( f (~x), fessd(~x)) is drawn. The
values are very close to the curve f (~x) = fessd(~x), which represents perfect linear
correlation. Also, the correlation coefficient r is very close to 1 for each single opti-
mization run. Both the statistical and the visual analysis show that ssd and essd are
highly correlated in the given scenario. In order to speed up the optimization, ssd
was replaced by essd in the following experiments.

Performance Comparison

The performance of different PSO algorithms was compared by using two test sce-
narios, both based on the assembly shown in Figure 6.2, and described above.

• Zero test: In order to get a first impression if PSO is suited for the relative
positioning problem a simple test scenario with known global optimum was
constructed. The non-ideal geometry is a rotated and translated version of the
ideal crossbeam. As the shape is not modified, the non-ideal part also has
14,440 triangles. The objective function is f (~x) = d′H(A,B), where A (com-
puted from ~x) and B are the sets of triangle nodes of the non-ideal and ideal
part, respectively. Due to the construction procedure of this test, the objective
value of the global optimum is f (~x∗) = 0. Therefore, the test is called Zero test.

• Crossbeam test: A more realistic scenario was investigated in the so-called
Crossbeam test. A non-ideal crossbeam with 49,030 triangles is to be posi-
tioned in the environment. The involved parts are described above and depicted
in Figures 6.2 and 6.3. The objective function is given by

f (~x) = fessd(~x) = w1 ·g(~x)+w2 · essd(A,BA) .
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Figure 6.7: Visual and statistical inspection of the correlation of ssd and essd on the
given assembly.
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Table 6.1: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of different PSO variants on the relative positioning
problem.

Zero Crossbeam
Hyperbolic 2.7387e-06±3.3011e-07 (1.1615e-06) 8047.3±5.0875 (17.901)

Infinity 9.9619e-06±1.6197e-06 (5.6994e-06) 8076±16.653 (58.596)
Reflect-Z 1.2377e-05±1.7385e-06 (6.1174e-06) 8089.9±14.018 (49.324)
Reflect-A 2.1664e-04±3.2942e-05 (1.1591e-04) 8107.1±17.786 (62.583)
MPSO-6 3.2131e-06±5.087e-07 (1.79e-06) 8058.3±8.905 (31.334)

MPSO-30 3.2566e-06±4.6569e-07 (1.6386e-06) 8059.8±11.213 (39.455)

where, again, the weights were chosen to w1 = 100,000 and w2 = 1, and
|ASample| was set to |ASample| = 0.0025 · |A|. The same assembly and objec-
tive function was used in the above correlation analysis.

In both cases, the particle swarm optimizer was allowed to perform 10,000 func-
tion evaluations. Each experimental configuration was repeated 50 times. Table 6.1
shows mean values, respective 95% confidence intervals, and standard deviations of
the final objective values found by different PSO configurations. Table 6.2 depicts
the results of the Wilcoxon rank sum test. The following algorithms were tested:
Hyperbolic and Reflect-Z, as these strategies performed best in the experiments pre-
sented in Chapter 4. Infinity, as it is a widely-used method, which was also proposed
for standard PSO [BK07]. Additionally, the adaptive PSO algorithms introduced in
Chapter 5 were included, to allow a performance comparison of the adaptive algo-
rithms to standard particle swarm optimization:

• Reflect-A: PSO with velocity adaptation (ρ = 0.2) and Reflect-Z bound hand-
ling.

• MPSO-6: MPSO-1 with an adaptation interval of k1 = n = 6 and Reflect-Z and
Hyperbolic as subswarm strategies.

• MPSO-30: MPSO-1 with a larger adaptation interval of k1 = 30 and Reflect-Z
and Hyperbolic as subswarm strategies.

MPSO-1 and MPSO-2 produced solutions of similar quality in the experiments pre-
sented in Section 5.2.2 when using Reflect-Z and Hyperbolic as subswarm configura-
tions. Due to its simpler design with less parameters to tune, MPSO-1 was chosen for
the subsequent experiments. Different settings of the adaptation interval were tested.

All tested PSO algorithms reliably passed the Zero test by providing solutions
very close to the global optimum (see Table 6.1). Slight performance differences are
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6. Application of PSO to Relative Positioning

Table 6.2: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which bench-
marks A performed significantly better than B.

1 2 3 4 5 6
Hyperbolic (1) {} {Zero, Crossb.} {Zero, Crossb.} {Zero, Crossb.} {} {}

Infinity (2) {} {} {Crossb.} {Zero, Crossb.} {} {}
Reflect-Z (3) {} {} {} {Zero} {} {}
Reflect-A (4) {} {} {} {} {} {}
MPSO-6 (5) {} {Zero, Crossb.} {Zero, Crossb.} {Zero, Crossb.} {} {}
MPSO-30 (6) {} {Zero, Crossb.} {Zero, Crossb.} {Zero, Crossb.} {} {}

already visible: Hyperbolic, MPSO-6, and MPSO-30 significantly outperformed the
other variants (see Table 6.2).

In the Crossbeam test, the best performing algorithms were again Hyperbolic,
MPSO-6, and MPSO-30, with no significant performance differences among each
other (Table 6.2). The average objective values obtained by MPSO-6 and MPSO-30
are very similar (see Table 6.1), which means that the size of the adaptation interval
hardly influenced the algorithm’s performance. The bound handling strategies Infin-
ity and Reflect-Z showed similar performance in both tests, with slight advantage for
Infinity.

PSO with velocity adaptation performed significantly worse than most of the other
algorithms. Most probably, the reason is the low number of function evaluations used
in this application. The convergence plot given in Figure 6.8 shows that Reflect-A is
considerably slower than the other algorithms, but still visibly improves the solution
quality until the end of the optimization.

Summarized, all PSO algorithms were able to pass the Zero test, which indicates
that particle swarm optimization is a good candidate to solve the relative positioning
problem. Due to the low number of used function evaluations, PSO with velocity
adaptation was not competitive to most of the other algorithms. The best performing
algorithms in both the Zero and the Crossbeam test were Hyperbolic, MPSO-6 and
MPSO-30.

170



6.3 Experimental Results

0

20000

40000

60000

80000

100000

0 2000 4000 6000 8000 10000

O
bj

ec
tiv

e
va

lu
e

Function evaluations

Reflect-A
Reflect
Infinity

MPSO-1-30
MPSO-1-6
Hyperbolic

Figure 6.8: Convergence plot of the Crossbeam test. In the plot, average objective
values are shown. Vertical bars depict the standard deviation.
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7. Conclusion

In this thesis, fundamental theoretical and experimental results on bound-constrained
particle swarm optimization were presented. It was shown that bound handling plays
a crucial role when solving high-dimensional problems with PSO algorithms. Several
strategies to cope with this fact were proposed, investigated in detail, and applied to
practical problems.

In Chapter 3, it was proved mathematically that, if PSO is applied to box-constrai-
ned problems, many particles leave the feasible space at the beginning of the opti-
mization, with overwhelming probability, even if particle velocities are initialized to
zero. This theoretical result implies that the method how box constraints are dealt
with (the so-called bound handling strategy) has significant impact on initial particle
swarm behavior. Furthermore, by using a simplified PSO model, it was shown in
Section 3.4 that the probability that a particle becomes infeasible is constant if the in-
terval from which particle velocities are chosen is scaled with respect to the problem
dimensionality.

The experimental evaluation presented in Chapter 4 confirmed the theoretical re-
sults, and additionally showed that bound handling not only has strong impact on ini-
tial particle swarm behavior, but also significantly influences the final solution quality
achieved by particle swarm optimization, especially when solving high-dimensional
problems.

Three ways to cope with these facts were proposed and investigated:

• Careful design and selection of bound handling strategies. In order to support
the design and selection of bound handling strategies, a thorough experimental
study of the strengths and weaknesses of thirteen commonly-used strategies
was presented in Section 4.4.2.

• Use of self-adaptation. In Section 5.2 it was shown that bound handling can
often be automatically adapted to the current optimization problem by using
Multi-Swarm PSO with Migration.

• Use of velocity adaptation. Based on the theoretical results presented in Sec-
tion 3.4, the concept of velocity adaptation was introduced in Section 5.3. The
experimental evaluation showed that the use of velocity adaptation can reduce
the impact of bound handling on particle swarm performance. At the same
time, the solution quality was often improved significantly.
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7. Conclusion

The most promising strategies from Section 4.4.2 as well as both adaptive algorithms
were applied to the relative positioning problem in Chapter 6. The experimental
results confirmed that bound handling has significant impact on the solution quality
obtained by particle swarm optimization.

Directions of future research

The establishment of a broad theoretical basis for PSO algorithms is required in order
to support practical PSO application. Much needed are results on expected solution
quality and runtime of particle swarm optimization. Particle interaction is essential
for the success of PSO algorithms, but has not yet been studied theoretically. A theo-
retical analysis of the impact of different neighborhood topologies on particle swarm
performance could help users of PSO algorithms to select an appropriate topology
for a given problem.

Adaptive and self-optimizing PSO algorithms are intended to reduce the necessity
of manual parameter adjustment by an expert, and are therefore very useful for PSO
applications. Currently, Multi-Swarm PSO with Migration is extended to not only
use a finite number of predefined parameter sets but to allow more fine-grained para-
meter adaptation by using mutation techniques. First promising results are presented
in [RHW10]. Further topics of future research are the design of new adaptation strate-
gies, with focus on fine-grained parameter adaptation and simplicity, convergence
and runtime analyses of these strategies, and the application of the new algorithms to
multi-objective and combinatorial optimization problems.
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A. Theoretical Derivations

A.1 Sum of Uniformly Distributed Random
Variables

The probability density function of the sum of arbitrary many uniformly distributed
random variables can be computed by using the following theorem of Bradley and
Gupta [BG02, Theorem 1]:

Theorem A.1 (Bradley and Gupta (2002)). The density of the sum of n independent
random variables, uniformly distributed in the intervals [c j − a j,c j + a j] for j =
1,2, . . . ,n is given by

fn(x) =

∑
~ε∈{−1,1}n

(
x+

n

∑
j=1

(ε ja j− c j)

)n−1

· sign

(
x+

n

∑
j=1

(ε ja j− c j)

)
n

∏
j=1

ε j

(n−1)!2n+1
n

∏
j=1

a j

,

in which the sum is over all 2n vectors of signs

~ε = (ε1,ε2, . . . ,εn) ∈ {−1,1}n i.e. each ε j =±1

and

sign(y) =


1 if y > 0
0 if y = 0
−1 if y > 0 .

A.2 Particle Explosion – Uniform Velocity
Initialization

In the following, the detailed derivation of Equation (3.6) of part (ii) of the proof of
Theorem 3.3, is presented. In part (ii) of the proof of Theorem 3.3, the d-th compo-
nent of the position vector~xi,1 is rewritten as xi,1,d = k3 + k4 + k5 with k3 = ω · vi,0,d ,
k4 = (1− c2r2,i,1,d) · xi,0,d , and k5 = c2 · r2,i,1,d · li,0,d . As particles and velocities are
initialized uniformly at random in S = [−r,r]n, k3 and k5 are distributed uniformly at
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A. Theoretical Derivations

random in [−ωr,ωr] and [−c2r2,i,1,dr,c2r2,i,1,dr], respectively. We distinguish seven
cases.
Case 1: r2,i,1,d = 0
If r2,i,1,d = 0, the d-th component of particle i’s position vector is

xi,1,d = ωvi,0,d + xi,0,d

From part (i) of the proof we know that the probability pcase1(ω) that the d-th search
space dimension is violated computes to pcase1(ω) = ω

4 .
Case 2: 0 < r2,i,1,d < ω

2c2

With our assumptions, the following inequation is true: r2,i,1,d < ω

2c2
< 1

c2
. There-

fore, k4 is distributed uniformly at random in [−(1−c2r2,i,1,d)r,(1−c2r2,i,1,d)r]. The
density function of the sum of arbitrary many, non-identically and independently dis-
tributed uniform random variables can be computed using the formula presented by
Bradley and Gupta [BG02, Theorem 1]. Let fxi,1,d(z) be the density function of xi,1,d ,
which can be computed by using a modern computer algebra system. Then, with
our assumptions about ω and c2, the probability pcase2(r2,i,1,d,c2,ω) that particle i
violates the d-th search space boundary is given by

pcase2(r2,i,1,d,c2,ω) =
Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz

=
−3ω2 +6c2r2,i,1,dω−4c2

2r2
2,i,1,d

−12ω(1− c2r2,i,1,d)
.

Case 3: ω

2c2
≤ r2,i,1,d < 2−ω

2c2

We yield r2,i,1,d < 2−ω

2c2
< 1

c2
, which implies that the term k4 is distributed uniformly

at random in [−(1− c2r2,i,1,d)r,(1− c2r2,i,1,d)r]. With the formula of Bradley and
Gupta, the probability pcase3(r2,i,1,d,c2,ω) that a single boundary is exceeded evalu-
ates to

pcase3(r2,i,1,d,c2,ω) =
Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz

=
ω2

24(1− c2r2,i,1,d)c2r2,i,1,d
.

Case 4: 2−ω

2c2
≤ r2,i,1,d < 1

c2
Again, k4 is distributed uniformly at random in [−(1− c2r2,i,1,d)r,(1− c2r2,i,1,d)r].
The probability pcase4(r2,i,1,d,c2,ω) that particle i crosses the boundary in dimension
d computes to

pcase4(r2,i,1,d,c2,ω) =
4c2

2r2
2,i,1,d +6ωc2r2,i,1,d−8c2r2,i,1,d +3ω2 +4−6ω

12ωc2r2,i,1,d
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A.3 Particle Explosion – Half-diff Velocity Initialization

Case 5: r2,i,1,d = 1
c2

In this case, xi,1,d is given by xi,1,d = ωvi,0,d + li,0,d . According to part (i) of the proof,
the probability that particle i leaves the search space in dimension d is ω

4 . Remember
that Assumption 3.3 states that li,0 is distributed uniformly at random in S .
Case 6: 1

c2
< r2,i,1,d < 2+ω

2c2

As r2,i,1,d > 1
c2

, k4 is now distributed uniformly at random in [(1− c2r2,i,1,d)r,−(1−
c2r2,i,1,d)r], and the probability pcase6(r2,i,1,d,c2,ω) that particle i exceeds a boundary
is

p6(r2,i,1,d,c2,ω) =
4c2

2r2
2,i,1,d +6ωc2r2,i,1,d−8c2r2,i,1,d +3ω2 +4−6ω

12ωc2r2,i,1,d

Case 7: 2+ω

2c2
≤ r2,i,1,d ≤ 1

In this case, k4 is distributed uniformly at random in [(1−c2r2,i,1,d)r,−(1−c2r2,i,1,d)r],
and the probablity pcase7(r2,i,1,d,c2,ω) that a particle violates the d-th search space
bound evaluates to

pcase7(r2,i,1,d,c2,ω) =
24+ω2 +24c2

2r2
2,i,1,d−48c2r2,i,1,d

−24c2r2,i,1,d(1− c2r2,i,1,d)
.

