
A Full Derandomization of Schöning’s k-SAT Algorithm

Robin A. Moser
Institute for Theoretical Computer Science

Department of Computer Science
ETH Zürich, 8092 Zürich, Switzerland

robin.moser@inf.ethz.ch

Dominik Scheder
Institute for Theoretical Computer Science

Department of Computer Science
ETH Zürich, 8092 Zürich, Switzerland
dominik.scheder@inf.ethz.ch

ABSTRACT
Schöning [12] presents a simple randomized algorithm for
k-SAT with running time an

k · poly(n) for ak = 2(k − 1)/k.
We give a deterministic version of this algorithm running in

time a
n+o(n)
k .

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.1 [Dis-
crete Mathematics]: Combinatorics—Combinatorial al-
gorithms

General Terms
Algorithms

Keywords
Schöning’s algorithm, derandomization, SAT, k-SAT

1. INTRODUCTION
In 1999, Uwe Schöning [12] gave an extremely simple ran-

domized algorithm for k-SAT, which works as follows: Let
F be an (≤ k)-CNF formula over n variables. Start with a
random truth assignment. If this does not satisfy F , pick an
arbitrary unsatisfied clause C. From C, pick a literal uni-
formly at random, and change the truth value of its under-
lying variable, thus satisfying C. Repeat this reassignment
step O(n) times. If F is satisfiable, this finds a satisfying
assignment with probability at least„

k

2(k − 1)

«n

.

By repetition, this gives a randomized O∗(1.334n) algorithm
for 3-SAT, O∗(1.5n) for 4-SAT, and so on (we use O∗ to
suppress polynomial factors in n). Actually this algorithm,
also called WalkSAT, has been known before, see Selman,
Kautz, and Cohen [13] for example. However, Schöning was

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

the first to give a rigorous analysis of its success probability
for k ≥ 3. His analysis has its roots in a result by Papadim-
itriou [7], who proved that the expected running time of a
suitable random walk algorithm is polynomial for 2-SAT.

Shortly after Schöning published his algorithm, Dantsin,
Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Ragha-
van and Schöning [2] (henceforth Dantsin et al. for the sake
of brevity) came up with a deterministic algorithm that can
be seen as an attempt to derandomize Schöning’s algorithm.
We say attempt because its running time is O∗((2k/(k +
1))n), which is exponentially slower than Schöning’s. For
example, this gives an O∗(1.5n) algorithm for 3-SAT and
O∗(1.6n) for 4-SAT. Subsequent papers have improved upon
this running time, mainly focusing on 3-SAT: Dantsin et al.
already improve the running time for 3-SAT to O(1.481n),
Brueggemann and Kern [1] to O(1.473n), Scheder [11] to
O(1.465n), and Kutzkov and Scheder [5] to O(1.439n). All
improvements suffer from two drawbacks: First, they fall
short of achieving the running time of Schöning’s random-
ized algorithm, and second, they are all fairly complicated.
In this paper, we give a rather simple deterministic algo-
rithm with a running time that comes arbitrarily close to
Schöning’s, thus completely derandomizing his algorithm.
We also show how to derandomize Schöning’s algorithm for
constraint satisfaction problems, which are a generalization
of SAT, allowing more than two truth values.

It should be noted that Schöning’s algorithm is, by to-
day, not anymore the fastest known algorithm for k-SAT.
Instead, the PPSZ algorithm, named after its inventors Pa-
turi, Pudlák, Saks and Zane [9], which has always known to
be faster than Schöning for k > 4, has very recently been
discovered to beat the running time of Schöning for all k by
Timon Hertli in [3]. In particular, he showed that for k = 3,
it has an expected running time of O(1.30704n). This has
already been known to hold for the special case of 3-CNF for-
mulas with a unique satisfying assignment. However, since
both the algorithm and its analysis are far more complicated
than Schöning’s, derandomizing any of these algorithms will
take far more work. First attempts at this have been made
by Rolf in [10], but his derandomization only applies to for-
mulas that come with the promise of having a unique satis-
fying assignment if any. Therefore, although bested within
the randomized domain, the variant of Schöning’s algorithm
that we present hereafter is the fastest deterministic k-SAT
algorithm known to date.

We think that derandomization of exponential algorithms
is important. A recent result by Ryan Williams [15] has
shown that fast deterministic exponential algorithms (run-

245



ning in time 20.99n, say) for the CircuitSAT problem would
imply superpolynomial circuit lower bounds for NEXP, a
nagging and long-standing open problem. On the other
hand, Paturi and Pudlák [8] have shown that a polynomial-
time probabilistic algorithm for CircuitSAT with success
probability of at least 2−0.99n can be sped up to a proba-
bilistic algorithm with polynomial running time and success
probability at least 2−0.01n. However, neither result’s pre-
condition is known to imply the other result’s conclusion. It
seems that both good deterministic and good probabilistic
exponential algorithms can have very strong consequences.
Therefore, we think it is important to try to translate one
into the other.

