
Chapter 12

Automaton Searching on
Tries.
Mikhail Lakunin

Above there were considered a lot of algorithms that allow us to search
for a pattern in a string and a few powerful methods to give asymptotic
estimations of such algorithms. There is an extension of such algorithms,
not for one pattern but for a regular expression. The algorithms that are
to be reviewed there run on the preprocessed text (we use Patricia tree)
and are of logarithmic expected time of the size of the text for the stricted
class of regular expressions and in a sublinear expected time for all regular
expressions.

It’s the first such algorithm to be found with this complexity.
The main purpose of the text is to give understanding of what’s going

on, and therefore some of the technicals could be omitted. For the precise
explanation the reader is referred to the original paper.

12.1 Structure of the paper

1. What we actually want to do or our task

2. The algorithms in a “few words”

3. Introducing indexing structures such as suffix tries and Patricia trees and a
notation used in the Regular Languages theory(the Theory of formal languages)

4. Consider the simple algorithm for the stricted class of a regular expression that
runs in logarithmic time.

5. Consider more complicated general algorithm.

6. Give estimation of the general algorithm considering sketch of technicals.

7. How to apply “general estimation theorem” to the particular cases.

8. Consider some heuristic for improving size of the query.

9. Open problems and conclusion (generalization of what we has spoken about)

12.2 Our task or what we want to do

We want to find efficient algorithm of finding all occurrences of a query given in the
form of a regular language searching on the static preprocessed text. By finding all

129

130 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

the occurrences we mean that we are going to find all the positions of the text from
where one substring from our query set could start. In general queries are not of the
big length, so there and below we state that the size of the query is bounded by the
constant. We use there automaton that searches through the indexing tree and we state
that our algorithm is pretty efficient, i.e. works in sublinear expected time (in average
case). Moreover there exist small stricted subset of such queries that the expected
time will be logarithmic. Besides we consider a powerful tool for estimating expected
time of given automaton, the theorem that allows it on basis of some knowledge about
incidence matrix of the automaton. And after all of that we suggest an heuristic for
enhancing or for clarifying the query that helps to work all the algorithm faster.

12.3 Algorithm in a “few words”

As in previous parts we’ve got a large input text that is static or in other words we
can construct indexing structure on it and we don’t bother about how to reconstruct
it if the text will change. So we construct a trie (from word retrieval) that is indexing
binary tree (we suppose our alphabet is binary; if it’s not we just use some encoding
to obtain binary text and hence binary alphabet) was discussed by Olga Sergeeva. It
becomes obvious to us that we can find arbitrary substring in the text in height of
indexing tree length. In the case of perfectly balanced tree it’s log2 n, where n is the
length of the string.
Now we’re able to find a single substring in a large text in logarithmic of the size of the
text expected time (in average case, considering uniform distribution) Let’s complicate
the task. If set of all the substrings we are to find in the text could be represented
as a prefix from minimal preword set concatenated with any continuation. For such
a set we can state that it’s possible to search for that query in a time o(

‚
‚query

‚
‚)

independently of the size of the answer, i.e. in logarithmic expected time of size of the
text.
Then we consider general regular expression query, construct Deterministic Automaton
for it and traverse it on the index trie. It could be showed that Automaton don’t visit
all the vertices of the index trie (the quantity of which is O(n)),but only a part of
them in average case, that’s the main idea of sublinear expected time.

12.4 Basic index structures and notation

To approach crystal understanding we need to introduce or just to help to recall some
basics facts we are going to manage with soon after.
As it has been said we consider only binary alphabet, any other alphabet could be
easily converted to the binary one with some encoding

12.4.1 Indexing structures

Definition 12.1. Trie is a binary index tree for a text(tree each edge of that is
marked with a character), that satisfy following conditions:

1. each path of it (from the root to a leaf) consist of the prefix of one and only one
of the suffixes of the text

2. paths are as short as possible satisfying first condition

3. each leaf of it is marked with the position of the first character of the corre-
sponded suffix

The main problem of the pure trie is that the upper bound of the number of inner
nodes is O(n2) that approaches in unbalanced tries, that’s why in practice enhanced
structure is of often use. It’s so-called Patricia tree.

12.4. BASIC INDEX STRUCTURES AND NOTATION 131

Figure 12.1: Binary trie (external node label indicates position in the text) for
the 01100100010111

132 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

Definition 12.2. Patricia tree constructed on the basis of the trie, but with one
enhancement. We exclude such nodes that have only one descendant and one ancestor,
in other words we exclude nodes that are not leafs and that are not nodes of the
“bifurcation”. To not miss the correspondence with the initial text we remember the
quantity of steps we need to omit to get to the next “bifurcation” node.

