
Journal of Mathematical Modelling and Algorithms 3: 349–366, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

349

The Analysis of Evolutionary Algorithms
on Sorting and Shortest Paths Problems

JENS SCHARNOW, KARSTEN TINNEFELD� and INGO WEGENER�

FB Informatik, LS2, University of Dortmund, 44221 Dortmund, Germany.
e-mail: wegener@ls2.cs.uni-dortmund.de

Abstract. The analysis of evolutionary algorithms is up to now limited to special classes of functions
and fitness landscapes. E.g., it is not possible to characterize the set of TSP instances (or another NP-
hard combinatorial optimization problem) which are solved by a generic evolutionary algorithm (EA)
in an expected time bounded by some given polynomial. As a first step from artificial functions to
typical problems from combinatorial optimization, we analyze simple EAs on well-known problems,
namely sorting and shortest paths. Although it cannot be expected that EAs outperform the well-
known problem specific algorithms on these simple problems, it is interesting to analyze how EAs
work on these problems. The following results are obtained:

– Sorting is the maximization of “sortedness” which is measured by one of several well-known
measures of presortedness. The different measures of presortedness lead to fitness functions of
quite different difficulty for EAs.

– Shortest paths problems are hard for all types of EA, if they are considered as single-objective
optimization problems, whereas they are easy as multi-objective optimization problems.

Mathematics Subject Classifications (2000): 68W20, 68W40.

Key words: randomized search heuristics, evolutionary algorithms, analysis of expected run time,
sorting, shortest paths.

1. Introduction

Our aim is to contribute to a theory of evolutionary algorithms (EAs) which ana-
lyzes the expected optimization time of EAs on important and interesting problems.
Nowadays, it is a vision to explain the success of EAs on hard problems by iden-
tifying those instances of the problem where the considered EA finds the optimum
in expected polynomial time. In order to develop tools for such results EAs have to
be analyzed in various situations.

Some interesting classes of fitness functions have been investigated, e.g., sepa-
rable functions [2], monotone polynomials of small degree [17], long-path func-
tions [8, 15, 3], and royal road functions [11, 9]. However, these are artificial
functions and problems.

� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Collaborative Research Center “Computational Intelligence” (SFB 531).

350 JENS SCHARNOW ET AL.

Here we choose the approach to investigate EAs on the most basic and important
computer science problems, namely sorting (the maximization of the sortedness)
and shortest paths problems. We do not and cannot expect EAs to outperform
Quicksort or Dijkstra’s algorithm. We are mainly interested in the analysis of EAs
for black-box optimization. Such EAs are designed to work on different types
of problems. In particular, they apply rather general and, therefore, not problem-
specific search operators. Here, we are interested in the way how different fitness
functions support the search for the optimum performed by EAs. Note that the
considered problems are solvable in short polynomial time by problem-specific
algorithms. Using highly specialized search operators would be close to solving
the problem directly.

Typically, sorting is not considered as a problem of combinatorial optimization.
Sorting algorithms are based on comparisons of two objects. However, each permu-
tation can be considered as an individual which is more or less sorted. The fitness
can be measured by one of the well-known measures of presortedness. This turns
the sorting problem into a combinatorial optimization problem and it seems to be
fundamental to analyze EAs on these problems. In Section 2, the corresponding
fitness functions are introduced and mutation operators are discussed. The analysis
in Section 3 shows that most measures of presortedness contain enough informa-
tion to direct the optimization by EAs. However, there is a well-known measure of
presortedness where EAs have problems to improve the fitness.

Shortest paths problems are more difficult optimization problems and EAs get
stuck for certain instances. In Section 4, we describe the corresponding fitness
function and an alternative as multi-objective optimization problem. Moreover, we
prove that only the multi-objective optimization problem description directs the
search of EAs efficiently. This is the first result of this type for EAs.

This paper is based on the conference paper by Scharnow, Tinnefeld, and We-
gener [16]. However, it contains some new and some improved results and all
proofs are complete.

This paper has been motivated by the vision that we can analyze EAs in com-
binatorial optimization in the same way as other types of randomized optimization
algorithms. The conference version was the first one with a complete analysis
(without any assumption) for practical problems from combinatorial optimization.
Afterwards, Giel and Wegener [6] have analyzed EAs on the problem of computing
maximum matchings.

2. Optimization Problems Based on Sorting Problems

Given a sequence of n distinct elements from a totally ordered set, sorting is the
problem of maximizing the sortedness. By renaming, we can identify the elements
with 1, . . . , n. The aim is to find the unknown optimal permutation πopt such
that (πopt(1), . . . , πopt(n)) is the sorted sequence with respect to some unknown
criterion. The search space is the set of all permutations π on {1, . . . , n}. The

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 351

fitness function fπopt(π) describes the sortedness of (π(1), . . . , π(n)) with respect
to (πopt(1), . . . , πopt(n)). Because of the symmetry in the set of all permutations we
can simplify our notation by considering the case that πopt = id, i.e., πopt(i) = i

for all i. In particular, the fitness function is denoted by f (π) instead of fid(π).
We stress the fact that this does not change the problem. Each randomized search
heuristic which does not use the “names” of the elements works in the same way
for πopt = id as for each other πopt. Now we have to specify an appropriate fitness
function, i.e., a measure of presortedness. Such measures have been introduced in
the discussion of adaptive sorting algorithms (see, e.g., [14]). The number of these
measures is large and one may find measures simplifying the analysis of EAs.
Therefore, we have decided to investigate the five most often discussed measures
of presortedness.