1.1 Notation
We adapt the notational framework used in [14]. We as-

sume an infinite supply of propositional variables. A literal
u is a variable x or a complemented variable x̄. A finite set
C of literals over pairwise distinct variables is called a clause
and a finite set of clauses is a formula in CNF (Conjunctive
Normal Form). We say that a variable x occurs in a clause
C if either x or x̄ are contained in it and that x occurs in the
formula F if there is any clause where it occurs. We write
vbl(C) or vbl(F ) to denote the set of variables that occur
in C or in F , respectively. We say that F is a (≤ k)-CNF
formula if every clause has size at most k. Let such an F be
given and write V := vbl(F ).

A (truth) assignment is a function α : V → {0, 1} which
assigns a Boolean value to each variable. By {0, 1}V we
denote the set of all assignments to V . A literal u = x (or
u = x̄) is satisfied by α if α(x) = 1 (or α(x) = 0). A clause is
satisfied by α if it contains a satisfied literal and a formula is
satisfied by α if all of its clauses are. A formula is satisfiable
if there exists a satisfying truth assignment to its variables.

If α and β are two truth assignments over a set V of
variables, then their (Hamming) distance dH(α, β) is defined
to be the number of variables x ∈ V where α(x) �= β(x),
i.e. dH(α, β) := |{x ∈ V | α(x) �= β(x)}|. For a given
assignment α, we denote the set of all assignments β with
Hamming distance at most r from α by Br(α) := {β : V →
{0, 1} | dH(α, β) ≤ r} and call this the Hamming ball of
radius r centered at α.

Formulas can be manipulated by permanently assigning
values to variables. If F is a given CNF formula and x ∈
vbl(F ), then assigning x �→ 1 satisfies all clauses contain-
ing x (irrespective of what values the other variables in
those closes are possibly assigned later) whilst it truncates
all clauses containing x̄ to their remaining literals. We will
write F [x:=1] to denote the formula arising from doing just
this, or equally F [u:=1] where u is a literal and we mean to
assign the underlying variable the value necessary to satisfy
u. If β is a partial assignment, i.e., defined on a subset of
vbl(F ), then F [β] denotes the formula we obtain from F by
permanently setting the variables from those subset to their
respective values under β.

1.2 Previous Work
Both Schöning’s algorithm and its deterministic versions

can be seen as not attacking SAT directly, but rather a
parametrized local search problem:

Promise-Ball-k-SAT: Given a (≤ k)-CNF
formula F over n variables, an assignment α to
these variables, a natural number r, and the promise

that the Hamming ball Br(α) contains a satisfy-
ing assignment. Find any satisfying assignment
to F .

Let us clarify what we mean by saying“Algorithm A solves
Promise-Ball-k-SAT”: If F , α, and r are as described
above, i.e., if Br(α) contains a satisfying assignment, then
A must return some satisfying assignment. We do not re-
quire this assignment to lie in Br(α), however. On the other
hand, if F is unsatisfiable, or Br(α) contains no satisfying
assignment, the behavior is unspecified. Of course, since we
can quickly check any purported assignment that the algo-
rithm outputs, we can assume the algorithm always either
returns a satisfying assignment or failure.

The randomized algorithm for Promise-Ball-k-SAT orig-
inally used by Schöning as described in the introductory
section, henceforth called Schöning, repeatedly selects any
clause unsatisfied under α, then randomly picks a literal
from that clause and flips the underlying variable’s value.
The algorithm gives up if a satisfying assignment has not
been encountered by the time O(n) steps have been per-
formed (it is well-known and easy to check that n/(k − 2)
correction steps are sufficient to achieve optimal efficiency).

Lemma 1 (Schöning [12]). Let F be a (≤ k)-CNF for-
mula, α a truth assignment to its variables, and r ∈ N. If
there is a satisfying assignment in Br(α), then with proba-
bility at least (k − 1)−r, Schöning returns a satisfying as-
signment. By repetition, this gives a Monte-Carlo algorithm
for Promise-Ball-k-SAT with running time O∗((k − 1)r).

Schöning turns this lemma into an algorithm for k-SAT by
choosing the assignment α uniformly at random from all 2n

truth assignments:

Theorem 2 (Schöning [12]). There is a randomized
algorithm that runs in polynomial time and finds a satisfying
assignment of F with probability„

k

2(k − 1)

«n

,

provided F is satisfiable.