Summarized, the probability q1(r2,i,1,d,c2,ω) that particle i crosses the search
space bound in dimension d, i.e., the probability that xi,1,d /∈ [−r,r], is computed
to:

q1(r2,i,1,d,c2,ω) =
Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz

=



−3ω2+6c2r2,i,1,dω−4c2
2r2

2,i,1,d
−12ω(1−c2r2,i,1,d) if 0≤ r2,i,1,d < ω

2c2

ω2

24(1−c2r2,i,1,d)c2r2,i,1,d
if ω

2c2
≤ r2,i,1,d < 2−ω

2c2

4c2
2r2

2,i,1,d+6ωc2r2,i,1,d−8c2r2,i,1,d+3ω2+4−6ω

12ωc2r2,i,1,d
if 2−ω

2c2
≤ r2,i,1,d < 2+ω

2c2

24+ω2+24c2
2r2

2,d−48c2r2,i,1,d

−24c2r2,i,1,d(1−c2r2,i,1,d) if 2+ω

2c2
≤ r2,i,1,d ≤ 1

A.3 Particle Explosion – Half-diff Velocity
Initialization

In the following, the detailed derivation of Equation (3.11) of part (ii) of the proof
of Theorem 3.9, is presented. Let particle i be an arbitrary particle that satisfies the
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A. Theoretical Derivations

given assumptions. Its position and velocity in the first iteration compute to

vi,1,d =ω · vi,0,d + c2 · r2,i,1,d · (li,0,d− xi,0,d)

xi,1,d =xi,0,d + vi,1,d = ω

2 · zi,d︸ ︷︷ ︸
k8

+c2 · r2,i,1,d · li,0,d︸ ︷︷ ︸
k9

+
(
1− ω

2 − c2 · r2,i,1,d
)
· xi,0,d︸ ︷︷ ︸

k10

for d = 1, . . . ,n.
Case 1: 0≤ r2,i,1,d ≤ 2−ω

2c2
Since

r2,i,1,d ≤
2−ω

2c2
⇔ 1− ω

2
− c2 · r2,i,1,d ≥ 0

we compute

(1) xi,1,d ≤ ω

2 · r + c2 · r2,i,1,d · r +(1− ω

2 − c2 · r2,i,1,d) · r = r

(2) xi,1,d ≥ ω

2 · (−r)+ c2 · r2,i,1,d · (−r)+(1− ω

2 − c2 · r2,i,1,d) · (−r) =−r .

This means that particle i does not leave the search space in dimension d if 0 ≤
r2,i,1,d ≤ 2−ω

2c2
holds.

Case 2: 2−ω

2c2
< r2,i,1,d < 1

c2
or 1

c2
< r2,i,1,d ≤ 1

Similar to the proof of Theorem 3.3, part (ii), xi,1,d is rewritten as the sum of three
stochastic variables: xi,1,d = k8 +k9 +k10. The initial particle positions as well as the
random vectors zi, i = 1, . . . ,m, are distributed uniformly at random in S . Assump-
tion 3.3 states that the same holds for the local guides ~li,0, i = 1, . . . ,m. Hence, k8
and k9 are distributed uniformly at random in [−ω

2 r, ω

2 r] and [−c2r2,i,1,dr,c2r2,i,1,dr],
respectively. From r2,i,1,d > (2−ω)/(2c2), 1−ω/2− c2r2,i,1,d < 0 follows, and
therefore k10 is distributed uniformly at random in [(1− ω

2 − c2r2,i,1,d)r,(−1 + ω

2 +
c2r2,i,1,d)r]. This means that xi,1,d is the sum of three stochastic variables that are
distributed uniformly at random in their respective intervals. The probability den-
sity function fxi,1,d of xi,1,d can be computed by using the appraoch of Bradley and
Gupta [BG02, Theorem 1]. The probability q3(r2,i,1,d,c2,ω) that particle i violates
the d-th search space bound is then computed to

q3(r2,i,1,d,c2,ω) =
Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz

=



(6ωc2r2,i,1,d(2−ω−2c2r2,i,1,d))−1(−ω3−24c2r2,i,1,d

+24c2
2r2

2,i,1,d+24ωc2r2,i,1,d+8−8c3
2r3

2,i,1,d−12ω

+6ω2−6ω2c2r2,i,1,d−12ωc2
2r2

2,i,1,d) if 2−ω

2c2
< r2,i,1,d < 1

c2

−ω3+24ωc2r2,i,1,d−12ω+6ω2−6ω2c2r2,i,1,d−12ωc2
2r2

2,i,1,d

6ωc2r2,i,1,d(2−ω−2c2r2,i,1,d)
if 1

c2
< r2,i,1,d ≤ 1
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A.4 Particle Explosion – Half-diff Velocity Initialization, Part 2

Case 3: r2,i,1,d = 1
c2

Particle i’s position in the first iteration is given by xi,1,d = ω

2 zi,d + li,0,d − ω

2 xi,0,d .
Hence, xi,1,d is the sum of three random variables that are distributed uniformly at
random in [−ω

2 r, ω

2 r] and [−r,r], respectively. The density function fxi,1,d can again
be computed according to Bradley and Gupta [BG02, Theorem 1]. The probability
q3(r2,i,1,d,c2,ω) that a particle exceeds the d-th search space bound is

q3(r2,i,1,d,c2,ω) =
Z −r

−r−ωr
fxi,1,d(z)dz+

Z r+ωr

r
fxi,1,d(z)dz =

ω

6
.

Summarizing the three cases, Equation (3.11) is obtained:

q3(r2,i,1,d,c2,ω) =
Z −r

−∞

fxi,1,d(z)dz+
Z

∞

r
fxi,1,d(z)dz

=



0 if 0≤ r2,i,1,d ≤ 2−ω

2c2

(6ωc2r2,i,1,d(2−ω−2c2r2,i,1,d))−1(−ω3−24c2r2,i,1,d

+24c2
2r2

2,i,1,d+24ωc2r2,i,1,d+8−8c3
2r3

2,i,1,d−12ω

+6ω2−6ω2c2r2,i,1,d−12ωc2
2r2

2,i,1,d) if 2−ω

2c2
< r2,i,1,d < 1

c2

ω

6 if r2,i,1,d = 1
c2

−ω3+24ωc2r2,i,1,d−12ω+6ω2−6ω2c2r2,i,1,d−12ωc2
2r2

2,i,1,d

6ωc2r2,i,1,d(2−ω−2c2r2,i,1,d)
if 1

c2
< r2,i,1,d ≤ 1

A.4 Particle Explosion – Half-diff Velocity
Initialization, Part 2

The function q3(r2,i,1,d,c2,ω) (see above or refer to Equation (3.11)) is continuous
for

(1) 2−ω

2c2
< r2,i,1,d < 1

c2
,

(2) 1
c2

< r2,i,1,d ≤ 1

as sum f + g and product f · g of continuous functions f ,g : I → R are again con-
tinuous in I , and the function h = f /g : I ′ → R with I ′ = {x ∈ I : g(x) 6= 0} is
continuous in I ′ if f and g are continuous [For01, page 95]. From r2,i,1,d > 2−ω

2c2
,

2−w− 2c2r2,i,1,d < 0 follows. Additionally, r2,i,1,d > 2−ω

2c2
> 0, w > 0, and c2 > 0.
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A. Theoretical Derivations

Hence, 6ωc2r2,i,1,d(2−w−2c2r2,i,1,d) < 0, and q3(r2,i,1,d,c2,ω) is continuous in the
given intervals.

Furthermore, it has to be shown that q3(r2,i,1,d,c2,ω) is continuous at r2,i,1,d =
1/c2. From Equation (3.11), q3(1/c2,c2,ω) = ω/6 is obtained. With an appropriate
computer algebra system, the following left- and right-hand limits are computed, by
using Equation (3.11):

lim
r2,i,1,d↗ 1

c2

q3(r2,i,1,d,c2,ω) =
ω

6

lim
r2,i,1,d↘ 1

c2

q3(r2,i,1,d,c2,ω) =
ω

6
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B. Experimental Results

B.1 The Wilcoxon Rank Sum Test: Examples
In this section, the concept of the one-sided Wilcoxon rank sum test is demonstrated
by computing two small examples by hand. Two sample sets A and B, each of size
N = 3, and the hypotheses as stated in Equations (4.1) and (4.2) are considered (re-
peated here for convenience):

H0 :P(XA < XB)≤ 1
2

H1 :P(XA < XB) >
1
2

The significance level is set to α = 0.08.

Example 1
Let A = {0.5,2,2.9} and B = {1.1,2.8,20} be the two sample sets. The rank sets of
samples A and B are {1,3,5} and {2,4,6}, respectively. All possible rank sets for
N = 3 with corresponding rank sums are given in Table B.1 (left). The rank sum of
set A is W = 9, and the p-value is given by

p =
W

∑
i=(N+1)·N/2

pi =
9

∑
i=6

pi =
1
20

+
1

20
+

2
20

+
3

20
=

7
20

= 0.35 .

The values for pi were derived from Table B.1 (left), and are shown in Table B.1
(right). Remember that each rank set has the same probability if the null hypothesis
was true. Since

p = 0.35≥ α = 0.08

the null hypothesis is not rejected.

Example 2
As a second example, let A = {1,30,31} and B = {100,105,110} be the two sample
sets. The rank sets of samples A and B are {1,2,3} and {4,5,6}, respectively. Hence,
W = 6, and the p-value is computed to p = 1/20 = 0.05. The null hypothesis is
rejected due to the fact that p = 0.05 < α = 0.08 holds.
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Table B.1: Left: Possible rank sets and corresponding rank sums for one sample set,
assuming two sample sets without ties of size N = 3 each. Right: Frequency and
probablity of the occuring rank sums.

{1,2,3} {1,2,4} {1,2,5} {1,2,6}
6 7 8 9

{1,3,4} {1,3,5} {1,3,6}
8 9 10

{1,4,5} {1,4,6} {1,5,6}
10 11 12
{2,3,4} {2,3,5} {2,3,6}

9 10 11
{2,4,5} {2,4,6} {2,5,6}

11 12 13
{3,4,5} {3,4,6} {3,5,6} {4,5,6}

12 13 14 15

Rank sum Freq. Prob.
6 1 p6 = 1/20
7 1 p7 = 1/20
8 2 p8 = 2/20
9 3 p9 = 3/20
10 3 p10 = 3/20
11 3 p11 = 3/20
12 3 p12 = 3/20
13 2 p13 = 2/20
14 1 p14 = 1/20
15 1 p15 = 1/20

B.2 Velocity Initialization
Detailed results for the experimental comparison of different velocity initialization
strategies (Section 4.3):

• Nearest-Z bound handling

– Sample means, 95% confidence intervals, sample standard deviations of
N = 100 runs: Table B.2

• Random-Z bound handling

– Sample means, 95% confidence intervals, sample standard deviations of
N = 100 runs: Table B.3
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B.2 Velocity Initialization

Table B.2: Sample mean of final objective values, 95% confidence intervals, and
sample standard deviations (in brackets) of different velocity initialization strategies
on various 100-dimensional benchmarks. The best objective values are presented
together with the function name. Nearest-Z bound handling was utilized.

Sphere (0) Rosenbrock (0)
Uniform 5.9444e-06±1.6646e-07 (8.3891e-07) 265.98±84.995 (428.36)

Zero 6.0396e-06±1.9111e-07 (9.6314e-07) 227.98±59.925 (302.01)
Half-diff 5.9515e-06±1.6588e-07 (8.3601e-07) 200.52±15.094 (76.069)

Ackley (0) Griewank (0)
Uniform 2.1891±0.40483 (2.0402) 5.9213e-03±2.4547e-03 (0.012371)

Zero 1.8254±0.1251 (0.63049) 4.6964e-03±2.1546e-03 (0.010859)
Half-diff 1.667±0.12876 (0.64891) 4.5718e-03±2.1514e-03 (0.010842)

Rastrigin (0) Schwefel (≈ -41898.3)
Uniform 441.37±13.379 (67.426) -28123±311.46 (1569.7)

Zero 428.15±10.722 (54.036) -28277±313.79 (1581.4)
Half-diff 366.22±7.7675 (39.146) -28437±309.36 (1559.1)

f1 (-450) f2 (-450)
Uniform -443.36±11.326 (57.082) 48740±3732.1 (18809)

Zero -450 (0) 42771±2793.5 (14079)
Half-diff -447.36±5.2478 (26.447) 41490±2436.5 (12279)

f3 (-450) f5 (-310)
Uniform 58204000±3975800 (20037000) 28904±882.66 (4448.4)

Zero 57085000±3306500 (16664000) 29679±886.91 (4469.8)
Half-diff 52624000±3151500 (15883000) 29180±765.47 (3857.8)

f6 (390) f8 (-140)
Uniform 702240±1392200 (7016500) -118.71±6.4417e-03 (0.032465)

Zero 402210±771430 (3887800) -118.7±5.4789e-03 (0.027612)
Half-diff 1347200±2624700 (13228000) -118.71±5.9884e-03 (0.03018)

f9 (-330) f10 (-330)
Uniform 24.989±11.058 (55.73) 42.266±12.782 (64.417)

Zero 31.861±11.847 (59.707) 42.604±11.496 (57.938)
Half-diff 32.932±10.413 (52.481) 49.191±12.657 (63.786)

f11 (-460) f12 (90)
Uniform 223.97±1.1159 (5.6241) 1367400±106380 (536150)

Zero 222.42±1.0272 (5.1767) 1097200±107580 (542180)
Half-diff 222.97±1.081 (5.4479) 1135300±124970 (629840)

f13 (-130) f14 (-300)
Uniform -65.341±3.0503 (15.373) -253.25±0.081793 (0.41222)

Zero -62.272±3.1644 (15.948) -253.37±0.084162 (0.42416)
Half-diff -65.684±2.6176 (13.192) -253.41±0.090291 (0.45504)
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Table B.3: Sample mean of final objective values, 95% confidence intervals, and
sample standard deviations (in brackets) of different velocity initialization strategies
on various 100-dimensional benchmarks. The best objective values are presented
together with the function name. Random-Z bound handling was utilized.