– INV(π) measures the number of pairs (i, j), 1 � i < j � n, such that
π(i) < π(j) (pairs in correct order),

– HAM(π) measures the number of indices i such that π(i) = i (elements at
the correct position),

– RUN(π) is by 1 larger than the number of indices i such that π(i + 1) < π(i)

(number of maximal sorted blocks called runs), leading to a minimization
problem,

– LAS(π) equals the largest k such that π(i1) < · · · < π(ik) for some
i1 < · · · < ik (length of the longest ascending subsequence),

– EXC(π) equals the minimal number of exchanges (of pairs π(i) and π(j)) to
sort the sequence, again leading to a minimization problem.

We remark that these fitness functions are easy to evaluate. By definition,
INV(π) can be computed in time O(n2) and HAM(π) and RUN(π) can be com-
puted in linear time O(n). Orlowski and Pachter [13] describe an algorithm to
compute LAS(π) in time O(n log n). Instead of LAS(π) some authors consider
REM(π), the minimal number of elements which have to be removed to obtain
an ascending sequence. Obviously, REM(π) = n − LAS(π). It is interesting to
note that LAS(π) = n − JUMP(π) where JUMP(π) is the minimal number of
jump operations (the formal definition is given later) to sort the sequence. This
follows since a jump operation can increase the LAS value by at most 1 and since
it is always possible to get this increase. We can take an element which is not in
a specific longest ascending subsequence and let it jump to a position where it
lengthens this ascending subsequence. Finally, EXC(π) can be computed in linear
time. This calculation is based on the cycle structure of permutations. The sorted
sequence is the only one with n cycles. In all other cases, it is possible to choose
an exchange operation which exchanges an element x at a wrong position with the
element sitting at the correct position of x. This increases the number of cycles
by one. Moreover, it is easy to see that it is impossible to increase the number of
cycles by more than one by a single exchange operation.

352 JENS SCHARNOW ET AL.

In order to specify an EA we have to discuss the considered search operators.
We only want to use search operators which have been applied often when ma-
nipulating permutations. This again is motivated by the aim to investigate EAs
which are not specific for sorting. Most crossover operators for permutations are
rather complicated (for an overview see [1]). We are not able to analyze GAs with
crossover for sorting problems (although we conjecture that the generic crossover
operators for permutations are not useful for our problems). Hence, we investigate
only mutation-based EAs.

The most simple local operation is swap(i) which exchanges the elements at the
positions i and i + 1. Swaps are quite local. The minimal number of swaps to sort
a random permutation is known (folklore) to be �(n2). There are three less local
operations which generalize swaps:

– exchange(i, j) exchanges the elements at the positions i and j ,
– jump(i, j) causes the element at position i to jump to position j while the

elements at positions i + 1, . . . , j (if j > i) or j, . . . , i − 1 (if j < i) are
shifted in the appropriate direction,

– reverse(i, j), where i < j , reverses the ordering of the elements at the posi-
tions i, . . . , j .

These are the three local operators which have been applied in many different
situations (evolutionary algorithms or the optimization of the variable order for
OBDDs (ordered binary decision diagrams), the most often used data structure for
Boolean functions). Up to now, we have analyzed only EAs based on exchanges
and jumps.

We illustrate these local operations in Figure 1. Later, we will only count the
number of fitness evaluations as it is usual in the analysis of EAs. This makes
sense only if there are efficient algorithms to compute the fitness efficiently, i.e. in

Figure 1. The local operations for the sorting problem.

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 353

expected time O(n) or a little more. We have discussed above the time to evaluate
the fitness of an individual. The update after a jump step or an exchange step (which
can be realized by two jump steps) can be performed more efficiently in many
cases. For INV, time O(|i − j |) = O(n) is enough. Using standard data structures,
RUN, EXC, and HAM can be updated in time O(1). For LAS, we only have an
O(n log n) bound. Moreover the expected number of local operations is O(1).

As mentioned before, we want to analyze an EA which is not designed for
sorting. Hence, we transform the (1 + 1) EA working on the Boolean search space
{0, 1}n to work on the search space of all permutations on {1, . . . , n}. The local
operation of the (1+1) EA on {0, 1}n is the flip of one bit. Moreover, the (1+1) EA
does not accept worsenings. In order not to get stuck forever in a local optimum
the (1 + 1) EA flips each bit independently from the others with probability 1/n.
Hence, the number of local operations is asymptotically Poisson distributed with
parameter λ = 1.

A (1 + 1) EA on permutations which performs one local operation per step gets
stuck in local optima for certain fitness functions. Therefore, we apply a random
number of local operations per step. Moreover, we avoid steps doing nothing (this
is not essential for the analysis). This leads to the following mutation operator.

– Choose S according to a Poisson distribution with parameter λ = 1 and per-
form sequentially S + 1 exchange or jump steps where for each step (i, j)

is chosen uniformly at random among all pairs (k, l), 1 � k, l � n, k �= l,
and it is decided by a fair coin flip whether exchange(k, l) or jump(k, l) is
performed.

We also may consider only exchange or only jump steps. We analyze the following
evolutionary algorithm shortly called (1 + 1) EA:

– Choose the first search point π uniformly at random.
– Repeat: Produce π ′ by mutation from π and replace π by π ′ if π ′ is not

worse than π (f (π ′) � f (π) in the case of a maximization problem and
f (π ′) � f (π) otherwise).

In applications, one needs a stopping criterion. Here we consider the infinite
stochastic process (π1, π2, π3, . . .) where π1 is the first chosen permutation and
πt, t � 2, equals the permutation π ′ in the t-th step of the above algorithm and
investigate the random variable that equals the first point of time t when πt is
optimal. This random variable is called optimization time. The optimization prob-
lems lead to fitness landscapes since the local operations define a generic graph
on the set of all permutations. The permutations π and π ′ are connected by an
edge if π can be obtained from π ′ by a jump or exchange step. Together with
each of the five fitness functions we obtain a fitness landscape. The (1 + 1) EA
does not accept worsenings. This is why the (1 + 1) EA is often called a hill
climber. There is a major difference to (randomized) local search which performs
only one local operation per step and does not accept worsenings. The (1 + 1) EA
performs sometimes many local operations and can “jump from one hill to another
hill crossing a valley.”