Proof. Let α∗ be a satisfying assignment of F and let α
be an assignment chosen uniformly at random from {0, 1}n.
For each 0 ≤ r ≤ n, the probability that the Hamming
distance dH(α, α∗) is r is

`
n
r

´
/2n. In this case, Schöning’s

random walk returns a satisfying assignment with probabil-
ity at least (k − 1)−r. The overall success probability thus
is at least

nX
r=0

 
n

r

!
2−n(k − 1)−r =

„
k

2(k − 1)

«n

,

and the running time is clearly polynomial.

By repeating the above algorithm, one obtains a Monte-
Carlo algorithm for k-SAT of running time O∗((2(k−1)/k)n).

Deterministic Algorithms
What about deterministic algorithms? Dantsin et al. [2]
give a simple recursive algorithm for Promise-Ball-k-SAT
running in time O∗(kr): If α satisfies F , we are done. Oth-
erwise, if r = 0, we can return failure. If r ≥ 1 and α does

246



not satisfy F , we let C be an unsatisfied clause. There are at
most k literals in C, thus there are at most k possibilities to
locally change α so as to satisfy C. We recursively explore
each possibility, decreasing r by 1 (see Algorithm 1 for the
details). The other achievement of Dantsin et al. is to show
how a deterministic algorithm for Promise-Ball-k-SAT
can be turned into a deterministic algorithm for k-SAT:

Lemma 3 (Dantsin et al. [2]). If algorithm A solves

Promise-Ball-k-SAT in time ar+o(r), then there is an al-

gorithm B solving k-SAT in time
“

2a
a+1

”n+o(n)

. Further-

more, B is deterministic if A is.

Their algorithm to prove the lemma constructs a so-called
covering code C ⊆ {0, 1}n with the property that every
assignment α ∈ {0, 1}n has a codeword γ ∈ C at a suit-
ably small Hamming distance from α. Schöning’s random-
ized selection of an initial assignment is turned determin-
istic by iterating through all codewords γ ∈ C and solving
Promise-Ball-k-SAT around each of them. Provided that
the formula is satisfiable, one choice of γ ∈ C will be suffi-
ciently close to a satisfying assignment for the subsequent
local search to succeed.

The recursive algorithm for Promise-Ball-k-SAT due to
Dantsin et al. has running time O∗(kr). Therefore Lemma 3
gives a running time of O∗((2k/(k +1))n). For k = 3, clever
branching rules have been designed to improve upon the
O∗(3r) bound, leading to the respective improvements on
deterministic running times mentioned in the first paragraph
of this paper.

1.3 Our Contribution

Theorem 4. There exists a deterministic algorithm which
solves Promise-Ball-k-SAT in time (k − 1)r+o(r).

Combining this theorem with Lemma 3 proves our main
theorem:

Theorem 5. There is a deterministic algorithm solving

k-SAT in time
“

2(k−1)
k

”n+o(n)

.

In Section 3, we show how to obtain a similar derandom-
ization result for CSP problems with more than two truth
values. Before jumping into technical details, let us sketch
the main idea of our improvement for k = 3. Let F be a
3-CNF formula and α some assignment. Suppose F con-
tains t pairwise disjoint clauses C1, . . . , Ct, all of which are
unsatisfied by α. We let Schöning’s random walk algorithm
process these clauses one after the other: In each clause Ci,
it picks one literal randomly and satisfies it. Thus, of all 3t

possibilities to choose one literal in each Ci, it chooses one
uniformly at random. Let α∗ be an assignment satisfying
F . With probability at least 3−t, Schöning’s random walk
chooses in each Ci a literal that α∗ satisfies. In this case, the
distance from α to α∗ decreases by t. However, with much
bigger probability, roughly 2−t/3, the random walk chooses
the “correct” literal in 2t/3 clauses Ci and a “wrong” literal
in the remaining t/3. In this case, the distance from α to α∗

decreases by t/3. This is the power of Schöning’s algorithm:
It hopes to make a modest progress of t/3, which is much
more likely than making a progress of t. Our key observation
is that this choice of Schöning can be derandomized: There
is a set of (roughly) 2t/3 choices of which literal to satisfy in
each Ci, such that at least one of them makes a progress of
at least t/3.

2. THE ALGORITHM
To begin with, we will formally state and analyze the re-

cursive algorithm given by Dantsin et al. [2] which is known
to solve Promise-Ball-k-SAT in time O∗(kr).