Sphere (0) Rosenbrock (0)
Uniform 6.1541e-06±1.6062e-07 (8.0949e-07) 197.24±10.137 (51.089)

Zero 6.1236e-06±1.9575e-07 (9.8652e-07) 197.58±10.408 (52.456)
Half-diff 6.132e-06±1.6757e-07 (8.445e-07) 201.9±9.2629 (46.683)

Ackley (0) Griewank (0)
Uniform 1.6438±0.15692 (0.79082) 7.3293e-03±7.2298e-03 (0.036436)

Zero 1.5961±0.15027 (0.75732) 7.4434e-03±3.5067e-03 (0.017673)
Half-diff 1.5611±0.14517 (0.73164) 3.7379e-03±1.9864e-03 (0.010011)

Rastrigin (0) Schwefel (≈ -41898.3)
Uniform 261.3±5.904 (29.755) -25772±230.25 (1160.4)

Zero 260.44±6.5915 (33.219) -25588±261.9 (1319.9)
Half-diff 259.75±6.483 (32.673) -25510±232.94 (1174)

f1 (-450) f2 (-450)
Uniform -450 (0) 24432±1322.9 (6667.1)

Zero -450 (0) 23394±1164.5 (5868.9)
Half-diff -450 (0) 25170±1732.2 (8729.9)

f3 (-450) f5 (-310)
Uniform 72747000±6512200 (3.282e+07) 31642±716.64 (3611.7)

Zero 80919000±7246900 (36522000) 31403±654.21 (3297.1)
Half-diff 7.557e+07±5833300 (29399000) 31841±675.46 (3404.2)

f6 (390) f8 (-140)
Uniform 593.64±10.85 (54.682) -118.71±6.4568e-03 (0.032541)

Zero 576.43±10.349 (52.158) -118.7±6.404e-03 (0.032275)
Half-diff 587.45±10.702 (53.936) -118.7±5.5891e-03 (0.028168)

f9 (-330) f10 (-330)
Uniform 44.919±10.872 (54.793) 87.858±14.042 (70.767)

Zero 52.71±11.46 (57.755) 99.153±13.98 (70.457)
Half-diff 59.29±10.966 (55.267) 102.2±14.465 (72.899)

f11 (-460) f12 (90)
Uniform 223.74±1.0878 (5.4821) 374600±33194 (167290)

Zero 222.75±1.0805 (5.4457) 377540±38288 (192960)
Half-diff 222.81±1.2242 (6.1699) 356330±32520 (163900)

f13 (-130) f14 (-300)
Uniform -67.068±3.1907 (16.08) -253.42±0.086922 (0.43807)

Zero -65.287±2.6727 (13.47) -253.45±0.099929 (0.50362)
Half-diff -64.966±2.9668 (14.952) -253.43±0.090736 (0.45729)
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B.3 Bound Handling
Detailed results for the experimental comparison of different bound handling strate-
gies (Sections 4.4.1 and 4.4.2).

Results of Wilcoxon Rank Sum Test

Table B.4: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the two-dimensional benchmarks. For each algorithmic combination
(A, B), this matrix shows on which benchmarks A performed significantly better
than B.

2D 1 2 3 4 5 6 7
Hyperbolic (1) {} {} {} {f5} {f11} {} {}
RandomBack

(2)
{Schwefel,

f8}
{} {} {f5, f8} {} {} {f8}

Nearest-Z (3) {Ackley,
Rastrigin,
Schwefel,

f8}

{} {} {f5, f8} {} {} {f8}

Random-Z (4) {Schwefel,
f8}

{} {} {} {} {} {}

Reflect-Z (5) {Schwefel,
f8}

{} {} {f5, f8} {} {} {f8}

Infinity (6) {Schwefel,
f8}

{} {} {f5, f8} {f11} {} {}

Infinity-C (7) {Schwefel,
f8}

{} {} {f5, f8} {} {} {}
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Table B.5: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the two-dimensional benchmarks. For each algorithmic combination
(A, B), this matrix shows how often A performed significantly better than B.

2D 1 2 3 4 5 6 7
Hyperbolic (1) 0 0 0 1 1 0 0

RandomBack (2) 2 0 0 2 0 0 1
Nearest-Z (3) 4 0 0 2 0 0 1
Random-Z (4) 2 0 0 0 0 0 0
Reflect-Z (5) 2 0 0 2 0 0 1
Infinity (6) 2 0 0 2 1 0 0

Infinity-C (7) 2 0 0 2 0 0 0

Table B.6: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the 30-dimensional benchmarks. For each algorithmic combination (A,
B), this matrix shows how often A performed significantly better than B.

30D 1 2 3 4 5 6 7
Hyperbolic (1) 0 7 7 5 5 7 4

RandomBack (2) 4 0 4 2 1 5 3
Nearest-Z (3) 4 3 0 2 0 6 4
Random-Z (4) 5 3 5 0 2 9 4
Reflect-Z (5) 4 5 7 3 0 7 4
Infinity (6) 4 3 3 1 1 0 0

Infinity-C (7) 4 6 5 1 3 8 0
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Table B.7: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the 30-dimensional benchmarks. For each algorithmic combination (A,
B), this matrix shows on which benchmarks A performed significantly better than B.
B denotes the set of all 18 benchmark functions.

30D 1 2 3 4 5 6 7
Hyperbolic

(1)
{} {Ra, f2,

f3, f11,
f12, f13,

f14}

{Ra, f2,
f3, f11,

f12, f13,
f14}

{Ra, f3,
f5, f11,

f13}

{Ra, f3,
f11, f12,

f13}

{Ra, f3,
f5, f11,

f12, f13,
f14}

{Ra, f3,
f11, f13}

Random
Back (2)

{Schw,
f6, f9,
f10}

{} {Ra, f2,
f3, f12}

{Schw,
f5}

{Ra} {Ra,
Schw, f5,
f9, f10}

{Schw,
f9, f10}

Nearest-Z
(3)

{Schw,
f6, f9,
f10}

{Ackley,
Schw,
f11}

{} {Schw,
f5}

{} {Schw,
f5, f9,

f10, f11,
f13}

{Schw,
f5, f9,
f10}

Random-Z
(4)

{Schw,
f6, f9,

f10, f12}

{f11, f12,
f14}

{Ra, f2,
f3, f12,

f14}

{} {Ra, f12} {Ra,
Schw, f5,
f9, f10,

f11, f12,
f13, f14}

{Schw,
f9, f10,

f12}

Reflect-Z
(5)

{Schw,
f6, f9,
f10}

{Schw,
f10, f11,
f13, f14}

{Schw,
f2, f3, f9,
f10, f12,

f14}

{Schw,
f5, f10}

{} {Schw,
f5, f9,

f10, f11,
f13, f14}

{Schw,
f5, f9,
f10}

Infinity (6) {Schw,
f6, f9,
f10}

{f2, f3,
f12}

{f2, f3,
f12}

{f3} {f3} {} {}

Infinity-C
(7)

{Schw,
f6, f9,
f10}

{Ra, f2,
f3, f11,

f12, f14}

{Ra, f2,
f3, f12,

f14}

{f3} {Ra, f3,
f12}

{Ra,
Schw, f5,
f9, f10,

f11, f13,
f14}

{}
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Table B.8: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the 100-dimensional benchmarks. For each algorithmic combination
(A, B), this matrix shows on which benchmarks A performed significantly better
than B. B denotes the set of all 18 benchmark functions.

100D 1 2 3 4 5 6 7
Hyperbolic

(1)
{} {Ro,

Ack,
Grie, Ra,
f2, f3, f5,
f6, f11,
f12, f13,

f14}

{Ro,
Ack, Ra,
f2, f3, f5,
f6, f11,

f12, f13,
f14}

{Ro,
Ack, Ra,
f2, f3, f5,
f11, f12,
f13, f14}

{Ro,
Ack, Ra,

f2, f3,
f11, f12,
f13, f14}

B {Ro,
Ack, Ra,
Schw, f2,
f3, f5, f8,
f11, f12,
f13, f14}

Random
Back (2)

{Schw,
f9, f10}

{} {Ra, f2,
f3, f12}

{Schw,
f3, f5, f9}

{Ra} B {Schw,
f5, f9,
f10}

Nearest-Z
(3)

{Schw,
f9, f10}

{Schw,
f10, f11,
f13, f14}

{} {Schw,
f3, f5, f9,

f10}

{} B {Schw,
f5, f8, f9,

f10}
Random-Z

(4)
{Schw,
f9, f10}

{Grie,
Ra, f2,

f11, f12,
f13, f14}

{Ra, f2,
f12}

{} {Ra, f12} B {Schw,
f5, f9,
f10}

Reflect-Z
(5)

{Schw,
f9, f10}

{Ro,
Schw, f2,

f5, f9,
f10, f11,
f13, f14}

{Schw,
f2, f3, f5,
f9, f10,

f11, f12}

{Ro,
Schw, f3,

f5, f9,
f10, f11}

{} B {Schw,
f5, f8, f9,
f10, f11}

Infinity (6) {} {} {} {} {} {} {}
Infinity-C

(7)
{f9, f10} {Ra, f2,

f3, f11,
f12, f13,

f14}

{Ra, f2,
f3, f12}

{f2, f3} {Ra, f2,
f3, f12}

B {}
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Table B.9: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the 100-dimensional benchmarks. For each algorithmic combination
(A, B), this matrix shows how often A performed significantly better than B.

100D 1 2 3 4 5 6 7
Hyperbolic (1) 0 12 11 10 9 18 12

RandomBack (2) 3 0 4 4 1 18 4
Nearest-Z (3) 3 5 0 5 0 18 5
Random-Z (4) 3 7 3 0 2 18 4
Reflect-Z (5) 3 9 8 7 0 18 6
Infinity (6) 0 0 0 0 0 0 0

Infinity-C (7) 2 7 4 2 4 18 0

Table B.10: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the 500-dimensional benchmarks. For each algorithmic combination
(A, B), this matrix shows how often A performed significantly better than B.

500D 1 2 3 4 5 6 7
Hyperbolic (1) 0 15 15 16 14 18 18

RandomBack (2) 3 0 8 6 2 18 18
Nearest-Z (3) 2 4 0 5 1 18 18
Random-Z (4) 2 10 11 0 7 18 18
Reflect-Z (5) 3 11 13 8 0 18 18
Infinity (6) 0 0 0 0 0 0 0

Infinity-C (7) 0 0 0 0 0 1 0
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Table B.11: Summary of one-sided Wilcoxon rank sum test with significance level
α = 0.01 for the 500-dimensional benchmarks. For each algorithmic combination (A,
B), this matrix shows on which benchmarks A performed significantly better than B.
B denotes the set of all benchmark functions.

500D 1 2 3 4 5 6 7
Hyperbolic

(1)
{} {Sph, Ro,

Ack,
Grie, Ra,
f1, f2, f3,
f5, f6, f8,
f11, f12,
f13, f14}

{Sph, Ro,
Ack,

Grie, Ra,
f1, f2, f3,
f5, f6, f8,
f11, f12,
f13, f14}

{Sph, Ro,
Ack,

Grie, Ra,
Schw, f1,
f2, f3, f5,

f6, f8,
f11, f12,
f13, f14}

{Sph, Ro,
Ack,

Grie, Ra,
f1, f2, f3,

f5, f6,
f11, f12,
f13, f14}

B B

Random
Back (2)

{Schw,
f9, f10}

{} {Grie,
Ra, f1, f2,

f3, f6,
f12, f13}

{Schw,
f1, f2, f3,
f6, f12}

{Ack,
f12}

B B

Nearest-Z
(3)

{Schw,
f10}

{Ro, f10,
f11, f14}

{} {Schw,
f1, f3,

f10, f11}

{Ack} B B

Random-Z
(4)

{f9, f10} {Sph, Ro,
Ack,

Grie, Ra,
f5, f9,

f10, f13,
f14}

{Sph, Ro,
Ack,

Grie, Ra,
f2, f5, f9,
f12, f13,

f14}

{} {Sph, Ro,
Ack,

Grie, Ra,
f5, f13}

B B

Reflect-Z
(5)

{Schw,
f9, f10}

{Schw,
f1, f2, f3,
f5, f6, f9,
f10, f11,
f13, f14}

{Ra,
Schw, f1,
f2, f3, f5,

f6, f9,
f10, f11,
f12, f13,

f14}

{Schw,
f1, f2, f3,
f6, f10,

f11, f12}

{} B B

Infinity (6) {} {} {} {} {} {} {}
Infinity-C

(7)
{} {} {} {} {} {f9} {}
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Sample means

Table B.12: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious two-dimensional benchmarks. The best objective values are presented together
with the function name.

Sphere (0) Rosenbrock (0)
Hyperbolic 3.6032e-12±6.7254e-13 (3.3895e-12) 5.2219e-11±1.0313e-11 (5.1974e-11)

RandomBack 3.4145e-12±5.4319e-13 (2.7376e-12) 5.5215e-11±1.2517e-11 (6.3084e-11)
Nearest-Z 4.1256e-12±7.4708e-13 (3.7651e-12) 5.4738e-11±1.0448e-11 (5.2657e-11)
Random-Z 4.1156e-12±7.1352e-13 (3.596e-12) 6.2471e-11±1.3411e-11 (6.7586e-11)
Reflect-Z 3.9078e-12±8.0818e-13 (4.0731e-12) 5.1719e-11±1.003e-11 (5.0546e-11)
Infinity 4.3293e-12±9.4978e-13 (4.7867e-12) 5.5446e-11±1.1616e-11 (5.8544e-11)

Infinity-C 3.7252e-12±7.8633e-13 (3.9629e-12) 4.4653e-11±9.7937e-12 (4.9358e-11)
Ackley (0) Griewank (0)

Hyperbolic 1.1223e-08±1.0628e-09 (5.3564e-09) 4.2826e-12±8.6147e-13 (4.3416e-12)
RandomBack 1.0228e-08±1.0667e-09 (5.376e-09) 4.4019e-12±7.988e-13 (4.0258e-12)

Nearest-Z 9.3314e-09±1.147e-09 (5.7804e-09) 7.396e-05±1.4675e-04 (7.396e-04)
Random-Z 9.6992e-09±9.1523e-10 (4.6125e-09) 4.368e-12±8.027e-13 (4.0454e-12)
Reflect-Z 9.9458e-09±1.0864e-09 (5.4753e-09) 4.8228e-12±1.1069e-12 (5.5787e-12)
Infinity 9.341e-09±8.8613e-10 (4.4659e-09) 3.7952e-12±7.3899e-13 (3.7243e-12)

Infinity-C 9.5409e-09±9.4472e-10 (4.7612e-09) 5.1992e-12±1.0932e-12 (5.5096e-12)
Rastrigin (0) Schwefel (≈-837.96)

Hyperbolic 4.3418e-12±7.0524e-13 (3.5543e-12) -820.2±8.4338 (42.504)
RandomBack 4.4243e-12±9.3472e-13 (4.7108e-12) -837.97 (0)