354 JENS SCHARNOW ET AL.

3. The Analysis of the (1 + 1) EA on the Optimization Problems Based
on Sorting Problems

Here we analyze the performance of the (1+1) EA on the different fitness functions
introduced in Section 2. We start with a simple lower bound.

THEOREM 1. The expected optimization time of the (1 + 1) EA on each of the
fitness functions INV, HAM, RUN, LAS, or EXC is bounded below by �(n2).

Proof. The probability of starting with the optimal individual equals 1/(n!).
Otherwise, we investigate the final step producing the optimal individual. It is
necessary that the last local operation (exchange or jump) produces the optimal
individual. However, for each non-optimal individual there are at most two ex-
change operations to change it into the optimal one and there are at most two
jump operations with this property. The bound two follows from the fact that
exchange(i, j) = exchange(j, i) and jump(i, i + 1) = jump(i + 1, i) and that
all other local operations have a different effect. Therefore, the probability of a
success is bounded above by 1

2 · 2
n(n−1)

+ 1
2 · 2

n(n−1)
= 2 · 1

n(n−1)
and the expected

waiting time is bounded below by 1
2n(n − 1). �

Theorem 1 holds for all fitness functions with a unique optimum. Hence, based
on the considered local operations quadratic optimization time is necessary for
such problems. For four of the five fitness landscapes it is not too difficult to obtain
an almost matching upper bound of O(n2 log n).

THEOREM 2. The expected optimization time of the (1 + 1) EA on each of the
fitness functions INV, HAM, LAS, or EXC is bounded above by O(n2 log n).

Proof. First, we consider the fitness function INV. Let π be the current search
point, 1 � i < j � n, and π(i) > π(j), i.e., (i, j) is an incorrect pair. Let
a, b, and c be the number of elements at the positions i + 1, . . . , j − 1 which are
smaller than π(j), between π(j) and π(i), and larger than π(i), respectively. Then
exchange(i, j) increases the fitness by 2b + 1, jump(i, j) changes the fitness by
a + b − c + 1, and jump(j, i) changes the fitness by −a + b + c + 1. At least one
of the values a + b − c + 1 and −a + b + c + 1 is positive. Hence, the fitness is
increased by at least 1 if we perform exactly one local operation (probability 1/e)
and the operation is exchange(i, j) or exchange(j, i) (probability 1/(n(n − 1)) or
a good one among jump(i, j) and jump(j, i) (probability 1/(2n(n − 1)). If the
number of incorrect pairs equals m, the probability of increasing the fitness is at
least 3m/(2en(n − 1)) and the expected waiting time for such an event is bounded
above by 2

3 en(n − 1)/m. Since 1 � m �
(
n

2

)
, the expected optimization time can

be bounded by

2

3
en2

∑
1�m�n(n−1)/2

1/m = 2

3
en2H(N),

where N = n(n − 1)/2 and H(N) is the N-th harmonic number which can be
bounded above by ln N + 1.

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 355

If HAM(π) = k, we have n − k elements at incorrect positions. If i sits at
position j �= i, also the element at position i sits at a wrong position. Then
exchange(i, j) and exchange(j, i) improve the fitness by at least 1. Hence, there
are at least n−k good exchange operations leading to an upper bound of 2en2H(n)

for the expected optimization time of the (1 + 1) EA.
If LAS(π) = k, there are n−k elements outside a fixed ascending subsequence

of length k. Each of them can jump to at least one position where it fits into the as-
cending subsequence. Hence, there are at least n− k good jump operations leading
again to an upper bound of 2en2H(n) for the expected optimization time.

If EXC(π) = k > 0, the permutation π consists of n − k cycles and at most
n − k − 1 cycles of length 1. Hence, at least k + 1 elements are in cycles of length
at least 2. If such an element i is exchanged with the element sitting at position i,
we obtain at least one new cycle of length 1 and we increase the fitness by at least
one. Hence, there are at least k + 1 exchange operations increasing the fitness and
we obtain an upper bound of 2en2H(n) for the expected optimization time. �

The proofs have shown that the constants involved in the O-notation are not
very large and that the constants in the �-notation are not very small. However,
the question is whether the lower or the upper bound is better. Compared to the
situation of ONEMAX(a) = a1 + · · · + an and the typical (1 + 1) EA flipping
each bit with probability 1/n, our methods lead to the lower bound n and the upper
bound enH(n) � en ln n+en. Droste, Jansen, and Wegener [4] have proved a lower
bound of (1/6)n ln n implying that the upper bound is close to optimal. However,
if ONEMAX(a) = k, there are exactly n − k fitness increasing 1-bit mutations.
The situation here is much more difficult since there can be more good local opera-
tions than considered in the proof of the upper bounds. Moreover, for some fitness
functions and search points, one local operation can improve the fitness by more
than 1.

First, we describe a lower bound technique which will be applied later to the
fitness functions HAM, EXC, and LAS. The method can be applied if the following
two conditions are fulfilled. The first one states that one local step can improve the
fitness at most by a constant c. Let us investigate whether this is fulfilled in our
situation:

– LAS: A jump operation can increase the fitness by at most 1, since LAS(π) =
n − JUMP(π) and JUMP equals the minimal number of jump steps. An ex-
change step can increase the fitness by at most 2 since it can be simulated by
two jump steps.

– HAM: An exchange step can improve the fitness by at most 2, since only the
positions of two objects are changed. The method does not work for jump
steps since (2, . . . , n, 1) with fitness 0 can be optimized by jump (n, 1).

– EXC: an exchange step can improve the fitness by at most 1 (by definition of
the fitness function) but (2, . . . , n, 1) has one cycle and, therefore, the worst
fitness and can be optimized by jump (n, 1).