Algorithm 1 searchball(CNF formula F , assignment α,
radius r)

1: if α satisfies F then
2: return true

3: else if r = 0 then
4: return false

5: else
6: C ← any clause of F unsatisfied by α
7: return

W
u∈C searchball(F [u:=1], α, r − 1)

8: end if

Proposition 6. searchball solves Ball-k-SAT in time
O∗(kr)

Proof. The running time is easy to analyze: If F is a
(≤ k)-CNF formula, then each call to searchball causes at
most k recursive calls. To see correctness of the algorithm,
we proceed by induction on r and suppose that α∗ satisfies
F and dH(α, α∗) ≤ r. Let C be the clause selected in line 6.
Since α∗ satisfies C but α does not, there is at least one
literal u ∈ C such that α∗(u) = 1 and α(u) = 0. Let
α′ := α∗[u := 0]. We observe that d(α, α′) ≤ r − 1 and

α′ satisfies F [u:=1] (although not necessarily F ). Therefore
the induction hypothesis ensures that the recursive call to
searchball(F [u:=1], α, r − 1) returns true.

Proposition 7. Suppose F is a (≤ k)-CNF formula, α a
truth assignment to its variables, and r ∈ N. If every clause
in F that is unsatisfied by α has size at most k − 1, then
searchball(F, α, r) runs in time O∗((k − 1)r).

Proof. The key observation is that if all clauses in F
that are not satisfied by α have at most k − 1 literals, then
the same is true for any formula of the form F [u:=1]. There-
fore, any call to searchball entails at most k − 1 recursive
calls.

2.1 k-ary Covering Codes
Before explaining our algorithm, we make a combinatorial

detour to k-ary covering codes, which will play a crucial
role in our algorithm. The set {1, . . . , k}t looks similar to
the Boolean cube {0, 1}t in many ways. For example, it is
endowed with a Hamming distance dH : For two elements
w, w′ ∈ {1, . . . , k}t, we define dH(w, w′) to be the number
of coordinates in which w and w′ do not agree. We define
balls:

B(k)
r (w) := {w′ ∈ {1, . . . , k}t | dH(w, w′) ≤ r} .

What is the volume of such a ball? Well, there are
`

t
r

´
possibilities to choose the set of coordinates in which w and
w′ are supposed to differ, and for each such coordinate, there
are k − 1 ways in which they can differ. Therefore,

vol(k)(t, r) := |B(k)
r (w)| =

 
t

r

!
(k − 1)r .

We are interested in the question how many balls B
(k)
r (w)

we need to cover all of {1, . . . , k}t. Note that by symmetry,

w ∈ B
(k)
r (v) iff v ∈ B

(k)
r (w) for any v, w ∈ {1, . . . , k}t.

247



Definition 8. Let t ∈ N. A set C ⊆ {1, . . . , k}t is called
a code of covering radius r if[

w∈C
B(k)

r (w) = {1, . . . , k}t .

In other words, for each w′ ∈ {1, . . . , k}n, there is some
w ∈ C such that dH(w, w′) ≤ r.

The following lemma is an adaptation of a lemma by Dantsin
et al. [2], only for {1, . . . , k}t instead of the Boolean cube
{0, 1}t.

Lemma 9. For any t, k ∈ N and 0 ≤ r ≤ t, there exists a
code C ⊆ {1, . . . , k}t of covering radius r such that

|C| ≤
&

t ln(k)kt`
t
r

´
(k − 1)r

’

Proof. The proof is probabilistic. Let

m :=

&
t ln(k)kt`
t
r

´
(k − 1)r

’

and build C by sampling m points from {1, . . . , k}, uni-
formly at random and independently. Fix an element w′ ∈
{1, . . . , k}t. We calculate

Pr[w′ �∈
[

w∈C
B(k)

r (w)] =

„
1− vol(k)(t, r)

kt

«|C|
<

< e−|C|vol(k)(t,r)/kt ≤ e−t ln(k) = k−t.

By the union bound, the probability that there is any w′ �∈S
w∈C B

(k)
r (w) is at most kt times the above expression, and

thus smaller than 1. Therefore, with positive probability, C
is a code of covering radius r.

2.2 A Deterministic Algorithm for Promise-
Ball-k-SAT

We will now describe our deterministic algorithm. Recall
that r is the covering radius r that we choose for the cov-
ering code of starting assignments. Now let t = t(r) be a
slowly growing function. For instance, t(r) = log log r would
do. Compute a code C ⊆ {1, . . . , k}t of covering radius t/k.
Since k is a constant and t is very slowly growing, we can
afford to compute an optimal such code. We estimate its
size using Lemma 9 and the following approximation of the
binomial coefficient:

Proposition 10 ([6]). For 0 ≤ ρ ≤ 1/2 and t ∈ N, it
holds that 

t

ρt

!
≥ 1p

8tρ(1− ρ)

„
1

ρ

«ρt„
1

1− ρ

«(1−ρ)t

We apply this bound with ρ = 1/k: 
t

t/k

!
≥ 1√

8t
kt/k

„
k

k − 1

«(k−1)t/k

=
kt

√
8t(k − 1)(k−1)t/k

.