Nearest-Z 3.6217e-12±8.1765e-13 (4.1207e-12) -837.97 (0)
Random-Z 4.2274e-12±8.0098e-13 (4.0367e-12) -837.97 (0)
Reflect-Z 3.7792e-12±7.0685e-13 (3.5623e-12) -837.97 (0)
Infinity 4.2269e-12±9.0662e-13 (4.5691e-12) -837.97 (0)

Infinity-C 3.6425e-12±7.352e-13 (3.7052e-12) -836.78±2.3501 (11.844)
f1 (-450) f2 (-450)

All strategies -450 (0) -450 (0)
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Table B.13: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious two-dimensional benchmarks. The best objective values are presented together
with the function name.

f3 (-450) f5 (-310)
Hyperbolic -450 (0) -310 (0)

RandomBack -450 (0) -310 (0)
Nearest-Z -450 (0) -310 (0)
Random-Z -450 (0) -309.13±0.10605 (0.53447)
Reflect-Z -450 (0) -310 (0)
Infinity -450 (0) -310 (0)

Infinity-C -450 (0) -310 (0)
f6 (390) f8 (-140)

Hyperbolic 390 (0) -122.12±1.0591 (5.3374)
RandomBack 390 (0) -140 (0)

Nearest-Z 390 (0) -139.8±0.39684 (2)
Random-Z 390 (0) -139.75±0.39933 (2.0125)
Reflect-Z 390 (0) -139.97±0.051193 (0.258)
Infinity 390 (0) -139.55±0.56155 (2.8301)

Infinity-C 390 (0) -138.75±0.94732 (4.7743)
f9 (-330) f10 (-330)

All strategies -330 (0) -330 (0)
f11 (-460) f12 (90)

Hyperbolic 90±1.1087e-05 (5.5877e-05) -460 (0)
RandomBack 90±1.213e-05 (6.1134e-05) -460 (0)

Nearest-Z 90±1.3401e-05 (6.754e-05) -460 (0)
Random-Z 90±1.1647e-05 (5.8698e-05) -460 (0)
Reflect-Z 90±1.1323e-05 (5.7066e-05) -460 (0)
Infinity 90±1.2287e-05 (6.1922e-05) -460 (0)

Infinity-C 90±1.4107e-05 (7.1095e-05) -460 (0)
f13 (-130) f14 (-300)

Hyperbolic -130±3.9684e-04 (2e-03) -300±3.77e-04 (1.9e-03)
RandomBack -130 (0) -300 (0)

Nearest-Z -130±3.9684e-04 (2e-03) -300 (0)
Random-Z -130±3.9684e-04 (2e-03) -300 (0)
Reflect-Z -130 (0) -300 (0)
Infinity -130 (0) -300 (0)

Infinity-C -130 (0) -300 (0)

192



B.3 Bound Handling

Table B.14: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on
various 30-dimensional benchmarks. The best objective values are presented together
with the function name.

Sphere (0) Rosenbrock (0)
Hyperbolic 9.5661e-07±2.5178e-08 (1.2689e-07) 18.487±3.3325 (16.795)

RandomBack 9.5149e-07±3.2691e-08 (1.6475e-07) 18.252±4.1707 (21.019)
Nearest-Z 9.4625e-07±2.7552e-08 (1.3886e-07) 20.643±4.7629 (24.004)
Random-Z 9.5121e-07±2.8048e-08 (1.4135e-07) 17.338±3.4392 (17.333)
Reflect-Z 9.6761e-07±2.6412e-08 (1.3311e-07) 17.87±4.0681 (20.502)
Infinity 9.6255e-07±2.9661e-08 (1.4949e-07) 19.013±4.2857 (21.599)

Infinity-C 9.6111e-07±2.8789e-08 (1.4509e-07) 17.471±4.0357 (20.339)
Ackley (0) Griewank (0)

Hyperbolic 2.7718e-06±5.5279e-08 (2.7859e-07) 3.9159e-03±1.3217e-03 (6.6611e-03)
RandomBack 2.8583e-06±5.1333e-08 (2.5871e-07) 5.8621e-03±1.7887e-03 (9.0146e-03)

Nearest-Z 2.7581e-06±6.0215e-08 (3.0347e-07) 5.3402e-03±1.8586e-03 (9.367e-03)
Random-Z 0.013407±0.026597 (0.13404) 4.0904e-03±1.3164e-03 (6.6344e-03)
Reflect-Z 2.7915e-06±5.5928e-08 (2.8186e-07) 6.4001e-03±1.8506e-03 (9.3266e-03)
Infinity 2.8183e-06±5.4269e-08 (2.735e-07) 3.3264e-03±1.2135e-03 (6.1156e-03)

Infinity-C 2.8375e-06±5.2596e-08 (2.6507e-07) 6.5502e-03±1.7536e-03 (8.8377e-03)
Rastrigin (0) Schwefel (≈-837.96)

Hyperbolic 28.874±1.4589 (7.3523) -8049.1±133.06 (670.6)
RandomBack 42.684±1.9667 (9.9118) -9309.2±112.25 (565.73)

Nearest-Z 51.549±2.7688 (13.954) -9624.3±108.58 (547.22)
Random-Z 40.783±1.9356 (9.7552) -8903.3±110.5 (556.91)
Reflect-Z 52.474±2.7422 (13.82) -10470±113.97 (574.41)
Infinity 49.529±2.4716 (12.456) -8463.9±109.7 (552.88)

Infinity-C 38.973±2.0172 (10.166) -8698.5±123.17 (620.74)
f1 (-450) f2 (-450)

Hyperbolic -450 (0) -450 (0)
RandomBack -450 (0) -450±4.736e-05 (2.3868e-04)

Nearest-Z -450 (0) -429.83±24.755 (124.76)
Random-Z -450 (0) -450±4.3463e-05 (2.1904e-04)
Reflect-Z -450 (0) -450±1.9842e-05 (1e-04)
Infinity -450 (0) -450 (0)

Infinity-C -450 (0) -450 (0)
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B. Experimental Results

Table B.15: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on
various 30-dimensional benchmarks. The best objective values are presented together
with the function name.

f3 (-450) f5 (-310)
Hyperbolic 738070±58951 (297100) 3804.7±121.26 (611.12)

RandomBack 1475200±130650 (658440) 3724.6±180.71 (910.72)
Nearest-Z 2316000±208220 (1049400) 3547.8±201.09 (1013.4)
Random-Z 1569200±198900 (1002400) 4048.3±138.95 (700.27)
Reflect-Z 1442700±130660 (658510) 3538.4±165.24 (832.76)
Infinity 873640±67303 (339190) 4479.4±202.63 (1021.2)

Infinity-C 874710±76215 (384110) 3888.6±159.06 (801.64)
f6 (390) f8 (-140)

Hyperbolic 446.95±9.4215 (47.482) -119.14±0.01257 (0.063348)
RandomBack 440.67±13.633 (68.708) -119.13±0.013896 (0.070034)

Nearest-Z 444.91±15.337 (77.296) -119.13±0.011557 (0.058244)
Random-Z 432.53±10.318 (51.999) -119.13±0.01084 (0.054631)
Reflect-Z 429.34±11.857 (59.756) -119.13±0.01082 (0.05453)
Infinity 430.07±9.4938 (47.847) -119.13±0.012033 (0.060644)

Infinity-C 424.57±9.0452 (45.586) -119.13±0.014156 (0.071342)
f9 (-330) f10 (-330)

Hyperbolic -218.59±3.5826 (18.056) -206.73±4.4929 (22.643)
RandomBack -281.37±2.3642 (11.915) -263.84±3.1699 (15.976)

Nearest-Z -279.65±2.3164 (11.674) -264.88±3.2648 (16.454)
Random-Z -281.73±2.3685 (11.937) -266.51±3.2003 (16.129)
Reflect-Z -283.79±2.2435 (11.307) -274.63±2.5824 (13.015)
Infinity -259.38±4.0219 (20.27) -228.17±5.4054 (27.242)

Infinity-C -267.95±3.2483 (16.37) -254.76±3.6327 (18.308)
f11 (-460) f12 (90)

Hyperbolic 115.06±0.67756 (3.4148) 4888.2±1211.1 (6103.5)
RandomBack 118.26±0.39537 (1.9926) 11885±2352.3 (11855)

Nearest-Z 116.98±0.54618 (2.7526) 20912±4247.1 (21405)
Random-Z 116.65±0.52443 (2.643) 2696.7±580.43 (2925.2)
Reflect-Z 116.58±0.58174 (2.9318) 11863±2629.7 (13253)
Infinity 118.33±0.5223 (2.6323) 7535±1596.1 (8044)

Infinity-C 116.66±0.57712 (2.9085) 5708.9±1198.9 (6042.2)
f13 (-130) f14 (-300)

Hyperbolic -126.96±0.13978 (0.70445) -287.91±0.080686 (0.40664)
RandomBack -125.5±0.2305 (1.1617) -287.74±0.086898 (0.43795)

Nearest-Z -125.72±0.23507 (1.1847) -287.71±0.071834 (0.36203)
Random-Z -125.79±0.20734 (1.0449) -287.95±0.085788 (0.43235)
Reflect-Z -125.88±0.22082 (1.1129) -287.87±0.073504 (0.37045)
Infinity -125.11±0.29755 (1.4996) -287.64±0.080278 (0.40458)

Infinity-C -125.76±0.22892 (1.1537) -287.92±0.086136 (0.43411)
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B.3 Bound Handling

Table B.16: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious 100-dimensional benchmarks. The best objective values are presented together
with the function name.

Sphere (0) Rosenbrock (0)
Hyperbolic 5.9506e-06±1.6691e-07 (8.412e-07) 152.94±9.4227 (47.488)

RandomBack 6.1517e-06±1.9396e-07 (9.775e-07) 203.93±12.355 (62.268)
Nearest-Z 5.9515e-06±1.6588e-07 (8.3601e-07) 200.52±15.094 (76.069)
Random-Z 6.132e-06±1.6757e-07 (8.445e-07) 201.9±9.2629 (46.683)
Reflect-Z 6.0293e-06±1.7838e-07 (8.9898e-07) 176.34±10.406 (52.445)
Infinity 11006±5948.2 (29978) 46114000±20048000 (1.0104e+08)

Infinity-C 6.0565e-06±1.7488e-07 (8.8135e-07) 192.27±9.6391 (48.579)
Ackley (0) Griewank (0)

Hyperbolic 0.37429±0.12799 (0.64502) 3.5747e-03±1.3876e-03 (6.9929e-03)
RandomBack 1.6707±0.15722 (0.79235) 7.5186e-03±3.5184e-03 (0.017732)

Nearest-Z 1.667±0.12876 (0.64891) 4.5718e-03±2.1514e-03 (0.010842)
Random-Z 1.5611±0.14517 (0.73164) 3.7379e-03±1.9864e-03 (0.010011)
Reflect-Z 1.6946±0.13572 (0.68397) 3.8688e-03±1.6439e-03 (8.2849e-03)
Infinity 17.622±0.28504 (1.4365) 125.88±58.171 (293.17)

Infinity-C 1.751±0.12394 (0.62462) 6.1172e-03±3.6482e-03 (0.018386)
Rastrigin (0) Schwefel (≈-837.96)

Hyperbolic 105.46±4.1927 (21.13) -24848±333.63 (1681.4)
RandomBack 337.09±8.0286 (40.462) -27196±270.12 (1361.3)

Nearest-Z 366.22±7.7675 (39.146) -28437±309.36 (1559.1)
Random-Z 259.75±6.483 (32.673) -25510±232.94 (1174)
Reflect-Z 355.61±7.7081 (38.847) -30569±305.32 (1538.7)
Infinity 745.71±58.688 (295.77) -6643.8±353.75 (1782.8)

Infinity-C 262.51±6.5867 (33.195) -23686±352.02 (1774.1)
f1 (-450) f2 (-450)

Hyperbolic -450 (0) 3348.3±123.56 (622.7)
RandomBack -450 (0) 28483±1480.5 (7461.5)

Nearest-Z -447.36±5.2478 (26.447) 41490±2436.5 (12279)
Random-Z -450 (0) 25170±1732.2 (8729.9)
Reflect-Z -450 (0) 23506±1217.5 (6135.7)
Infinity 188740±20674 (104190) 969000±90586 (456540)

Infinity-C -450 (0) 10348±649.64 (3274)

195



B. Experimental Results

Table B.17: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious 100-dimensional benchmarks. The best objective values are presented together
with the function name.

f3 (-450) f5 (-310)
Hyperbolic 12062000±446790 (2251700) 27956±572.45 (2885)

RandomBack 34425000±1673800 (8435400) 30138±851.15 (4289.6)
Nearest-Z 52624000±3151500 (15883000) 29180±765.47 (3857.8)
Random-Z 7.557e+07±5833300 (29399000) 31841±675.46 (3404.2)
Reflect-Z 3.613e+07±1841200 (9279000) 27456±697.98 (3517.7)
Infinity 8.3934e+09±8.8535e+08 (4.462e+09) 93483±1843.9 (9292.9)

Infinity-C 18045000±986020 (4969300) 33556±836.74 (4217)
f6 (390) f8 (-140)

Hyperbolic 570.68±8.9378 (45.045) -118.71±6.4444e-03 (0.032478)
RandomBack 594.18±11.698 (58.955) -118.71±5.8902e-03 (0.029685)

Nearest-Z 1347200±2624700 (13228000) -118.71±5.9884e-03 (0.03018)
Random-Z 587.45±10.702 (53.936) -118.7±5.5891e-03 (0.028168)
Reflect-Z 583.66±10.556 (53.201) -118.71±5.8188e-03 (0.029325)
Infinity 1.0592e+11±1.558e+10 (7.8521e+10) -118.61±8.2597e-03 (0.041627)

Infinity-C 580.15±10.005 (50.425) -118.7±6.6952e-03 (0.033742)
f9 (-330) f10 (-330)

Hyperbolic 264.95±9.7299 (49.036) 478.7±15.556 (78.397)
RandomBack 37.5±11.473 (57.821) 104.24±12.998 (65.508)

Nearest-Z 32.932±10.413 (52.481) 49.191±12.657 (63.786)
Random-Z 59.29±10.966 (55.267) 102.2±14.465 (72.899)
Reflect-Z 3.579±10.44 (52.615) 8.2564±12.608 (63.541)
Infinity 1029.3±68.735 (346.41) 1904.8±73.076 (368.28)

Infinity-C 236.02±14.843 (74.804) 285.34±21.161 (106.65)
f11 (-460) f12 (90)

Hyperbolic 214.65±1.5314 (7.7177) 173200±15811 (79686)
RandomBack 224.97±1.0398 (5.2402) 554190±45331 (228460)

Nearest-Z 222.97±1.081 (5.4479) 1135300±124970 (629840)
Random-Z 222.81±1.2242 (6.1699) 356330±32520 (163900)
Reflect-Z 218.24±1.2826 (6.4642) 599230±54540 (274870)
Infinity 258.07±1.138 (5.7355) 32666000±2.04e+06 (10281000)

Infinity-C 222.24±1.3244 (6.6746) 331750±31094 (156710)
f13 (-130) f14 (-300)

Hyperbolic -102.77±0.93404 (4.7074) -254.18±0.11919 (0.60069)
RandomBack -59.652±2.9796 (15.017) -253.18±0.072314 (0.36445)

Nearest-Z -65.684±2.6176 (13.192) -253.41±0.090291 (0.45504)
Random-Z -64.966±2.9668 (14.952) -253.43±0.090736 (0.45729)
Reflect-Z -65.84±2.7268 (13.742) -253.44±0.079587 (0.4011)
Infinity 676650±209660 (1056600) -251.65±0.10842 (0.5464)

Infinity-C -66.296±2.834 (14.282) -253.49±0.088254 (0.44478)
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B.3 Bound Handling

Table B.18: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious 500-dimensional benchmarks. The best objective values are presented together
with the function name.