356 JENS SCHARNOW ET AL.

The second condition asks for some k0 = k0(n) such that the following holds. If
the fitness of the current search point is at most k � k0 away from the optimal fit-
ness, then the probability of a fitness improving step is bounded above by O(k/n2).
Now we consider the variant of the (1 + 1) EA which performs one local operation
in each step. Let c be the constant for the largest possible fitness improvement
and let c′ be the constant from the O(k/n2) bound. The expected waiting time to
improve a search point whose fitness differs by j from the optimal fitness is at
least n2/(c′j). If we start with a search point whose fitness is at least k � k0 away
from the optimum we may sum some of these waiting times, at least every cth term
which is minimized by

(n2/c′) ·
(

1

c
+ 1

2c
+ · · · + 1

�k/c�c
)

= �(n2 log k).

If we can apply this method for some k = �(nε), we obtain a lower bound of
�(n2 log n).

We prove that we obtain the same asymptotic lower bound for the (1 + 1) EA.
The first claim is that the probability of more than 3t local operations within t steps
is exponentially small. The number of local operations per step is X + 1 where X

is Poisson distributed with parameter λ = 1. Hence, there are t local operations
for sure and we have to consider the sum of t independent Poisson distributed
random variables (where λ = 1). Each is the limit of Bernoulli distributions with
m trials and a success probability of 1/m. This are altogether tm Bernoulli trials
with a success probability of 1/m. By Chernoff bounds, the probability of at least
2t successes is exponentially small with respect to t . This holds for all m and,
therefore, for m → ∞.

A difference between the (1 + 1) EA and the “local” algorithm with one local
operation per step is the following. The (1+1) EA performs several local operations
in one step and it is decided afterwards whether the new search point is accepted.
This is possible even if one of the local operations would decrease the fitness.
In general, we cannot use bounds obtained for the “local” algorithm as bounds
for the (1 + 1) EA. Here, we are in a special situation. The probability that a
local operation improves the fitness is bounded above by c′k/n2 and the fitness
improvement is bounded by c. We optimistically assume a probability of c′k/n2 of
a fitness improvement which always is assumed to be c. Then the (1+1) EA would
get faster if we could ignore the effects of fitness worsenings. Hence, we can apply
the asymptotic lower bound for the “local” algorithm. We obtain a factor of 1/3
since we consider up to 3t local operations and a factor of 1 − o(1) since there is a
tiny probability of having more than 3t local operations within t steps.

First, we apply the method to the fitness functions HAM and EXC. By the
comments above, we have to restrict the algorithm to a (1 + 1) EA using only
exchange operations.

THEOREM 3. The expected optimization time of the (1 + 1) EA using only ex-
change operations on the fitness function HAM equals �(n2 log n).

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 357

Proof. The upper bound is contained in the proof of Theorem 2. The HAM
value of a random permutation has been investigated intensively in combinatorics
(see [7]). The expected fitness is close to 1 and the probability of a fitness larger
than εn is exponentially small for each ε > 0. Hence, we can apply our lower
bound technique for k = �(n). If the fitness of a search point is n − m (and,
therefore, m from the optimal value), an exchange step of the objects at positions i

and j can improve the fitness only if the positions i and j belong to the m wrong
positions and at least one object obtains its correct position. The probability of
choosing at first an object at a wrong position equals m/n and the probability of
choosing afterwards an appropriate partner is at most 2/(n − 1). Altogether, the
probability of a fitness improving step is bounded by O(m/n2). Hence, the lower
bound technique leads to the proposed bound. �

It is well known that the fitness measures HAM and EXC are closely related.

PROPOSITION 1. If EXC(π) = k > 0, then n − 2k � HAM(π) � n − k − 1.
Proof. If EXC(π) = k > 0, then permutation π consists of n − k < n cycles.

At most n − k − 1 cycles can have length 1 implying that HAM(π) � n − k − 1. If
k � n/2, the lower bound is trivial. Otherwise, n−k > n/2 implying that there are
cycles of length 1. We have n − k positive integers (the cycle lengths) whose sum
equals n. We get the minimal number of cycles of length 1 if all other cycles have
length 2. Then we have k cycles of length 2 and n− 2k cycles of length 1 implying
the lower bound on HAM(π). �
THEOREM 4. The expected optimization time of the (1 + 1) EA using only ex-
change operations on the fitness function EXC equals �(n2 log n).

Proof. The upper bound is again contained in the proof of Theorem 2. Since
HAM(π) � εn with overwhelming probability for the initial search point π , by
Proposition 1, also EXC(π) � (n−εn)/2 = �(n) with overwhelming probability.
An algorithm minimizing EXC maximizes HAM. Hence, we may use the potential
function HAM to measure the progress of the optimization process. This leads to
the same lower bound as obtained in the proof of Theorem 3. �

For the following results we need results on the gambler’s ruin problem (see [5]).
Alice owns A $ and Bob B $. They play a coin-tossing game with a probability of
p �= 1/2 that Alice wins a round in this game, i.e., Bob pays 1 $ to Alice. Let
t := (1 − p)/p. Then Alice wins, i.e., she has (A+B) $ before being ruined, with
a probability of (1 − tA)/(1 − tA+B) = 1 − tA(1 − tB)/(1 − tA+B).

THEOREM 5. The expected optimization time of the (1 + 1) EA on the fitness
function LAS equals �(n2 log n).

Proof. The upper bound is contained in Theorem 2. For the lower bound, we
again apply the lower bound technique discussed above. We choose k0 = nε for
some ε ∈ (0, 1/3). However, we cannot guarantee that the probability of a fitness

358 JENS SCHARNOW ET AL.

increasing step is bounded above by O(k/n2), the general bound is only O(k2/n2)

which only leads to the already proved bound of �(n2). The proof shows that it
is likely (which means in this proof a probability of 1 − o(1)) to produce in short
time an accepted search point where the success probability is O(k/n2) and that
it is likely that we only accept search points with this property. This implies the
proposed bound.