Together with Lemma 9, we obtain, for t sufficiently large:

|C| ≤
&

t ln(k)kt`
t

t/k

´
(k − 1)t/k

’
≤

≤ t2kt(k − 1)(k−1)t/k

kt(k − 1)t/k
≤ t2(k − 1)t−2t/k.

The algorithm computes this code and stores it for further
use. It then calls a recursive procedure that does the real
stuff. That procedure first greedily constructs a maximal
set G of pairwise disjoint unsatisfied k-clauses of F . That
is, G = {C1, C2, . . . , Cm}, the Ci are pairwise disjoint, each
Ci in G is unsatisfied by α, and each unsatisfied k-clause D
in F shares at least one literal with some Ci.

At this point, the algorithm considers two cases. First, if
m < t, it enumerates all 2km truth assignments to the vari-
ables in G. For each such assignment β, it calls the subrou-
tine searchball(F [β], α, r) and returns true if at least one
such call returns true. Correctness is easy to see: At least
one β agrees with the promised assignment α∗, and therefore
α∗ still satisfies F [β]. To analyze the running time, observe
that for any such β, the formula F [β] contains no unsatis-
fied clause of size k. This follows from the maximality of G.
Therefore, Proposition 7 tells us that searchball(F [β], α, r)
runs in time O∗((k − 1)r), and therefore this case takes
time 2kmO∗((k − 1)r). Since m < t, and t � log r, this
is O∗((k − 1)r).

The second case is more interesting: If m ≥ t, the algo-
rithm chooses t clauses from G to form H = {C1, . . . , Ct}, a
set of pairwise disjoint k-clauses, all unsatisfied by α. At this
point, our code will come into play, but first we introduce
some notation: For w ∈ {1, . . . , k}t, let α[w] be the assign-
ment obtained from α by flipping the value of the wi

th literal
in Ci, for 1 ≤ i ≤ t. To do this, the algorithm has to choose
a fixed but arbitrary ordering on H as well as on the literals
in each Ci. Note that α[w] satisfies exactly one literal in
each Ci, for 1 ≤ i ≤ t. Strictly speaking α[w] depends not
only on w, but also on H, so we should write α[H, w] instead
of α[w]. However, as long as H is understood, we write α[w].

Let us give an example. Suppose α is the all-0-assignment,
t = 3 and H = {(x1 ∨ y1 ∨ z1), (x2 ∨ y2 ∨ z2), (x3 ∨ y3 ∨ z3)}.
Let w = (2, 3, 3). Then α[w] is the assignment that sets y1,
z2, and z3 to 1 and all other variables to 0.

Consider now the promised satisfying assignment α∗ with
dH(α, α∗) ≤ r. We define w∗ ∈ {1, . . . , k}t as follows: For
each 1 ≤ i ≤ t, we set w∗

i to j such that α∗ satisfies the jth

literal in Ci. Since α∗ satisfies at least one literal in each
Ci, we can do this, but since α∗ possibly satisfies multiple
literals in Ci, the choice of w∗ is not unique. Note that in
any case d(α[w∗], α∗) = d(α, α∗)− t ≤ r − t.

We could now iterate over all w ∈ {1, . . . , k}t and call
searchball(F, α[w], r − t). This would essentially be what
searchball does and would yield a running time of O∗(kr),
i.e., no improvement over Dantsin et al. Therefore, we do
not do this. Instead, we let our code C play its crucial role:
Rather than recursing on α[w] for each w ∈ {1, . . . , k}t,
we recurse only for each w ∈ C. By the properties of C,
there is some w′ ∈ C such that dH(w′, w∗) = t/k. Observe
what happens when we go from α to α[w′]: For at most
t/k coordinates i, we have w′

i �= w∗
i . For those coordinates,

switching the w′
i
th literal of Ci in the assignment α increases

the distance to α∗. On the other hand, there are at least
t− t/k coordinates i where w′

i = w∗
i , and switching the w′

i
th

literal of Ci for such an i decreases the distance to α∗. We
conclude that the distance increases at most t/k times and

248



decreases at least t− t/k times. Therefore

dH(α[w′], α∗) ≤ dH(α, α∗)+ t/k− (t− t/k) ≤ r− (t− 2t/k).