Sphere (0) Rosenbrock (0)
Hyperbolic 7.4707±0.99067 (4.9928) 2791.9±49.433 (249.13)

RandomBack 2671.1±319.63 (1610.9) 1436500±203620 (1026200)
Nearest-Z 3598.9±648.65 (3269.1) 1986100±1605300 (8090300)
Random-Z 1725.5±178.35 (898.82) 966960±141380 (712510)
Reflect-Z 2778.6±294.31 (1483.2) 1619400±278580 (1404000)
Infinity 786330±4787.4 (24127) 2.3542e+09±23117000 (1.165e+08)

Infinity-C 775590±10092 (50861) 2.3196e+09±38858000 (1.9584e+08)
Ackley (0) Griewank (0)

Hyperbolic 3.3085±0.058416 (0.2944) 0.58759±0.04207 (0.21202)
RandomBack 12.676±0.3083 (1.5538) 22.369±2.156 (10.866)

Nearest-Z 12.887±0.35175 (1.7728) 34.214±6.3247 (31.875)
Random-Z 10.415±0.2128 (1.0724) 17.373±1.7809 (8.9753)
Reflect-Z 13.785±0.30933 (1.5589) 27.222±3.6796 (18.545)
Infinity 20.075±0.013239 (0.066721) 7042.8±42.91 (216.26)

Infinity-C 20.075±0.012541 (0.063205) 6954±90.637 (456.79)
Rastrigin (0) Schwefel (≈-837.96)

Hyperbolic 467.81±12.732 (64.167) -116190±1305.6 (6579.7)
RandomBack 2360.3±40.692 (205.08) -122750±1000.3 (5041.3)

Nearest-Z 2435.5±33.708 (169.88) -121790±1250.9 (6304.3)
Random-Z 1804.2±34.68 (174.78) -109020±986.27 (4970.6)
Reflect-Z 2341.1±31.406 (158.28) -138250±1312.1 (6612.6)
Infinity 6727.1±20.394 (102.78) -11363±370.62 (1867.8)

Infinity-C 6725.7±20.941 (105.54) -11309±346.66 (1747.1)
f1 (-450) f2 (-450)

Hyperbolic -417.69±2.2298 (11.238) 954060±12772 (64369)
RandomBack 3350.5±481.59 (2427.1) 2460100±38217 (192600)

Nearest-Z 7009.6±938.12 (4727.9) 2719900±57572 (290150)
Random-Z 23251±1449.8 (7306.5) 2604300±56580 (285150)
Reflect-Z 2269.2±349.6 (1761.9) 2305700±42498 (214180)
Infinity 2184100±11527 (58096) 98947000±6771500 (34127000)

Infinity-C 2174800±13203 (66538) 1.0007e+08±8033800 (40489000)
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B. Experimental Results

Table B.19: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious 500-dimensional benchmarks. The best objective values are presented together
with the function name.

f3 (-450) f5 (-310)
Hyperbolic 4.0784e+08±5140200 (25906000) 171200±942.14 (4748.2)

RandomBack 1.9081e+09±47268000 (2.3822e+08) 195600±1621.7 (8173.1)
Nearest-Z 2.105e+09±56322000 (2.8385e+08) 195240±1743.8 (8788.1)
Random-Z 3.4002e+09±1.3766e+08 (6.9378e+08) 182970±1331 (6707.9)
Reflect-Z 1.7836e+09±54176000 (2.7304e+08) 188720±1735.5 (8746.3)
Infinity 1.1247e+11±1.622e+09 (8.1745e+09) 283680±1824.6 (9195.7)

Infinity-C 1.1126e+11±1.6522e+09 (8.3265e+09) 280520±1827.7 (9211)
f6 (390) f8 (-140)

Hyperbolic 49565±4214.7 (21241) -118.46±2.4297e-03 (0.012245)
RandomBack 5.5106e+08±1.1595e+08 (5.8437e+08) -118.46±2.1463e-03 (0.010817)

Nearest-Z 2.4123e+09±6.21e+08 (3.1297e+09) -118.46±2.0048e-03 (0.010104)
Random-Z 1.3169e+09±1.9302e+08 (9.7276e+08) -118.45±2.3646e-03 (0.011917)
Reflect-Z 4.001e+08±1.0903e+08 (5.4947e+08) -118.46±2.5188e-03 (0.012694)
Infinity 2.0513e+12±2.1818e+10 (1.0996e+11) -118.41±3.1054e-03 (0.01565)

Infinity-C 2.0318e+12±2.1513e+10 (1.0842e+11) -118.42±2.9722e-03 (0.014979)
f9 (-330) f10 (-330)

Hyperbolic 3695.4±28.08 (141.52) 7320±61.405 (309.46)
RandomBack 3562.4±62.864 (316.82) 5940.5±122.51 (617.44)

Nearest-Z 3643.8±61.275 (308.81) 5043.5±99.932 (503.63)
Random-Z 3153.4±53.629 (270.28) 5684.7±103.05 (519.33)
Reflect-Z 3189.1±69.075 (348.12) 4460.7±112.76 (568.28)
Infinity 10265±33.796 (170.32) 16910±69.904 (352.3)

Infinity-C 10170±39.467 (198.9) 16871±74.97 (377.83)
f11 (-460) f12 (90)

Hyperbolic 892.79±4.5699 (23.031) 18562000±918840 (4630800)
RandomBack 926.43±2.5768 (12.987) 53336000±1625500 (8191900)

Nearest-Z 917.43±2.783 (14.026) 1.0481e+08±5946900 (29971000)
Random-Z 926.3±2.3777 (11.983) 81782000±2962900 (14932000)
Reflect-Z 910.36±2.7508 (13.863) 61999000±2113500 (10652000)
Infinity 1029.4±1.8808 (9.4789) 1.3203e+09±9006400 (4.539e+07)

Infinity-C 1029.1±1.9532 (9.8437) 1.3254e+09±8284700 (41753000)
f13 (-130) f14 (-300)

Hyperbolic 602.78±15.087 (76.033) -56.356±0.19687 (0.9922)
RandomBack 21004±2593.7 (13072) -54.331±0.08153 (0.41089)

Nearest-Z 91208±12353 (62257) -54.547±0.082538 (0.41597)
Random-Z 5505.3±958.1 (4828.6) -54.717±0.078315 (0.39469)
Reflect-Z 10424±1558.2 (7852.8) -54.743±0.095998 (0.48381)
Infinity 46733000±1238600 (6242200) -52.668±0.08062 (0.40631)

Infinity-C 46558000±1250300 (6301000) -52.784±0.085992 (0.43338)
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B.4 Velocity Handling

B.4 Velocity Handling
Detailed results for the experimental comparison of different velocity handling strate-
gies (Section 4.4.3):

• Summary of Wilcoxon rank sum test: Table B.20

• Sample means, 95% confidence intervals, sample standard deviations of N =
100 runs: Tables B.21, B.22, and B.23

Table B.20: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which bench-
marks A performed significantly better than B. Rosenbrock, Rastrigin, and Schwefel
were abbreviated.

1 2 3
Nearest-Z (1) {} {Schw, f1–f6, f9, f12} {Sphere, Ra, Schw, f1–f6, f9, f10, f12}
Nearest-A (2) {} {} {Ra, Schw, f1–f6, f9, f10, f12}
Nearest-U (3) {} {} {}

4 5 6
Random-Z (4) {} {Schw, f2, f3, f5, f12} {Schw, f1–f12, f14}
Random-A (5) {Ro, Ra} {} {Schw, f1–f12, f14}
Random-U (6) {Ra} {Ra} {}

7 8 9
Reflect-Z (7) {} {Ro} {Schw, f1–f12, f14}
Reflect-A (8) {} {} {Schw, f1–f12, f14}
Reflect-U (9) {Ra} {Ra} {}
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B. Experimental Results

Table B.21: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of different bound handling strategies on 100-
dimensional benchmarks. The best objective values are given with the function name.

Sphere (0) Rosenbrock (0)
Nearest-Z 5.9515e-06±1.6588e-07 (8.3601e-07) 200.52±15.094 (76.069)
Nearest-A 6.1284e-06±1.6965e-07 (8.5499e-07) 1134±1786.8 (9005.3)
Nearest-U 100±198.42 (1e+03) 3950.6±3511.6 (17697)

Ackley (0) Griewank (0)
Nearest-Z 1.667±0.12876 (0.64891) 4.5718e-03±2.1514e-03 (0.010842)
Nearest-A 1.6681±0.13927 (0.70187) 4.5319e-03±1.7501e-03 (8.8201e-03)
Nearest-U 1.6332±0.14159 (0.71357) 3.0603e-03±1.1242e-03 (5.6658e-03)

Rastrigin (0) Schwefel (≈ -41898.3)
Nearest-Z 366.22±7.7675 (39.146) -28437±309.36 (1559.1)
Nearest-A 374.9±8.3297 (41.98) -27707±320.35 (1614.5)
Nearest-U 398.33±8.1286 (40.966) -25241±378.91 (1909.6)

f1 (-450) f2 (-450)
Nearest-Z -447.36±5.2478 (26.447) 41490±2436.5 (12279)
Nearest-A -378.33±45.357 (228.59) 60542±5034.7 (25374)
Nearest-U 2828.6±623.93 (3144.5) 84154±6604.3 (33284)

f3 (-450) f5 (-310)
Nearest-Z 52624000±3151500 (15883000) 29180±765.47 (3857.8)
Nearest-A 85561000±8118300 (40914000) 31552±998.58 (5032.6)
Nearest-U 2.1674e+08±34632000 (1.7454e+08) 34212±1132.1 (5705.6)

f6 (390) f8 (-140)
Nearest-Z 1347200±2624700 (13228000) -118.71±5.9884e-03 (0.03018)
Nearest-A 2.246e+07±16277000 (82031000) -118.7±5.798e-03 (0.029221)
Nearest-U 5.4961e+08±1.6873e+08 (8.5038e+08) -118.71±5.4093e-03 (0.027262)

f9 (-330) f10 (-330)
Nearest-Z 32.932±10.413 (52.481) 49.191±12.657 (63.786)
Nearest-A 59.344±11.94 (60.177) 59.421±11.883 (59.885)
Nearest-U 105.91±12.678 (63.895) 89.804±13.731 (69.201)

f11 (-460) f12 (90)
Nearest-Z 222.97±1.081 (5.4479) 1135300±124970 (629840)
Nearest-A 221.77±1.2211 (6.154) 1904300±166250 (837850)
Nearest-U 223.29±1.0891 (5.489) 3912500±299620 (1.51e+06)

f13 (-130) f14 (-300)
Nearest-Z -65.684±2.6176 (13.192) -253.41±0.090291 (0.45504)
Nearest-A 37.248±202.33 (1019.7) -253.43±0.10147 (0.5114)
Nearest-U 1962.3±1536.9 (7745.7) -253.4±0.080854 (0.40749)
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B.4 Velocity Handling

Table B.22: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of different bound handling strategies on 100-
dimensional benchmarks. The best objective values are given with the function name.

Sphere (0) Rosenbrock (0)
Random-Z 6.132e-06±1.6757e-07 (8.445e-07) 201.9±9.2629 (46.683)
Random-A 6.0663e-06±1.8517e-07 (9.332e-07) 185.37±9.6231 (48.498)
Random-U 6.0751e-06±1.532e-07 (7.7208e-07) 192.36±10.844 (54.653)

Ackley (0) Griewank (0)
Random-Z 1.5611±0.14517 (0.73164) 3.7379e-03±1.9864e-03 (0.010011)
Random-A 1.6038±0.16066 (0.80969) 6.714e-03±2.2943e-03 (0.011563)
Random-U 1.6486±0.15815 (0.79706) 6.4136e-03±3.314e-03 (0.016702)

Rastrigin (0) Schwefel (≈ -41898.3)
Random-Z 259.75±6.483 (32.673) -25510±232.94 (1174)
Random-A 235.82±5.3966 (27.198) -23989±267.19 (1346.6)
Random-U 169.25±4.2255 (21.295) -13598±213.13 (1074.1)

f1 (-450) f2 (-450)
Random-Z -450 (0) 25170±1732.2 (8729.9)
Random-A -450 (0) 37500±3348.3 (16875)
Random-U 45968±1277.4 (6437.8) 129710±5761.8 (29038)

f3 (-450) f5 (-310)
Random-Z 7.557e+07±5833300 (29399000) 31841±675.46 (3404.2)
Random-A 1.508e+08±14568000 (73422000) 34743±713.53 (3596)
Random-U 7.5821e+08±45569000 (2.2966e+08) 52870±579.7 (2921.6)

f6 (390) f8 (-140)
Random-Z 587.45±10.702 (53.936) -118.7±5.5891e-03 (0.028168)
Random-A 590.4±11.441 (57.659) -118.7±6.4083e-03 (0.032296)
Random-U 3.6181e+09±1.5377e+08 (7.7494e+08) -118.66±4.7472e-03 (0.023925)

f9 (-330) f10 (-330)
Random-Z 59.29±10.966 (55.267) 102.2±14.465 (72.899)
Random-A 75.882±10.652 (53.684) 127.88±15.427 (77.751)
Random-U 180.07±14.437 (72.757) 489.68±34.621 (174.48)

f11 (-460) f12 (90)
Random-Z 222.81±1.2242 (6.1699) 356330±32520 (163900)
Random-A 223.59±1.012 (5.1003) 781250±79678 (401560)
Random-U 240.24±1.1665 (5.879) 6499000±228620 (1152200)

f13 (-130) f14 (-300)
Random-Z -64.966±2.9668 (14.952) -253.43±0.090736 (0.45729)
Random-A -66.017±2.6414 (13.312) -253.39±0.074503 (0.37548)
Random-U -64.674±3.0484 (15.363) -252.78±0.079395 (0.40013)
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Table B.23: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of different bound handling strategies on 100-
dimensional benchmarks. The best objective values are given with the function name.