First, we have to investigate properties of search points π where LAS(π) is
large. A permutation π may have many longest ascending subsequences, e.g., (4, 5,

6, 1, 2, 3, 7, 8, . . . , n) has two of them (of length n − 3) and (2, 1, 4, 3, 6, 5, 7,

8, . . . , n) has even 23 = 8 of them. However, the following useful fact holds.

FACT 1. If element i is at position j in some longest ascending subsequence
(LAS), then it is in each LAS containing it at position j .

Proof. If i can sit at position j ′ > j of some LAS (similarly for j ′ < j), then we
can combine the j ′ − 1 elements smaller than i of this LAS, the element i, and the
LAS(π) − j elements larger than i of the first LAS to an ascending subsequence
of length (j ′ −1)+1+ (LAS(π)− j) > LAS(π) in contradiction to the definition
of a LAS. �

Hence, for LAS(π) = n − k, we can define pos(i, π) as the unique position
of element i in a LAS where pos(i, π) = nil indicates that i is in no LAS. The
function pos takes n − k values different from nil implying that there are at least
n − 2k elements with a unique position different from nil. These elements are in
each LAS at the same position. Hence, if such an element is jumping away, then
the fitness decreases. If the element is part of an exchange step, the fitness cannot
increase. Hence, only local operations concerning the at most 2k so-called outsiders
are of interest.

If an exchange step can improve the fitness, then one of the two jumps resulting
in this exchange step increases the fitness. Therefore, it is sufficient to investigate
steps where one of the outsiders jumps. The probability of choosing an outsider
is O(k/n). Hence, we are in a good position if each of these elements has only
O(1) good destinations. Now we apply the fact that we only investigate the last
phase of the search where k is small. We consider the m � n − 2k elements
a1, . . . , am contained in each LAS. In the considered search point π there are
m + 1 so-called spaces, namely the subsequence before a1, the subsequence be-
hind am+1, and the subsequences between ai and ai+1. For each of the n − m

outsiders, there is one space where it can increase the fitness. Hence, we are done if
it is likely enough that each space contains O(1) elements. This is not necessarily
the case for the first considered π . We prove the theorem by proving the following
claims.

CLAIM 1. After a period of �(n log2 n) steps, with probability 1 − o(1), each
space contains at most one outsider and the fitness has not been increased.

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 359

CLAIM 2. If each space of π contains at most one outsider, then in a period
of �(n2 log n) steps, with probability 1 − o(1), each space contains at most 6
outsiders.

If the events considered in the claims happen, we can apply our lower bound
technique for a period of length �(n2 log n) and this proves the theorem. Hence, it
is sufficient to prove the claims.

Proof of Claim 1. The coupon collector’s theorem (see [12]) implies that, with
probability 1 − o(1), this period contains for each element one step with a single
step where this element jumps. For each of the n − m outsiders, we consider
the last of these operations. The probability to jump to a space of length 0 is
1−O(nε−1). Hence, the probability of at least one element jumping into a space of
positive length is O(n2ε−1). These steps are always accepted for outsiders. In order
to increase the fitness, one of the n −m outsiders has to move to one of the at most
O(nε) good destinations. The probability of this is O(n2ε−2) and the probability of
such a step within the period is O(n2ε−1 log2 n). The total error probability can be
bounded by O(n3ε−1) which is o(1), since ε < 1/3. �

Proof of Claim 2. First, we investigate only one space. If the space is of size O(1)

but not empty, the probability that the space size decreases is �(1/n) (choose an
element from the space and let it jump somewhere outside the space). The proba-
bility that one local operation increases the space size is O(nε−1 · n−1) = O(nε−2)

(choose one outsider and move it into the space). We have to take into account
that a step can consist of several local operations. The probability of at least two
space increasing steps is O(n2ε−4). The probability that this happens for one of the
spaces within O(n2 log n) steps is O(n3ε−2 log n) = o(1). Hence, we can exclude
this possibility. The conditional probability that a step changing the space size
is space increasing is p := O(nε−1). For each space, we have a gambler’s ruin
problem and ask for the probability q to obtain space size 6 before space size 0
when starting with space size 1. The parameter t from the gambler’s ruin problem
equals t = (1 − p)/p = �(n1−ε). Therefore, q = (t − 1)/(t6 − 1) = O(n5ε−5).
The probability that this happens for one space within O(n2 log n) steps is bounded
by O(n6ε−5n2 log n) = o(1), since ε < 1/3. �

The fitness function INV is the only one where our arguments result in an upper
bound of O(n2 log n) for the (1+1) EA using only exchange operations and for the
(1 + 1) EA using only jump operations. We are not able to prove a corresponding
lower bound in any of these cases, although we conjecture that these bounds hold.
The difficulty in proving the lower bounds is that a single operation can increase
the fitness from

(
n

2

) − �(n) to the optimal value
(
n

2

)
. Again jump(n, 1) optimizes

(2, 3, . . . , n, 1). The vector (n, 2, . . . , n − 1, 1) is optimized by exchange(1, n).
However, we are only discussing the small differences between the asymptotic

run times n2 and n2 log n. In any case, we conclude that the (1 + 1) EA solves the

360 JENS SCHARNOW ET AL.

sorting problem efficiently if sortedness is measured by INV, HAM, EXC, or LAS.
We still have to discuss the fitness function RUN. Let us investigate the individual

2 5 6 7 14 15 16 | 1 3 4 12 | 10 11 13 | 8 9

with four runs whose borders are visualized. What is the effect of our local oper-
ations? For the element 4 only the exchange with one of the elements 5, 10, or 8
is accepted. In any of these cases, not only the number of runs stays the same but
also their lengths. However, there are exceptions. The exchange of the elements 12
and 9 reduces the number of runs. The elements of the third run are larger than
all but the last element of the second run. If this last element is exchanged with
an element larger than the last but one element of the second run and smaller than
the first element of the third run, the second and the third run melt together. The
number of runs is decreased only if the element 12 fits into the position where it is
placed. If n is large and the runs are long, it seems to be very unlikely that two runs
melt together. All but one element of a run have to be smaller than all elements
of the run that is its right neighbor (or the mirror situation). The fitness function
RUN does not have the property of forcing small elements into one run and large
elements into another one. Moreover, if such a melting of runs is possible, it can
also be realized with jump operations. In our case, the two runs melt together if
element 12 jumps to an arbitrary position and the number of runs is decreased if it
jumps to one of the positions held by 14, 11, or 9.