Writing Δ := (t−2t/k), the procedure calls itself recursively
with α[w] and r−Δ for each w ∈ C and at least one call will
be successful. Let us analyze the running time: We cause |C|
recursive calls and decrease the complexity parameter r by
Δ in each step. This is good, since |C| is only slightly bigger
than (k − 1)Δ. We conclude that the number of leaves in
this recursion tree is at most

|C|r/Δ ≤ (t2(k − 1)Δ)r/Δ =
“
(k − 1)t2/Δ

”r

.

Since t2/Δ goes to 1 as t grows, the above term is at most
(k − 1)r+o(n). This proves Theorem 4. We summarize the
whole procedure in searchball-fast.

Algorithm 2 searchball-fast(k ∈ N, (≤ k)-CNF formula
F , assignment α, radius r, code C ⊆ {1, . . . , k}t)
1: if α satisfies F then
2: return true

3: else if r = 0 then
4: return false

5: else
6: G← a maximal set of pairwise disjoint k-clauses of F

unsatisfied by α
7: if |G| < t then

8: return
W

β∈{0,1}vbl(G) searchball(F
[β], α, r)

9: else
10: H ← {C1, . . . , Ct} ⊆ G
11: return

W
w∈C searchball-fast(k, F, α[H, w], r −

(t− 2t/k), C)
12: end if
13: end if

3. CONSTRAINT SATISFACTION
Constraint Satisfaction Problems, short CSPs, are gener-

alizations of SAT, allowing more than two truth values. For-
mally, suppose there is a set V = {x1, . . . , xn} of n variables,
each of which can take on a value in {1, . . . , d}. A literal is
an expression of the form (xi �= c) for c ∈ {1, . . . , d}. A
constraint is a disjunction of literals, for example

(x1 �= 7 ∨ x2 �= 5 ∨ x3 �= d) .

A CSP formula is a conjunction of constraints. We call it
a (d,≤ k)-CSP formula if its variables can take d values
and each constraint has at most k literals. An assignment
α to the variables V is a function α : V → {1, . . . , d} and
can be represented as an element from {1, . . . , d}n. We say
α satisfies the literal (xi �= c) if α(xi) �= c. It satisfies
a constraint if it satisfies at least one literal in it, and it
satisfies a CSP formula if it satisfies each constraint in it.
Finally, (d,≤ k)-CSP is the problem of deciding whether
a given (d,≤ k)-CSP formula has a satisfying assignment.
Note that (2, k)-CSP is the same as k-SAT. Also, (d,≤ k)-
CSP is NP-complete except the following three cases: (i)
d = 1, (ii) k = 1, (iii) d = k = 2. Cases (i) and (ii) are trivial
problems, and (iii) is 2-SAT, which is solvable in polynomial
time (well-known, not difficult to show, but still not trivial).

For the cases where (d,≤ k)-CSP is NP-complete, what
can we do? Iterating through all dn assignments constitutes

an algorithm solving (d, k)-CSP in time O∗(dn). Schöning’s
algorithm [12] is much faster:

Theorem 11 (Schöning [12]). There is a Monte-Carlo
algorithm solving (d,≤ k)-CSP in time

O∗
„„

d(k − 1)

k

«n«
.

Again, for d = 2 this is the running time of Schöning for k-
SAT. In his original paper [12], Schöning describes how his
algorithm seamlessly generalizes to arbitrary domain sizes
d ≥ 2: in each correction step, after a variable to reassign
has been selected at random, another random choice is made
among the d−1 values it may be changed to. The subsequent
analysis in [12] also extends to this case.

However, there is a more direct way to reduce the (d,≤ k)-
CSP for d > 2 to the Boolean problem which is then able
to use any k-SAT algorithm as a black box: we simply se-
lect for each variable, uniformly at random and indepen-
dently from the other variables, 2 out of the d possible val-
ues in the domain. Any satisfying assignment survives this
restriction with probability exactly (2/d)n and thus any k-
SAT algorithm with success probability pn generalizes to
a (d,≤ k)-CSP algorithm with success probability (2p/d)n.
When plugging in Schöning for k-SAT, we obtain Theo-
rem 11.

In order to generalize our deterministic variant to arbi-
trary domain sizes, we will choose the simple route and de-
randomize the aforementioned reduction instead of trying to
rework the whole analysis from the previous section, with the
additional advantage that the result scales for any further
improvement on the running time for deterministic k-SAT.

Theorem 12. There exists a deterministic algorithm hav-
ing running time O∗((d/2)n) which takes any (d,≤ k)-CSP
F over n variables and produces l ∈ O∗((d/2)n) Boolean
(≤ k)-CNF formulas {Gi}1≤i≤l such that F is satisfiable if
and only if there exists some i such that Gi is satisfiable.