Sphere (0) Rosenbrock (0)
Reflect-Z 6.0293e-06±1.7838e-07 (8.9898e-07) 176.34±10.406 (52.445)
Reflect-A 6.2182e-06±1.9525e-07 (9.8402e-07) 206.71±12.274 (61.857)
Reflect-U 6.1753e-06±1.59e-07 (8.0132e-07) 186.37±10.486 (52.846)

Ackley (0) Griewank (0)
Reflect-Z 1.6946±0.13572 (0.68397) 3.8688e-03±1.6439e-03 (8.2849e-03)
Reflect-A 1.6295±0.14767 (0.74424) 3.9465e-03±1.3659e-03 (6.8836e-03)
Reflect-U 1.7091±0.13779 (0.69443) 4.8019e-03±2.8064e-03 (0.014144)

Rastrigin (0) Schwefel (≈ -41898.3)
Reflect-Z 355.61±7.7081 (38.847) -30569±305.32 (1538.7)
Reflect-A 361.01±8.8748 (44.727) -30208±300.56 (1514.8)
Reflect-U 245.79±6.2749 (31.624) -26245±308.4 (1554.2)

f1 (-450) f2 (-450)
Reflect-Z -450 (0) 23506±1217.5 (6135.7)
Reflect-A -450 (0) 25744±1365.3 (6880.9)
Reflect-U 12766±952.26 (4799.2) 130380±8331.4 (41988)

f3 (-450) f5 (-310)
Reflect-Z 3.613e+07±1841200 (9279000) 27456±697.98 (3517.7)
Reflect-A 37901000±1953700 (9846100) 27141±870.09 (4385.1)
Reflect-U 8.4241e+08±45487000 (2.2924e+08) 43793±749.61 (3777.8)

f6 (390) f8 (-140)
Reflect-Z 583.66±10.556 (53.201) -118.71±5.8188e-03 (0.029325)
Reflect-A 591.76±14.686 (74.016) -118.71±6.7394e-03 (0.033965)
Reflect-U 6.9439e+08±9.089e+07 (4.5807e+08) -118.66±5.0359e-03 (0.02538)

f9 (-330) f10 (-330)
Reflect-Z 3.579±10.44 (52.615) 8.2564±12.608 (63.541)
Reflect-A 3.9619±10.82 (54.528) 3.606±13.029 (65.662)
Reflect-U 61.014±9.7036 (48.904) 435.11±31.537 (158.94)

f11 (-460) f12 (90)
Reflect-Z 218.24±1.2826 (6.4642) 599230±54540 (274870)
Reflect-A 219.38±1.3435 (6.771) 674880±52562 (264900)
Reflect-U 234.95±1.2996 (6.5495) 4452400±275620 (1389000)

f13 (-130) f14 (-300)
Reflect-Z -65.84±2.7268 (13.742) -253.44±0.079587 (0.4011)
Reflect-A -66.894±3.1004 (15.625) -253.45±0.080678 (0.4066)
Reflect-U -64.258±2.912 (14.676) -252.77±0.06368 (0.32093)
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B.5 Multi-Swarm PSO with Migration
Detailed results for the experimental investigation of Multi-Swarm PSO with Migra-
tion (see Section 5.2).

Table B.24: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) on various 100-dimensional benchmarks. The best
objective values are presented together with the function name.

Sphere (0) Rosenbrock (0)
MPSO-1-5 1.0488e-06±5.5019e-08 (2.7728e-07) 166.4±10.032 (50.561)
MPSO-1-50 1.1356e-06±6.4714e-08 (3.2614e-07) 162.69±9.4948 (47.852)

MPSO-1-100 1.1077e-06±7.5428e-08 (3.8014e-07) 187.1±9.5036 (47.896)
MPSO-1-200 1.1528e-06±6.2315e-08 (3.1405e-07) 174.91±9.1728 (46.229)
MPSO-1-500 1.5955e-06±9.9972e-08 (5.0384e-07) 163.47±8.0403 (40.521)

Ackley (0) Griewank (0)
MPSO-1-5 0.28922±0.11452 (0.57717) 1.7498e-03±9.087e-04 (4.5796e-03)
MPSO-1-50 1.6472±0.12751 (0.64264) 5.5424e-03±3.3698e-03 (0.016983)

MPSO-1-100 1.7576±0.12814 (0.64582) 8.5606e-03±4.9031e-03 (0.02471)
MPSO-1-200 1.9556±0.10138 (0.51094) 5.3296e-03±2.8333e-03 (0.014279)
MPSO-1-500 2.0487±0.10697 (0.53913) 1.8724e-03±1.1101e-03 (5.5946e-03)

Rastrigin (0) Schwefel (≈ -41898.3)
MPSO-1-5 115.52±4.9594 (24.994) -28255±560.67 (2825.7)
MPSO-1-50 121.21±4.8256 (24.32) -29648±311.78 (1571.3)

MPSO-1-100 123.61±5.3266 (26.845) -29715±337.31 (1700)
MPSO-1-200 121.15±4.517 (22.765) -29768±299.94 (1511.6)
MPSO-1-500 124.64±5.0225 (25.312) -29725±295.27 (1488.1)

f1 (-450) f2 (-450)
MPSO-1-5 -450 (0) 3452.3±125.47 (632.32)
MPSO-1-50 -450 (0) 3634.5±136.6 (688.42)

MPSO-1-100 -450 (0) 3689.3±147.04 (741.06)
MPSO-1-200 -450 (0) 3750.2±137.55 (693.24)
MPSO-1-500 -450 (0) 3815.5±134.33 (677)
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Table B.25: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) on various 100-dimensional benchmarks. The best
objective values are presented together with the function name.

f3 (-450) f5 (-310)
MPSO-1-5 11953000±501610 (2528000) 28398±618.69 (3118)
MPSO-1-50 12494000±554620 (2795200) 30050±687.01 (3462.4)

MPSO-1-100 12706000±446140 (2248400) 29708±673.38 (3393.7)
MPSO-1-200 1.284e+07±517990 (2610600) 30656±651.62 (3284)
MPSO-1-500 12312000±491630 (2477700) 29771±626.22 (3156)

f6 (390) f8 (-140)
MPSO-1-5 565.95±8.4243 (42.457) -118.71±6.0264e-03 (0.030372)
MPSO-1-50 573.35±11.013 (55.501) -118.71±6.5725e-03 (0.033124)

MPSO-1-100 567.62±10.023 (50.515) -118.71±6.1638e-03 (0.031064)
MPSO-1-200 579.25±10.284 (51.829) -118.71±5.2862e-03 (0.026641)
MPSO-1-500 576.27±9.3356 (47.049) -118.71±6.4494e-03 (0.032503)

f9 (-330) f10 (-330)
MPSO-1-5 220.61±17.76 (89.506) 164.61±18.912 (95.311)
MPSO-1-50 71.914±14.208 (71.604) 95.904±17.682 (89.112)

MPSO-1-100 68.915±13.298 (67.02) 101.54±17.918 (90.302)
MPSO-1-200 95.825±13.55 (68.288) 101.1±17.228 (86.827)
MPSO-1-500 80.868±15.955 (80.41) 98.86±17.196 (86.662)

f11 (-460) f12 (90)
MPSO-1-5 217.32±1.5855 (7.9905) 198500±21410 (107900)
MPSO-1-50 216.56±1.5154 (7.6373) 216060±21088 (106280)

MPSO-1-100 217.79±1.4298 (7.2058) 229570±22491 (113350)
MPSO-1-200 216.69±1.6925 (8.5298) 226640±23815 (120020)
MPSO-1-500 216.22±1.4888 (7.503) 207900±18376 (92611)

f13 (-130) f14 (-300)
MPSO-1-5 -96.778±1.3241 (6.6733) -254.08±0.11419 (0.57549)
MPSO-1-50 -89.361±1.59 (8.0132) -254.02±0.12191 (0.61441)

MPSO-1-100 -87.593±1.8549 (9.3484) -253.88±0.10943 (0.55149)
MPSO-1-200 -85.958±1.6669 (8.4007) -253.74±0.11259 (0.56745)
MPSO-1-500 -83.596±2.0842 (10.504) -253.86±0.1265 (0.63751)
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B.6 Particle Swarm Optimization with Velocity
Adaptation

Detailed results for the experimental investigation of Particle Swarm Optimization
with Velocity Adaptation (Section 5.3).

Experiment 1

Table B.26: Summary of one-sided Wilcoxon rank sum test with significance level
0.01 for the 100-dimensional benchmarks. For each algorithmic combination (A, B),
this matrix shows on which benchmarks A performed significantly better than B. B
denotes the set of all benchmark functions.

100D 1 2 3 4 5
Hyperbolic (1) {} {Ro, Ack,

Ra, f2, f3,
f8, f11, f12,

f13, f14}

{Ro, Ack,
Ra, Schw,
f2, f3, f5,
f6, f8, f11,
f12, f13,

f14}

{f12} {Schw}

Reflect-S (2) {Schw, f9,
f10}

{} {Schw, f5,
f9, f10,

f11}

{Schw, f9,
f10}

{Schw, f9,
f10}

Infinity-S (3) {f9, f10} {Ra, f2, f3,
f12, f14}

{} {} {Schw}

Reflect-A (4) {Sph, Ro,
Ack, Grie,
Ra, Schw,
f2, f3, f5,
f6, f8, f9,
f10, f11,

f13}

{Sph, Ro,
Ack, Grie,
Ra, f2, f3,
f5, f6, f8,
f11, f12,
f13, f14}

B \{ f 1} {} {Schw, f5,
f9, f10}

Infinity-A (5) {Sph, Ro,
Ack, Grie,
Ra, f2, f3,
f5, f6, f8,

f9, f10, f11,
f13}

{Sph, Ro,
Ack, Grie,
Ra, f2, f3,
f6, f8, f11,
f12, f13,

f14}

B \
{Schw, f 1}

{f2, f3,
f12}

{}
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Table B.27: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which 500-
dimensional benchmarks A performed significantly better than B. B denotes the set
of all benchmark functions.

500D 1 2 3 4 5
Hyperbolic

(1)
{} {Sph, Ro,

Ack, Grie,
Ra, f1, f2,
f3, f5, f6,
f11, f12,
f13, f14}

B {Schw, f2,
f3, f6, f10,

f12}

{Schw, f3,
f6, f10}

Reflect-S (2) {Schw, f9,
f10}

{} B {Schw, f9,
f10}

{Schw, f9,
f10}

Infinity-S (3) {} {} {} {} {}
Reflect-A (4) {Sph, Ro,

Ack, Grie,
Ra, f1, f5,
f8, f9, f11,
f13, f14}

{Sph, Ro,
Ack, Grie,
Ra, f1, f2,
f3, f5, f6,
f8, f11,

f12, f13,
f14}

B {} {Schw, f1,
f5}

Infinity-A (5) {Sph, Ro,
Ack, Grie,
Ra, f1, f2,
f5, f8, f9,
f11, f13,

f14}

{Sph, Ro,
Ack, Grie,
Ra, f1, f2,
f3, f5, f6,
f8, f11,

f12, f13,
f14}

B {f2, f3, f6,
f12}

{}
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Table B.28: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated algorithms on various 500-
dimensional benchmarks. The best objective values are presented together with the
function name.

Sphere (0) Rosenbrock (0)
Hyperbolic 7.4707±0.99067 (4.9928) 2791.9±49.433 (249.13)
Reflect-S 1863±250.43 (1262.1) 1141000±306440 (1544400)
Reflect-A 0.60839±0.23751 (1.197) 2218±51.421 (259.15)
Infinity-S 765740±16022 (80748) 2.3311e+09±43779000 (2.2064e+08)
Infinity-A 0.75343±0.66991 (3.3762) 2220.6±81.736 (411.93)

Ackley (0) Griewank (0)
Hyperbolic 3.3085±0.058416 (0.2944) 0.58759±0.04207 (0.21202)
Reflect-S 10.317±0.25322 (1.2762) 18.033±1.9287 (9.7201)
Reflect-A 1.7404±0.034191 (0.17231) 0.10936±0.030547 (0.15395)
Infinity-S 20.037±0.022764 (0.11473) 7042±62.348 (314.22)
Infinity-A 1.7195±0.035576 (0.17929) 0.072077±0.023995 (0.12093)

Rastrigin (0) Schwefel (≈-209491)
Hyperbolic 467.81±12.732 (64.167) -116190±1305.6 (6579.7)
Reflect-S 1979.6±35.599 (179.41) -141480±995.72 (5018.2)
Reflect-A 420.79±18.884 (95.173) -103910±1331.5 (6710.6)
Infinity-S 6724.2±19.196 (96.745) -11664±418.6 (2109.6)
Infinity-A 424.15±19.909 (100.34) -91850±1531.9 (7720.2)

f1 (-450) f2 (-450)
Hyperbolic -417.69±2.2298 (11.238) 954060±12772 (64369)
Reflect-S 2020.4±351.1 (1769.5) 2214800±36523 (184070)
Reflect-A -437.65±6.5967 (33.246) 1037300±25589 (128960)
Infinity-S 2184400±10131 (51060) 90761000±6293900 (3.172e+07)
Infinity-A -433.69±4.4911 (22.634) 8.7e+05±15305 (77133)
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Table B.29: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated algorithms on various 500-
dimensional benchmarks. The best objective values are presented together with the
function name.

f3 (-450) f5 (-310)
Hyperbolic 4.0784e+08±5140200 (25906000) 171200±942.14 (4748.2)
Reflect-S 1.5654e+09±43014000 (2.1678e+08) 184960±1821.8 (9181.4)
Reflect-A 4.8178e+08±9056600 (45643000) 151120±947.57 (4775.6)
Infinity-S 1.1425e+11±1.4993e+09 (7.5562e+09) 283800±1877.4 (9461.7)
Infinity-A 4.3839e+08±7318500 (36884000) 153230±846.41 (4265.7)

f6 (390) f8 (-140)
Hyperbolic 49565±4214.7 (21241) -118.46±2.4297e-03 (0.012245)
Reflect-S 2.2777e+08±37574000 (1.8936e+08) -118.46±2.3637e-03 (0.011913)
Reflect-A 589810±218840 (1102900) -118.63±3.517e-03 (0.017725)
Infinity-S 2.0307e+12±2.4978e+10 (1.2588e+11) -118.42±2.7129e-03 (0.013673)
Infinity-A 545580±281320 (1417800) -118.62±3.0479e-03 (0.015361)

f9 (-330) f10 (-330)
Hyperbolic 3695.4±28.08 (141.52) 7320±61.405 (309.46)
Reflect-S 3127.6±58.176 (293.19) 4358.3±102.76 (517.89)
Reflect-A 3348.7±29.11 (146.71) 7806.6±69.867 (352.11)
Infinity-S 10219±31.573 (159.12) 16854±84.02 (423.44)
Infinity-A 3354.8±28.16 (141.92) 7800.3±50.188 (252.94)

f11 (-460) f12 (90)
Hyperbolic 892.79±4.5699 (23.031) 18562000±918840 (4630800)
Reflect-S 909.21±3.0622 (15.433) 62727000±2079600 (10481000)
Reflect-A 761.21±6.155 (31.02) 36247000±2566800 (12936000)
Infinity-S 1027.8±2.1059 (10.613) 1.3232e+09±9181600 (46273000)
Infinity-A 757.4±6.4406 (32.459) 17962000±610310 (3075800)

f13 (-130) f14 (-300)
Hyperbolic 602.78±15.087 (76.033) -56.356±0.19687 (0.9922)
Reflect-S 4658.7±605.51 (3051.6) -54.8±0.083713 (0.42189)
Reflect-A 417.93±16.504 (83.177) -60.114±0.23181 (1.1683)
Infinity-S 46236000±1125500 (5672400) -52.733±0.094504 (0.47628)
Infinity-A 424.91±18.808 (94.788) -60.053±0.23051 (1.1617)
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Table B.30: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated algorithms on 500-dimensional
benchmarks. The best objective values are shown for each function.