Each element has exactly one position in each other run where it fits into that
run. Such a jump is accepted, but it decreases the number of runs only if two runs
melt together or if the element was in a run of length 1. In any case, an accepted
jump changes the lengths of the runs. Only with jumps we can hope that a run
vanishes because its length is decreased to 0. This is the reason to investigate the
(1 + 1) EA based on jumps only.

THEOREM 6. Assuming that a run of length at least (3/8)n and another run are
not melted together, the (1 + 1) EA based on jumps has an exponential expected
optimization time and the success probability within less than exponentially many
steps is exponentially small.

Proof. The first search point is a random permutation on {1, . . . , n}. The prob-
ability of having a run whose length is at least n1/2 is exponentially small [10].
Hence, we can assume to start with a large number of short runs.

First, we investigate the (1 + 1) EA performing one local operation per step.
We start our considerations with the first point of time where the length of the
longest run is at least (5/8)n. Because of our assumption the length of this run is
at most (3/4)n since big lengthenings are only possible if runs melt together. Let k

be the number of runs (k � 2 until we have reached the optimum) and let l1, . . . , lk
be the sorted lengths of the runs, i.e., l1 � l2 � · · · � lk.

Now we analyze a random jump operation. For an accepted step increasing the
length of the run with length l1 � (5/8)n, it is necessary to choose one of the n− l1

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 361

elements outside the run and the chosen element has to jump to the unique good
position in the considered run. The probability of such a step equals

n − l1

n
· 1

n − 1
= 1

n − 1
− l1

n(n − 1)
� (3/8) · 1

n − 1
.

For an accepted step decreasing the length of this run it is necessary to choose
one of the l1 elements from the considered run and the element has to jump to one
of the k − 1 good destinations in the k − 1 other runs. The probability for such a
step equals

l1

n
· k − 1

n − 1
� l1

n(n − 1)
� (5/8) · 1

n − 1
.

For our analysis, we count only steps changing l1 since we are proving lower
bounds. If l1 = (3/4)n, we ask for the probability of reaching an l1-value of (7/8)n

before an l1-value of (5/8)n. In such a phase, the l1-value is only changed by 1. We
overestimate the probability by assuming that l1 increases with probability p = 3/8
and decreases with probability 1 − p = 5/8. Now we are in the situation of a
gambler’s ruin problem (see above) where A = B = n/8 and t = (1−p)/p = 5/3.
The probability of reaching (7/8)n before (5/8)n equals

(5/3)n/8 − 1

(5/3)n/4 − 1
= (5/3)−n/8(1 − o(1))

and the expected number of trials before reaching (7/8)n for the first time is expo-
nentially large. Moreover, the success probability within the first (5/3)n/10 trials is
exponentially small.

The calculations above cover the essential ideas of the proof, but we have to
generalize the result to the (1 + 1) EA which may perform many jumps within one
step. To simplify the calculations we start our investigations with the first search
point where n − 2n1/2 � l1 � n − n1/2 and investigate phases of length n3/2. We
prove that, with overwhelming probability, there are steps shortening the long run
altogether by �(n1/2) and all other steps lengthen the long run by O(nε) for each
ε > 0. For ε < 1/2 and n large enough, this implies that the long run never gets
full length and is no longer than n − n1/2 at the end of the phase. Hence, we can
repeat the arguments. We find the optimum only if one phase does not have the
properties which occur with overwhelming probability. This proves the theorem.

A step with one jump where an element from the long run jumps to a good
position outside this run shortens the long run. The probability of such a step is at
least �(1/n) (probability 1/e for a single jump, �(1) for choosing an element from
the long run, and at least 1/n for a good destination). Hence, by Chernoff bounds,
the total shortenings in one phase are �(n1/2) with overwhelming probability.

In a step with r jumps, a single jump can cause a lengthening of the long run
only if the jumping element does not belong to the long run (probability O(n−1/2))
and its destination is at most r positions away from the correct position in the long

362 JENS SCHARNOW ET AL.

run (probability O(r/n)), since only r−1 elements can jump away. The probability
of r jumps equals �(1/(r − 1)!) and the expected number of jumps in steps with r

jumps in one phase is �(n3/2r/(r−1)!). The expected contribution to lengthenings
is �(r2/(r − 1)!). The probability of a contribution of �(nε/2) is exponentially
small. This holds for all r but it is sufficient to apply these rough estimates for
r � nε/2. The probability of one step with more than nε/2 jumps is exponentially
small. This proves the claim discussed above. �

4. The Single Source Shortest Paths Problem

The single source shortest paths problem (SSSP) is a fundamental combinatorial
optimization problem. The usual description is the following one. The problem
instance is described by a distance matrix D = (dij)1�i,j�n where dij ∈ N ∪ {∞}
is the length of the direct connection from place i to place j . The problem is to
compute for the source s := n and each place i a shortest path from s to i. The
naive description of all shortest paths may need a storage space of �(n2). Dijkstra’s
famous algorithm has a computation time of �(n2) and computes a description of
all shortest paths which needs only storage space �(n). For each place i the place vi

is the direct predecessor on a shortest path from s to i.
In order to consider EAs for the SSSP we use the following model of the prob-

lem. The search space consists of all v = (v1, . . . , vn−1) ∈ {1, . . . , n}n−1 where
vi �= i. Place vi is considered as the direct predecessor of place i. Hence, each
search point v describes a directed graph on V = {1, . . . , n} where s = n has
indegree 0 and all other nodes have indegree 1. However, there are invalid graphs
which are not trees rooted at s. Figure 2 shows a valid tree and an invalid graph.