Using the k-SAT algorithm we developed in the previous
section, we then immediately get the derandomization of
Theorem 11.

Corollary 13. There is a deterministic algorithm solv-
ing (d,≤ k)-CSP in time„

d(k − 1)

k

«n+o(n)

.

Proof of Theorem 12. We start with a useful defini-
tion. A 2-box in {1, . . . , n}d is a set of the form B :=
P1 × · · · × Pn, where Pi ⊆ {1, . . . , d} and |Pi| = 2. A 2-
box can be seen as a subcube of {1, . . . , d}n of side length
2 and full dimension. A random 2-box is a 2-box sampled
uniformly at random from all 2-boxes in {1, . . . , d}n: This
can be done by sampling each Pi independently, uniformly
at random from all

`
d
2

´
pairs in {1, . . . , d}. As mentioned

above, the probability that any fixed satisfying assignment
of F lies within a random 2-box is (2/d)n.

In order to derandomize this technique, we need to deter-
ministically cover {1, . . . , d}n with 2-boxes, in a fashion very
similar to the covering codes used by Dantsin et al. [2]:

249



Lemma 14. Let d, n ∈ N. There is a set B of 2-boxes in
{1, . . . , d}n such that[

D∈B
B = {1, . . . , d}n

and

|B| ≤
„

d

2

«n

poly(n) .

Furthermore, B can be constructed in time O(|B|).
Given this lemma, our algorithm is complete: It first con-
structs such a suitably small set B of 2-boxes, and then, for
each 2-box P1 × · · · × Pn = B ∈ B, outputs a (≤ k)-CNF
formula arising from F by restricting the domain of the ith

variable to the values in Pi. This finishes the proof of the
theorem.

It remains to prove the lemma.

Proof of Lemma 14. Note that if d is an even number,
the proof is easy. For 1 ≤ j ≤ d/2, define P (j) = {2j−1, 2j}.
Each element w ∈ {1, . . . , d/2}n defines the 2-box

Bw := P (w1) × · · · × P (wn)

and clearly [
w∈{1,...,d/2}n

Bw = {1, . . . , d}n .

The difficulty arises if d is odd. As Dantsin et al. [2], we
first show the existence of a suitable set of 2-boxes, and then
use a block construction and an approximation algorithm to
obtain a construction.

Lemma 15. For any n, d ∈ N, there is a set B of 2-
boxes such that |B| ≤ n ln(d)(d/2)n� such that

S
B∈B =

{1, . . . , d}n.

Proof. The proof works exactly like the proof of Lemma 9.
We sample n ln(d)(d/2)n�many 2-boxes independently, uni-
formly at random and show that with positive probability,
the resulting set has the desired properties.

To prove Lemma 14, we have to derandomize the proba-
bilistic argument we have just seen. For this, we choose a
sufficiently large constant b, set n′ := n/b and construct an

instance of Set-Cover: The ground set is {1, . . . , d}n′
and

the sets are all 2-boxes therein, of which there are
`

d
2

´n′
≤

d2n′
. We know from Lemma 15 that there is a cover of 2-

boxes of size n ln(d)(d/2)n�. There is a greedy algorithm
for Set-Cover (see Hochbaum [4] for example) achieving an
approximation ratio of O(log N), where N is the size of the

ground set. Since in our case log N = log(dn′
) = O(n′), this

algorithm will give us a set B of 2-boxes covering {1, . . . , d}n′

of size

|B| ∈ O

 
(n′)2

„
d

2

«n′!
.

How much time do we need to construct B? The greedy
algorithm is polynomial in the size of its instance, which

is O(d2n′
), thus it takes time O(d2Cn′

) for some constant
C. By choosing b large enough, we can make sure that

d2Cn′
= d2Cn/b is smaller than (d/2)n. Finally, we obtain

a set of 2-boxes in {1, . . . , d}n by “concatenating” the boxes
in B: We identify a tuple (B1, . . . , Bb) ∈ Bb with the 2-box
B1 × · · · × Bb, and therefore Bb is a set of 2-boxes covering
{1, . . . , n}, and

|B|b ≤ O

0
@ (n′)2

„
d

2

«n′!b
1
A =

= O

„“n

b

”2b
„

d

2

«n«
=

„
d

2

«n

poly(n).

This is a set of 2-boxes covering {1, . . . , d}n of the desired
size.