Sphere (0) Rosenbrock (0)
Nearest-S 1415.7±150.55 (758.75) 497650±87782 (442400)
Random-S 1483.3±163.7 (825.03) 825350±178490 (899570)
Nearest-A 0.53054±0.2531 (1.2756) 2262.1±66.443 (334.86)
Random-A 0.44323±0.11685 (0.58891) 2206.1±53.97 (272)

Ackley (0) Griewank (0)
Nearest-S 9.477±0.20184 (1.0172) 15.521±1.6635 (8.3834)
Random-S 9.4959±0.20705 (1.0435) 14.298±1.3265 (6.6851)
Nearest-A 1.7021±0.037973 (0.19137) 0.1222±0.03706 (0.18677)
Random-A 1.7279±0.03451 (0.17392) 0.10632±0.034872 (0.17575)

Rastrigin (0) Schwefel (≈-209491)
Nearest-S 1929.7±37.692 (189.96) -122280±1228.8 (6192.8)
Random-S 1649.8±36.477 (183.84) -108040±970.77 (4892.4)
Nearest-A 422.54±19.263 (97.083) -100700±1210.1 (6098.5)
Random-A 404.91±19.154 (96.533) -87882±1333.4 (6720)

f1 (-450) f2 (-450)
Nearest-S 3350.5±578.31 (2914.6) 2425300±51029 (257180)
Random-S 32289±1754.7 (8843.5) 2636100±70381 (354700)
Nearest-A -438.78±4.4623 (22.489) 1059700±27992 (141070)
Random-A 188070±5653.8 (28494) 2863700±178850 (901380)

f3 (-450) f5 (-310)
Nearest-S 1.6679e+09±41651000 (2.0991e+08) 184350±1485.3 (7485.7)
Random-S 3.5201e+09±1.5178e+08 (7.6494e+08) 180690±1555.2 (7837.7)
Nearest-A 4.8073e+08±9193900 (46335000) 152210±947.5 (4775.2)
Random-A 6.5107e+09±1.6452e+08 (8.2914e+08) 172530±1396.3 (7036.9)

f6 (390) f8 (-140)
Nearest-S 6.3049e+08±1.8273e+08 (9.2093e+08) -118.46±2.4445e-03 (0.01232)
Random-S 1.6815e+09±2.0833e+08 (1.05e+09) -118.45±2.0379e-03 (0.010271)
Nearest-A 761730±269210 (1356800) -118.63±4.1009e-03 (0.020668)
Random-A 4.5844e+09±6.4045e+08 (3.2277e+09) -118.63±3.8841e-03 (0.019575)

f9 (-330) f10 (-330)
Nearest-S 3252.9±52.897 (266.59) 4754.7±97.199 (489.86)
Random-S 3192.1±51.281 (258.45) 5501.2±102.26 (515.36)
Nearest-A 3326.5±29.679 (149.58) 7766.8±59.283 (298.77)
Random-A 3435.8±23.449 (118.18) 7900.2±53.178 (268.01)

f11 (-460) f12 (90)
Nearest-S 910.95±3.0092 (15.166) 86775000±5069900 (25551000)
Random-S 920.3±3.0589 (15.416) 9.226e+07±3528800 (17785000)
Nearest-A 763.91±4.6449 (23.409) 33596000±2429300 (12243000)
Random-A 841.93±8.1259 (40.953) 2.0987e+08±9122900 (45977000)

f13 (-130) f14 (-300)
Nearest-S 10584±2636.3 (13287) -54.774±0.09575 (0.48256)
Random-S 3749±329.3 (1659.6) -54.814±0.074409 (0.37501)
Nearest-A 411.11±14.586 (73.508) -60.131±0.25707 (1.2956)
Random-A 408.61±14.912 (75.154) -60.095±0.21916 (1.1045)
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B. Experimental Results

Experiment 2

Table B.31: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which 100-
dimensional benchmarks A performed significantly better than B.

1 2 3 4 5
Reflect-A-

0.01
(1)

{} {Schw, f5,
f8, f9, f10,
f11, f14}

{Schw, f5,
f8, f9, f10,
f11, f13,

f14}

{Schw, f5,
f8, f9, f10,
f11, f13,

f14}

{Schw, f5,
f8, f9, f10,
f11, f13,

f14}
Reflect-A-

0.1
(2)

{Sph, Ro,
Ack, Grie,
f1, f2, f3,
f6, f12,

f13}

{} {Schw, f5,
f8, f9,
f13}

{Schw, f5,
f6, f8, f9,
f10, f13}

{Sph,
Schw, f2,
f5, f6, f8,
f9, f10,

f13}
Reflect-A-

0.2
(3)

{Sph, Ro,
Ack, Grie,
Ra, f1, f2,

f3, f6,
f12}

{Sph,
Ack, Grie,

f2, f3,
f12}

{} {Sph,
Schw, f2,
f5, f6, f9,
f10, f13}

{Sph,
Schw, f2,
f3, f5, f6,
f9, f10,

f12, f13}
Reflect-A-

0.5
(4)

{Sph, Ro,
Ack, Grie,
Ra, f1, f2,

f3, f6,
f12}

{Ro, Ack,
Grie, f3,

f12}

{Ack,
Grie, f3}

{} {Ack,
Grie, f2,
f3, f6,
f12}

Reflect-A-
0.8
(5)

{Sph, Ro,
Ack, Grie,
f1, f2, f3,
f6, f12}

{Ro, Ack,
Grie, f3}

{Ro} {} {}
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B.6 Particle Swarm Optimization with Velocity Adaptation

Table B.32: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows how often A per-
formed significantly better than B on the 100-dimensional benchmarks. The total
number of benchmark functions is 18.

1 2 3 4 5
Reflect-A-0.01 (1) 0 7 8 8 8
Reflect-A-0.1 (2) 10 0 5 7 9
Reflect-A-0.2 (3) 10 6 0 8 10
Reflect-A-0.5 (4) 10 5 3 0 6
Reflect-A-0.8 (5) 9 4 1 0 0

Table B.33: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious 100-dimensional benchmarks. The best objective values are presented together
with the function name.

Sphere (0) Rosenbrock (0)
Reflect-A-0.01 0.22919±0.040874 (0.206) 136.89±9.0563 (45.642)
Reflect-A-0.1 1.1054e-06±1.4453e-08 (7.2842e-08) 105.59±4.6908 (23.641)
Reflect-A-0.2 1.0449e-06±1.3691e-08 (6.9001e-08) 114.19±7.311 (36.846)
Reflect-A-0.5 1.1551e-06±2.7714e-08 (1.3967e-07) 115.74±7.1559 (36.064)
Reflect-A-0.8 1.1754e-06±3.3247e-08 (1.6756e-07) 113.42±7.1746 (36.159)

Ackley (0) Griewank (0)
Reflect-A-0.01 0.096961±9.6794e-03 (0.048782) 0.17687±0.021501 (0.10836)
Reflect-A-0.1 5.0649e-06±2.7408e-07 (1.3813e-06) 5.1833e-04±5.6077e-04 (2.8261e-03)
Reflect-A-0.2 3.6796e-06±2.3598e-08 (1.1893e-07) 6.4195e-04±5.454e-04 (2.7487e-03)
Reflect-A-0.5 3.131e-06±8.6397e-08 (4.3542e-07) 1.6515e-03±8.4507e-04 (4.259e-03)
Reflect-A-0.8 3.6282e-06±6.6705e-08 (3.3618e-07) 1.6276e-03±7.8674e-04 (3.965e-03)

Rastrigin (0) Schwefel (≈ -41898.3)
Reflect-A-0.01 101.54±2.9547 (14.891) -31553±246.12 (1240.4)
Reflect-A-0.1 97.987±3.2882 (16.572) -26615±272.73 (1374.5)
Reflect-A-0.2 93.609±3.5117 (17.698) -25448±285.17 (1437.2)
Reflect-A-0.5 96.042±3.9068 (19.689) -23789±268.31 (1352.2)
Reflect-A-0.8 99.219±3.8062 (19.182) -23838±285.24 (1437.6)

f1 (-450) f2 (-450)
Reflect-A-0.01 -449.33±0.12807 (0.64545) 22994±575.93 (2902.5)
Reflect-A-0.1 -450 (0) 1685.9±96.253 (485.09)
Reflect-A-0.2 -450 (0) 333.15±33.564 (169.15)
Reflect-A-0.5 -450 (0) 2102±282.69 (1424.7)
Reflect-A-0.8 -450 (0) 14435±841.11 (4239)
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B. Experimental Results

Table B.34: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated bound handling strategies on var-
ious 100-dimensional benchmarks. The best objective values are presented together
with the function name.

f3 (-450) f5 (-310)
Reflect-A-0.01 43952000±1802400 (9083900) 10118±336.46 (1695.7)
Reflect-A-0.1 11683000±521300 (2627200) 19322±534.36 (2693)
Reflect-A-0.2 8177500±345810 (1742800) 23575±611.22 (3080.4)
Reflect-A-0.5 5626700±247740 (1248600) 30030±573.97 (2892.7)
Reflect-A-0.8 8884300±3.6e+05 (1814300) 29710±564.98 (2847.4)

f6 (390) f8 (-140)
Reflect-A-0.01 798.4±43.341 (218.43) -119.17±9.7436e-03 (0.049105)
Reflect-A-0.1 500.15±5.1833 (26.123) -118.96±8.021e-03 (0.040424)
Reflect-A-0.2 514.39±6.9077 (34.813) -118.93±8.0908e-03 (0.040776)
Reflect-A-0.5 554.58±9.7745 (49.261) -118.92±6.449e-03 (0.032501)
Reflect-A-0.8 581.78±10.02 (50.498) -118.93±8.2414e-03 (0.041535)

f9 (-330) f10 (-330)
Reflect-A-0.01 -78.783±9.1213 (45.969) -146.71±7.1081 (35.823)
Reflect-A-0.1 90.245±9.0306 (45.512) 64.947±10.806 (54.46)
Reflect-A-0.2 119.05±13 (65.515) 59.53±17.302 (87.198)
Reflect-A-0.5 182.24±10.041 (50.602) 377.93±13.664 (68.863)
Reflect-A-0.8 186.59±8.6135 (43.41) 380.57±12.991 (65.471)

f11 (-460) f12 (90)
Reflect-A-0.01 156.59±1.7268 (8.7028) 539250±47092 (237330)
Reflect-A-0.1 184.73±1.724 (8.6887) 337680±62921 (317110)
Reflect-A-0.2 184.69±1.5947 (8.0371) 238170±34788 (175330)
Reflect-A-0.5 184.59±1.5609 (7.8665) 264740±44208 (222800)
Reflect-A-0.8 185.14±1.5175 (7.6479) 453360±92842 (467900)

f13 (-130) f14 (-300)
Reflect-A-0.01 -114.44±0.45918 (2.3142) -254.64±0.1177 (0.59317)
Reflect-A-0.1 -115.3±0.50791 (2.5598) -254.05±0.10543 (0.53133)
Reflect-A-0.2 -112.08±0.63547 (3.2026) -254.1±0.11193 (0.56408)
Reflect-A-0.5 -105.92±0.96466 (4.8617) -254.05±0.10784 (0.54351)
Reflect-A-0.8 -106.26±0.98447 (4.9615) -253.95±0.11036 (0.5562)
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B.6 Particle Swarm Optimization with Velocity Adaptation

Experiment 3

Table B.35: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which 100-
dimensional benchmarks A performed significantly better than B.

1 2 3 4
Reflect-A (1) {} {Schw, f5,

f9, f10}
{Sph, Ro,

Ack, Schw,
f2, f5, f6, f8,
f9, f10, f11,

f13, f14}

{Sph, Ro,
Ack, Grie,

Schw, f2, f5,
f6, f8, f9,
f10, f11,
f13, f14}

Infinity-A (2) {f2, f3, f12} {} {Sph, Ro,
Ack, f2, f3,
f6, f8, f9,
f10, f11,
f12, f13,

f14}

{Sph, Ro,
Ack, Grie,

f2, f5, f6, f8,
f9, f10, f11,

f13, f14}

Reflect-A-
maxvel

(3)

{} {Schw} {} {Schw, f5,
f8}

Infinity-A-
maxvel

(4)

{f3, f12} {} {f12} {}
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B. Experimental Results

Table B.36: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated algorithms on 500-dimensional
benchmarks. The best objective values are shown for each function.