A local operation for this problem is to replace the predecessor vi of some
place i � n − 1 by another predecessor v′

i ∈ {1, . . . , n} − {i, vi}. This operation
changes the considered paths for all places in the subtree of place i. The number of

Figure 2. Illustration of the search points v = (7, 6, 10, 7, 1, 5, 10, 7, 5) leading to a tree of
s–i-paths and w = (9, 4, 10, 2, 1, 5, 10, 7, 5) leading to an invalid graph.

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 363

different local operations equals (n−1)(n−2) and a flip is a randomly chosen local
operation. For a mutation step, we choose S according to a Poisson distribution
with parameter λ = 1 and perform sequentially S + 1 flips. Again, we cannot
analyze crossover-based EAs.

Finally, we have to describe an appropriate fitness function f . The first idea
is to define f (v) = ∞ for all invalid v and f (v) as the sum of the lengths of the
s–i-paths in the tree T (v) described by v. However, this leads to a difficult problem
for all randomized search heuristics, at least for certain problem instances. Let
di,i−1 < ∞ and dij = ∞ if j �= i − 1. Then the search point v∗ = (2, 3, . . . ,

n − 2, n − 1, n) is optimal and it is the only search point where f (v∗) < ∞.
Hence, this optimization problem is equivalent to the well-known scenario named
needle in the haystack. There is a unique global optimum and all other search
points have the same fitness. Then, nothing is better than random search which
takes exponential time with overwhelming probability.

We can hope for better results of randomized search heuristics only if the fit-
ness function provides more information. We may restrict the possible problem
instances by considering only distance matrices where dij ∈ {1, . . . , d∗} ∪ {∞}
for some parameter d∗ (possibly depending on n). If a search point v describes for
j places paths of finite length, then f (v) is defined as the sum of the sum of the
lengths of these paths and (n − 1 − j)nd∗. Here “non-paths” and paths of infinite
length contribute nd∗ to the fitness and, therefore, more than the maximal length
of a path of finite length. However, we cannot distinguish between non-paths and
paths of infinite length. This can be changed by assigning nd∗ to paths of infinite
length and n2d∗ to places i for which v does not describe an s–i-path.

We are not able to analyze the (1 + 1) EA for this fitness function. Instead
of that we have analyzed a simple EA on a multi-objective fitness function since
the core of the SSSP is to minimize the lengths of n − 1 paths. Let f (v) =
(f1(v), . . . , fn−1(v)) where fi(v) is the length of the s–i-path if v describes such
a path and fi(v) = ∞ otherwise. We define a partial order on R

n−1. It is f (v) �
f (v′) iff fi(v) � fi(v

′) for all i ∈ {1, . . . , n − 1}. The objective in multi-objective
optimization is the computation or approximation of the set of Pareto optimal
search points. A search point is called Pareto optimal if it is optimal, in our case
minimal, with respect to the partial order described above. The theory on SSSP
tells us that there is exactly one Pareto optimal fitness vector l∗ = (l∗1 , . . . , l

∗
n−1)

describing the lengths of all shortest s–i-paths. There can be many search points v

such that f (v) is Pareto optimal. We are satisfied if we have computed one optimal
search point.

Now, we have a vector-valued fitness function and a partial order on the fitness
vectors. The multi-objective (1 + 1) EA chooses a search point v uniformly at
random. Then it applies the mutation operator described above and accepts v′ iff
f (v′) � f (v).

There are SSSP instances with a unique optimal search point (this seems to be
a typical case in applications). For these instances we can prove an �(n2) bound

364 JENS SCHARNOW ET AL.

on the expected optimization time of the multi-objective (1 + 1) EA. This can be
done by the same arguments as in the proof of Theorem 1 and we do not repeat the
arguments.

THEOREM 7. The expected optimization time of the multi-objective (1 + 1) EA
on SSSP is bounded above by O(n3).

We prove a more sophisticated bound. Let ti be the smallest number of edges
on a shortest s–i-path, mj := #{i | ti = j}, and T = max{j | mj > 0}. Then we
prove the upper bound

en2
∑

1�j�T

(ln mj + 1).

This bound has its maximal value �(n3) for m1 = · · · = mn−1 = 1. We also
obtain the bound O(n2T log n) which is much better than O(n3) in the typical case
where T is small.

Proof. The proof is based on the following simple observation. Whenever
fi(v) = l∗i , we only accept search points v′ where fi(v

′) = l∗i . Hence, we do not
forget the length of shortest paths which we have found (although we may switch
to another shortest path). Now we assume that we have a search point v where
fi(v) = l∗i for all i where ti < t . Then we wait until this property holds for all i

where ti � t . For each place i where ti = t and fi(v) > l∗i there exists a place j

such that tj = t − 1, j is the predecessor of i on a shortest s–i-path using t edges,
and fj (v) = l∗j . Then a mutation flipping only vi into j is accepted and leads to
a search point v′ where fi(v

′) = l∗i . The probability of such a mutation equals
1/(e(n−1)(n−2)) (1/e the probability of flipping exactly one position, 1/(n−1)

the probability of flipping the correct position, and 1/(n − 2) the probability of
flipping it to the right value). If we have r such places, the success probability is
at least r/(en2) and the expected waiting time is bounded above by en2/r. The
largest value for r is mt and we have to consider each of the values mt, . . . , 1
at most once. Hence, the total expected time of this phase is bounded above by
en2(1 + 1