4. CONCLUDING REMARKS AND OPEN
PROBLEMS

Exponential vs. Polynomial Space.
Dantsin et al. construct their almost optimal covering

code using exponential space. By using a simpler version
of their result (for the reader who is familiar with covering
codes or has read the previous section: by using linearly
many blocks of constant length, rather than constantly many
of linear length), we can iterate through the whole covering
code in polynomial space, and therefore our algorithm uses
only polynomial space.

A Promise Problem.
Let us define a promise version of k-SAT:

For γ ≥ 1, we define the problem γ-promise-
SAT: Let F be a CNF formula such that there
exists some (unknown) assignment that in every
clause C ∈ F satisfies at least |C|/γ literals. Find
some satisfying assignment of F .

Note that any satisfiable (≤ k)-CNF formula is an instance
of γ-promise-SAT for γ = k. The reader who is familiar
with Schöning’s random walk algorithm [12] will quickly
see that it solves γ-promise-SAT in expected time O((2(γ −
1)/γ)npoly(length(F ))). We write poly(size(F ))), since with-
out upper bounds on the clause length, the bitsize of F can
be superpolynomial in the number of variables. In particu-
lar, Schöning’s algorithm is polynomial if γ ≤ 2.

Can we use our approach to give a deterministic algorithm
of running time

(2γ/(γ + 1))n+o(n)poly(length(F ))?

Maybe if additionally we bound the clause length from above
by some constant? The case where we find a sufficiently large
set of pairwise disjoint unsatisfied clauses can be treated as
above, but we have no idea how to treat the other case, i.e.,
when searchball-fast calls searchball in Line 8.

APPENDIX

A. ACKNOWLEDGEMENTS
We thank our supervisor Emo Welzl for continuous sup-

port. The second author thanks Konstantin Kutzkov for the
fruitful collaboration on [5].

250



B. REFERENCES
[1] T. Brueggemann and W. Kern. An improved

deterministic local search algorithm for 3-SAT. Theor.
Comput. Sci., 329(1-3):303–313, 2004.

[2] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan,
J. Kleinberg, C. Papadimitriou, O. Raghavan, and
U. Schöning. A deterministic (2− 2/(k + 1))n

algorithm for k-SAT based on local search. In
Theoretical Computer Science 289, pages 69–83, 2002.

[3] T. Hertli. 3-SAT Faster and Simpler - Unique-SAT
Bounds for PPSZ Hold in General. ArXiv e-prints,
Mar. 2011.

[4] D. S. Hochbaum, editor. Approximation algorithms for
NP-hard problems. PWS Publishing Co., Boston, MA,
USA, 1997.

[5] K. Kutzkov and D. Scheder. Using CSP to improve
deterministic 3-SAT. CoRR, abs/1007.1166, 2010.

[6] F. J. MacWilliams and N. J. A. Sloane. The theory of
error-correcting codes. II. North-Holland Publishing
Co., Amsterdam, 1977. North-Holland Mathematical
Library, Vol. 16.

[7] C. H. Papadimitriou. On selecting a satisfying truth
assignment (extended abstract). In Proceedings of the
32nd annual symposium on Foundations of computer
science, SFCS ’91, pages 163–169, Washington, DC,
USA, 1991. IEEE Computer Society.

[8] R. Paturi and P. Pudlák. On the complexity of circuit
satisfiability. In L. J. Schulman, editor, STOC, pages
241–250. ACM, 2010.

[9] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An
improved exponential-time algorithm for k-SAT. J.
ACM, 52(3):337–364, 2005.

[10] D. Rolf. Derandomization of ppsz for unique- -sat. In
SAT, pages 216–225, 2005.

[11] D. Scheder. Guided search and a faster deterministic
algorithm for 3-SAT. In Proc. of the 8th Latin
American Symposium on Theoretical Informatics
(LATIN’08), Lecture Notes In Computer Science,
Vol. 4957, pages 60–71, 2008.

[12] U. Schöning. A probabilistic algorithm for k-SAT and
constraint satisfaction problems. In FOCS ’99:
Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, page 410,
Washington, DC, USA, 1999. IEEE Computer Society.

[13] B. Selman, H. Kautz, and B. Cohen. Local search
strategies for satisfiability testing. In DIMACS
SERIES IN DISCRETE MATHEMATICS AND
THEORETICAL COMPUTER SCIENCE, pages
521–532, 1995.

[14] E. Welzl. Boolean satisfiability – combinatorics and
algorithms (lecture notes), 2005.
http://www.inf.ethz.ch/~emo/SmallPieces/SAT.ps.

[15] R. Williams. Improving exhaustive search implies
superpolynomial lower bounds. In Proceedings of the
42nd ACM symposium on Theory of computing, STOC
’10, pages 231–240, New York, NY, USA, 2010. ACM.

251



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