Sphere (0) Rosenbrock (0)
Reflect-A 1.0449e-06±1.3691e-08 (6.9001e-08) 114.19±7.311 (36.846)

Reflect-A-maxvel 1.0804e-06±1.2126e-08 (6.1111e-08) 155.53±9.2666 (46.702)
Infinity-A 1.0519e-06±1.3771e-08 (6.9402e-08) 123.29±7.7796 (39.207)

Infinity-A-maxvel 1.0911e-06±1.1819e-08 (5.9563e-08) 163±9.2017 (46.375)
Ackley (0) Rastrigin (0)

Reflect-A 3.6796e-06±2.3598e-08 (1.1893e-07) 93.609±3.5117 (17.698)
Reflect-A-maxvel 1.0716±0.17175 (0.8656) 96.637±3.8506 (19.406)

Infinity-A 3.7034e-06±2.469e-08 (1.2443e-07) 91.612±2.9265 (14.749)
Infinity-A-maxvel 1.2136±0.17233 (0.8685) 94.721±3.4147 (17.209)

Griewank (0) Schwefel (≈ -41898.3)
Reflect-A 6.4195e-04±5.454e-04 (2.7487e-03) -25448±285.17 (1437.2)

Reflect-A-maxvel 2.4367e-03±1.2749e-03 (6.4253e-03) -24274±359.74 (1813)
Infinity-A 1.0854e-03±6.7476e-04 (3.4007e-03) -22832±222.92 (1123.5)

Infinity-A-maxvel 6.2926e-03±4.4086e-03 (0.022218) -22911±336.02 (1693.5)
f1 (-450) f2 (-450)

Reflect-A -450 (0) 333.15±33.564 (169.15)
Reflect-A-maxvel -450 (0) 771.77±133.27 (671.67)

Infinity-A -450 (0) 264.55±36.152 (182.2)
Infinity-A-maxvel -450 (0) 643.01±73.067 (368.24)

f3 (-450) f5 (-310)
Reflect-A 8177500±345810 (1742800) 23575±611.22 (3080.4)

Reflect-A-maxvel 7718900±323750 (1631600) 27488±623.24 (3141)
Infinity-A 7138300±279290 (1407600) 26909±518.5 (2613.1)

Infinity-A-maxvel 7385100±301490 (1519500) 29447±557.35 (2808.9)
f6 (390) f8 (-140)

Reflect-A 514.39±6.9077 (34.813) -118.93±8.0908e-03 (0.040776)
Reflect-A-maxvel 564.08±9.4243 (47.496) -118.69±6.7715e-03 (0.034127)

Infinity-A 515.31±7.3591 (37.088) -118.92±8.0686e-03 (0.040664)
Infinity-A-maxvel 559.68±9.3655 (47.2) -118.68±5.82e-03 (0.029331)

f9 (-330) f10 (-330)
Reflect-A 119.05±13 (65.515) 59.53±17.302 (87.198)

Reflect-A-maxvel 237.04±10.884 (54.855) 491±20.417 (102.9)
Infinity-A 159.68±12.282 (61.898) 174.39±11.563 (58.275)

Infinity-A-maxvel 239.08±9.8974 (49.881) 518.75±20.65 (104.07)
f11 (-460) f12 (90)

Reflect-A 184.69±1.5947 (8.0371) 238170±34788 (175330)
Reflect-A-maxvel 213.4±1.8366 (9.2559) 270440±36112 (182000)

Infinity-A 184.9±1.7212 (8.6746) 163930±16332 (82310)
Infinity-A-maxvel 213.61±1.5986 (8.0565) 170170±15230 (76754)

f13 (-130) f14 (-300)
Reflect-A -112.08±0.63547 (3.2026) -254.1±0.11193 (0.56408)

Reflect-A-maxvel -98.013±1.6086 (8.1069) -253.15±0.088931 (0.44819)
Infinity-A -112.41±0.58494 (2.948) -254.02±0.10392 (0.52373)

Infinity-A-maxvel -97.431±1.489 (7.504) -253.21±0.089066 (0.44887)
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B.6 Particle Swarm Optimization with Velocity Adaptation

Experiment 4

Table B.37: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which 100-
dimensional benchmarks A performed significantly better than B.

1 2 3 4
Reflect-A (1) {} {Schw, f5,

f9, f10}
{Ro, f6, f9,

f10}
{Ro, Schw,
f5, f9, f10}

Infinity-A (2) {f2, f3, f12} {} {f2, f3, f6,
f12}

{f9, f10}

Reflect-A-ind
(3)

{Ack, Grie,
f3, f8}

{Ack, Grie,
Schw, f5, f8,

f14}

{} {Schw, f5,
f9, f10}

Infinity-A-ind
(4)

{Ack, Grie,
f3, f8, f12}

{Ack, Grie,
f8}

{f2, f12} {}

215



B. Experimental Results

Table B.38: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated algorithms on 500-dimensional
benchmarks. The best objective values are shown for each function.

Sphere (0) Rosenbrock (0)
Reflect-A 1.0449e-06±1.3691e-08 (6.9001e-08) 114.19±7.311 (36.846)

Reflect-A-ind 1.0426e-06±1.3855e-08 (6.9826e-08) 132.15±7.7635 (39.126)
Infinity-A 1.0519e-06±1.3771e-08 (6.9402e-08) 123.29±7.7796 (39.207)

Infinity-A-ind 1.0454e-06±1.4205e-08 (7.1591e-08) 132.81±8.4945 (42.81)
Ackley (0) Griewank (0)

Reflect-A 3.6796e-06±2.3598e-08 (1.1893e-07) 6.4195e-04±5.454e-04 (2.7487e-03)
Reflect-A-ind 0.027945±0.03906 (0.19685) 1.0112e-03±6.4464e-04 (3.2488e-03)

Infinity-A 3.7034e-06±2.469e-08 (1.2443e-07) 1.0854e-03±6.7476e-04 (3.4007e-03)
Infinity-A-ind 0.05677±0.049677 (0.25036) 1.2083e-03±6.822e-04 (3.4381e-03)

Rastrigin (0) Schwefel (≈ -41898.3)
Reflect-A 93.609±3.5117 (17.698) -25448±285.17 (1437.2)

Reflect-A-ind 92.161±3.2946 (16.604) -25371±293.13 (1477.3)
Infinity-A 91.612±2.9265 (14.749) -22832±222.92 (1123.5)

Infinity-A-ind 91.576±2.9515 (14.875) -23059±282.92 (1425.8)
f1 (-450) f2 (-450)

Reflect-A -450 (0) 333.15±33.564 (169.15)
Reflect-A-ind -450 (0) 364.79±36.791 (185.42)

Infinity-A -450 (0) 264.55±36.152 (182.2)
Infinity-A-ind -450 (0) 279.23±28.788 (145.09)

f3 (-450) f5 (-310)
Reflect-A 8177500±345810 (1742800) 23575±611.22 (3080.4)

Reflect-A-ind 7674300±275900 (1390500) 23812±574.37 (2894.7)
Infinity-A 7138300±279290 (1407600) 26909±518.5 (2613.1)

Infinity-A-ind 7287000±244520 (1232300) 27550±482.58 (2432.1)
f6 (390) f8 (-140)

Reflect-A 514.39±6.9077 (34.813) -118.93±8.0908e-03 (0.040776)
Reflect-A-ind 532.42±8.6171 (43.428) -119.01±8.9517e-03 (0.045115)

Infinity-A 515.31±7.3591 (37.088) -118.92±8.0686e-03 (0.040664)
Infinity-A-ind 519.7±7.3949 (37.269) -119.01±8.1445e-03 (0.041046)

f9 (-330) f10 (-330)
Reflect-A 119.05±13 (65.515) 59.53±17.302 (87.198)

Reflect-A-ind 166.14±9.5308 (48.033) 176.89±19.787 (99.72)
Infinity-A 159.68±12.282 (61.898) 174.39±11.563 (58.275)

Infinity-A-ind 196.07±9.5977 (48.37) 304.85±19.506 (98.307)
f11 (-460) f12 (90)

Reflect-A 184.69±1.5947 (8.0371) 238170±34788 (175330)
Reflect-A-ind 186.11±1.5179 (7.6499) 265960±34752 (175140)

Infinity-A 184.9±1.7212 (8.6746) 163930±16332 (82310)
Infinity-A-ind 185.53±1.5777 (7.9512) 158010±16108 (81182)

f13 (-130) f14 (-300)
Reflect-A -112.08±0.63547 (3.2026) -254.1±0.11193 (0.56408)

Reflect-A-ind -112.26±0.73385 (3.6984) -254.23±0.10825 (0.54553)
Infinity-A -112.41±0.58494 (2.948) -254.02±0.10392 (0.52373)

Infinity-A-ind -112.19±0.58343 (2.9404) -254.19±0.1239 (0.62441)
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B.6 Particle Swarm Optimization with Velocity Adaptation

Experiment 5

Table B.39: Summary of one-sided Wilcoxon rank sum test with significance level
0.01. For each algorithmic combination (A, B), this matrix shows on which 100-
dimensional benchmarks A performed significantly better than B.

1 2 3 4
Reflect-A (1) {} {Schw, f5,

f9, f10}
{Schw, f2,
f3, f5, f9,
f10, f11,
f12, f13,

f14}

{Schw, f5,
f9, f10, f11,

f12, f13,
f14}

Infinity-A (2) {f2, f3, f12} {} {Schw, f2,
f3, f5, f9,
f10, f11,
f12, f13,

f14}

{Schw, f2,
f3, f5, f9,
f10, f11,
f12, f13,

f14}
Reflect-A-init2

(3)
{Sph, Ack,

Grie}
{Sph, Ack,

Grie}
{} {f5}

Infinity-A-
init2
(4)

{Sph, Ack,
Grie}

{Sph, Ack,
Grie}

{f10, f12} {}
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Table B.40: Sample mean of final objective values, 95% confidence intervals, and
standard deviations (in brackets) of the investigated algorithms on 500-dimensional
benchmarks. The best objective values are shown for each function.

Sphere (0) Rosenbrock (0)
Reflect-A 1.0449e-06±1.3691e-08 (6.9001e-08) 114.19±7.311 (36.846)

Reflect-A-init2 8.9654e-07±9.4342e-09 (4.7546e-08) 123.27±7.5751 (38.177)
Infinity-A 1.0519e-06±1.3771e-08 (6.9402e-08) 123.29±7.7796 (39.207)

Infinity-A-init2 8.978e-07±1.0063e-08 (5.0717e-08) 121.83±6.9907 (35.231)
Ackley (0) Griewank (0)

Reflect-A 3.6796e-06±2.3598e-08 (1.1893e-07) 6.4195e-04±5.454e-04 (2.7487e-03)
Reflect-A-init2 3.2161e-06±2.1491e-08 (1.0831e-07) 1.2581e-03±6.3892e-04 (3.22e-03)

Infinity-A 3.7034e-06±2.469e-08 (1.2443e-07) 1.0854e-03±6.7476e-04 (3.4007e-03)
Infinity-A-init2 3.2086e-06±2.2626e-08 (1.1403e-07) 1.3737e-03±1.4011e-03 (7.0611e-03)

Rastrigin (0) Schwefel (≈ -41898.3)
Reflect-A 93.609±3.5117 (17.698) -25448±285.17 (1437.2)

Reflect-A-init2 95.964±4.9064 (24.727) -15988±659.48 (3323.6)
Infinity-A 91.612±2.9265 (14.749) -22832±222.92 (1123.5)

Infinity-A-init2 92.595±4.8184 (24.283) -15248±512.28 (2581.8)
f1 (-450) f2 (-450)

Reflect-A -450 (0) 333.15±33.564 (169.15)
Reflect-A-init2 -450 (0) 410.29±40.49 (204.06)

Infinity-A -450 (0) 264.55±36.152 (182.2)
Infinity-A-init2 -450 (0) 411.56±48.885 (246.37)

f3 (-450) f5 (-310)
Reflect-A 8177500±345810 (1742800) 23575±611.22 (3080.4)

Reflect-A-init2 9928000±633720 (3193800) 30655±774.25 (3902)
Infinity-A 7138300±279290 (1407600) 26909±518.5 (2613.1)

Infinity-A-init2 8746400±458740 (2311900) 32721±677.48 (3414.3)
f6 (390) f8 (-140)

Reflect-A 514.39±6.9077 (34.813) -118.93±8.0908e-03 (0.040776)
Reflect-A-init2 515.67±7.8349 (39.486) -118.93±8.8913e-03 (0.04481)

Infinity-A 515.31±7.3591 (37.088) -118.92±8.0686e-03 (0.040664)
Infinity-A-init2 514.13±7.1859 (36.215) -118.94±8.54e-03 (0.04304)

f9 (-330) f10 (-330)
Reflect-A 119.05±13 (65.515) 59.53±17.302 (87.198)

Reflect-A-init2 415.33±8.1107 (40.876) 1025.8±14.935 (75.271)
Infinity-A 159.68±12.282 (61.898) 174.39±11.563 (58.275)

Infinity-A-init2 419.58±8.5384 (43.031) 996.52±14.7 (74.086)
f11 (-460) f12 (90)

Reflect-A 184.69±1.5947 (8.0371) 238170±34788 (175330)
Reflect-A-init2 247.62±0.89955 (4.5335) 389730±50415 (254080)

Infinity-A 184.9±1.7212 (8.6746) 163930±16332 (82310)
Infinity-A-init2 248.18±0.90982 (4.5853) 283700±31071 (156590)

f13 (-130) f14 (-300)
Reflect-A -112.08±0.63547 (3.2026) -254.1±0.11193 (0.56408)

Reflect-A-init2 -104.04±1.1319 (5.7044) -253.04±0.0848 (0.42737)
Infinity-A -112.41±0.58494 (2.948) -254.02±0.10392 (0.52373)

Infinity-A-init2 -105.13±1.1648 (5.8704) -253.01±0.073852 (0.3722)

218



Bibliography
[ABEF05] Julio E. Alvarez-Benitez, Richard M. Everson, and Jonathan E. Field-

send. A MOPSO algorithm based exclusively on pareto dominance
concepts. In Evolutionlary Multi-Criterion Optimization, pages 459–
473. Springer, 2005.

[Abi02] Mohammad A. Abido. Optimal power flow using particle swarm opti-
mization. International Journal of Electrical Power & Energy Systems,
24(7):563–571, 2002.

[ACXZ05] Jiyuan An, Yi-Ping P. Chen, Qinying Xu, and Xiaofang Zhou. A new
indexing method for high dimensional dataset. In DASFAA, volume
3453, pages 385–397. Springer, 2005.

[AHK01] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On
the surprising behavior of distance metrics in high dimensional space.
In Database Theory – ICDT 2001, pages 420–434. Springer, 2001.

[AP09] Davide Anghinolfi and Massimo Paolucci. A new discrete particle
swarm optimization approach for the single-machine total weighted tar-
diness scheduling problem with sequence-dependent setup times. Eu-
ropean Journal of Operational Research, 193(1):73–85, 2009.

[AT07] Anne Auger and Olivier Teytaud. Continuous lunches are free! In
Proceedings of the Genetic and Evolutionary Computation Conference,
pages 916–922. ACM, 2007.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelli-
gence: From natural to artificial systems. Oxford University Press,
1999.

[Bel61] Richard Bellman. Adaptive control processes: A guided tour. Princeton
University Press, 1961.

[Ber95] Dimitri P. Bertsekas. Nonlinear optimization. Athena Scientific, 1995.

[Bey00] Hans-Georg Beyer. Evolutionary algorithms in noisy environments:
Theoretical issues and guidelines for practice. Computer Methods in
Applied Mechanics and Engineering, 186(2–4):239–267, 2000.

219



Bibliography

[BF05] Bogdan Bochenek and Pawel Foryś. Structural optimization against in-
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