2 + · · · + 1
mt

) � en2(ln mt + 1). Since t can take the values 1, . . . , T we
have proved the claimed bound. �

The upper bound of Theorem 7 holds even in the case where we allow infinite
distance values. Let us consider the special case where di,i−1 = 1 and dij = ∞
otherwise. This is the needle-in-the-haystack scenario for the single-objective op-
timization problem. Theorem 7 implies an O(n3) bound of the (1 + 1) EA in the
multi-objective optimization problem. This bound is tight for this problem instance.
As long as vn−1 �= n we have f (v) = (∞, . . . ,∞). The probability of starting with
vn−1 = n equals 1/(n − 1). In the negative case, we have to wait for a mutation
where vn−1 is mutated into n. The probability that a local operation does this change
is 1/(n−1)(n−2). The expected number of local changes per step equals 2. Hence,

THE ANALYSIS OF EVOLUTIONARY ALGORITHMS 365

the expected time until vn−1 = n equals �(n2). Until vn−1 = n, the value of vn−2

does not influence the fitness vector. Therefore, we can repeat the arguments for
vn−2, . . . , v1 and obtain an expected optimization time of �(n3).

Altogether, the multi-objective (1 + 1) EA on SSSP has an expected optimiza-
tion time of O(n3) and also �(n2) if the solution is unique. For typical problem
instances, the more sophisticated bound which follows from the proof of Theo-
rem 7 is “much closer” to n2 than to n3. Hence, the multi-objective (1 + 1) EA
is an efficient heuristic to solve SSSP (without beating Dijkstra’s algorithm). Our
results on SSSP also show that multi-objective problems should not be transformed
artificially into single-objective problems.

5. Conclusion

Robust problem solvers should also solve well-known simple optimization prob-
lems efficiently. This has been investigated for the sorting problem (maximizing
the sortedness based on some measure of presortedness) and the single-source-
shortest-paths problem. For four out of five fitness functions described by the
best-known measures of presortedness simple EAs work very efficiently with the
mutation operators used. However, the fifth measure of presortedness leads to an
optimization problem which is difficult for the simple EAs investigated here.

There are instances of the SSSP problem which are difficult for single-objective
optimization. The modeling of the SSSP as a multi-objective optimization problem
reflects the structure of the problem and the fitness vector reveals enough informa-
tion to direct the search of a simple EA. Usually, multi-objective optimization is
only applied if no single-objective optimization problem covers the whole structure
of the problem. Here it has been shown that a multi-objective problem model may
lead to a simpler problem.

References

1. Bäck, T., Fogel, D. B. and Michalewicz, Z. (eds): Handbook of Evolutionary Computation,
Oxford University Press, 1997.

2. Droste, S., Jansen, T. and Wegener, I.: A rigorous complexity analysis of the (1+1) evolutionary
algorithm for separable functions with Boolean inputs, Evolutionary Computation 6 (1998),
185–196.

3. Droste, S., Jansen, T. and Wegener, I.: On the optimization of unimodal functions with the
(1 + 1) evolutionary algorithm, in Parallel Problem Solving from Nature – PPSN V, Lecture
Notes in Comput. Sci. 1498, 1998, pp. 13–22.

4. Droste, S., Jansen, T. and Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm,
Theoret. Comput. Sci. 276 (2002), 51–81.

5. Feller, W.: An Introduction to Probability Theory and its Applications, Wiley, New York, 1971.
6. Giel, O. and Wegener, I.: Evolutionary algorithms and the maximum matching problem, in

Proc. of 20th Symp. of Theoretical Aspects of Computer Science – STACS, Lecture Notes in
Comput. Sci. 2607, 2003, pp. 415–426.

7. Graham, R. L., Knuth, D. E. and Patashnik, O.: Concrete Mathematics, Addison-Wesley, 1994.

366 JENS SCHARNOW ET AL.

8. Horn, J., Goldberg, D. E. and Deb, K.: Long path problems, in Parallel Problem Solving from
Nature – PPSN III, Lecture Notes in Comput. Sci. 866, 1994, pp. 149–158.

9. Jansen, T. and Wegener, I.: Real royal road functions – where crossover provably is essential,
in Genetic and Evolutionary Computation Conf. – GECCO, 2001, pp. 375–382.

10. Knuth, D. E.: The Art of Computer Programming. Vol. 3: Searching and Sorting, Addison-
Wesley, 1973.

11. Mitchell, M., Holland, J. H. and Forrest, S.: When will a genetic algorithm outperform hill
climbing, in J. Cowan, G. Tesauro and J. Alspector (eds), Advances in Neural Information
Processing Systems, Morgan Kaufman, 1994, pp. 51–58.

12. Motwani, R. and Raghavan, P.: Randomized Algorithms, Cambridge University Press, 1995.
13. Orlowski, M. and Pachter, M.: An algorithm for the determination of a longest increasing

subsequence in a sequence, Comput. Math. Appl. 17 (1989), 1073–1075.
14. Petersson, O. and Moffat, A.: A framework for adaptive sorting, Discrete Appl. Math. 59

(1995), 153–179.
15. Rudolph, G.: How mutations and selection solve long path problems in polynomial expected

time, Evolutionary Computation 4 (1997), 195–205.
16. Scharnow, J., Tinnefeld, K. and Wegener, I.: Fitness landscapes based on sorting and shortest

paths problems, in Parallel Problem Solving from Nature – PPSN VII (best paper award),
Lecture Notes in Comput. Sci. 2439, 2002, pp. 54–63.

17. Wegener, I.: Theoretical aspects of evolutionary algorithms, in Int. Colloq. on Automata,
Languages, and Programming – ICALP, Lecture Notes in Comput. Sci. 2076, 2001, pp. 64–78.