Note. Asymptotically in average case:
Height of the trie is: 2log2(n) +O(log2(n)) [Reg81]
Height of the Patricia tree: log2(n) +O(log2(n)) [Reg81]

12.4.2 Basic definitions of the Theory of Formal Languages

General definition and notation.

1. Σ is a set of all characters (Alphabet), in some cases one character from the set

2. ε is an empty string

3. xy is concatenation of strings x and y

4. w = xyz if w is concatenation of strings x, y, z then:

(a) x is a prefix of w

(b) z is a suffix of w

(c) y is a substring of w

Let’s define operations we are to use specifying regular expression (RE).

1. r,q are sets of strings

2. r + q is a unite of these sets (r + q = r ∪ q)
3. r? is one or zero occurrences of r (r? = ε+ r in our notation)

4. rk is k occurrences of r

5. r≤k is from zero to k occurrences of r (r≤k =
Pk

i=0 r
i)

6. r∗ is Kleene closure,i.e. any number of occurrences of r (r∗ =
P+∞

i=0 r
i)

7. r+ is one or more occurrences of r (r+ =
P+∞

i=1 r
i)

12.5 Algorithm for a restricted class of regular
expression

There we consider algorithm of searching for the stricted class of queries. It was briefly
reviewed above, there we define it more exactly.
Let’s introduce new expression class so-called prefixed regular expressions that is sub-
class of regular expressions class that was defined above.

Definition 12.3. Prefixed regular expression (PRE) is:

1. ∅ is a PRE (the empty set)

2. ε is a PRE({ε} the set of empty string)

3. for each a ∈ Σ, a is a PRE ({a})
4. if p, q ∈ PRE and r ∈ RE (such that ε ∈ r) and x ε Σ then:

(a) p+ q is a PRE (union)

(b) xp is a PRE (concatenation with a character on the left)

(c) pr is a PRE (concatenation with ε-regular expression on the right)

12.5. A RESTRICTED CLASS OF REGULAR EXPRESSION 133

(d) p∗ is a PRE

Example 12.1. This is PRE

ab(bc∗ + d+ + f(a+ b))

Example 12.2. This is not PRE

aΣ∗b

Example 12.3. This is not PRE too

(a+ b)(c+ d)(e+ f)

Statement. There exist such unique and finite subset(we call it preword set) of the
(given) PRE set that satisfy following conditions:

1. for every word in the PRE set there exist unique prefix from preword set

2. for every word from the preword set there’s no other prefix in the set

To search a PRE query, we construct a tree (so-called Complete Prefix Trie) in similar
way as we construct trie, but we use not suffixes of the text as we do in case of trie
but all the strings in preword set of the query. And then traverse through that tree
and through our index trie simultaneously for an answer.

Definition 12.4. Complete Prefix Trie (CPT) is the trie of the set of the strings
such that:

1. there are no truncated paths(as in Patricia tree), that is, every word corresponds
to a complete path in the trie

2. if a word x is a prefix of another word w, then only x is stored in the trie.

The second rule has appeared since the search for x is sufficient to also find the
occurrences of w. We are going to find only starting positions, aren’t we?
We’ve constructed the Complete Prefix Trie so we are now able to traverse through
that.
We traverse simultaneously, if possible, the complete prefix trie(CPT) and the trie
(Patricia tree) of all suffixes of the text (the index). That is, follow at the same time a
0 or 1 edge(we consider binary alphabet), if they exist in both the trie and the CPT.
All the subtrees in the index associated with terminal nodes in the complete prefix
trie are the answer. As in prefix searching, because we may skip bits while traversing
the index, a final comparison with the actual text is needed to verify the result.
Let’s formulate the algorithm.

Algorithm. Searching for a query:

1. Construct the Complete Prefix Trie from the query

2. Traverse simultaneously the complete prefix trie and Patricia tree to obtain an
answer.

Note. Since we may skip bits while traversing the index(if we used Patricia tree), a
final comparison with the actual text is needed to verify the result.

Because the number of nodes of the complete prefix trie of the preword set is O(|query|),
the search time is also O(|query|).

Conclusion. It is possible to search a PRE-query in time O(|query|) independently
of the size of the answer.

134 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

Figure 12.2: Complete Prefix Trie for a query ab(bc∗ + d+ + f(a+ b))

12.6. GENERAL ALGORITHM 135

12.6 General algorithm

The extension of the previously discussed idea leads to general algorithm of searching
query given as regular expression.

12.6.1 What we want to do there

There we present the algorithm that can search for arbitrary regular expression in
time sublinear in n on the average. For this, we simulate a DFA (Deterministic Finite
Automaton) in a binary trie built from all the suffixes of a text.
Since the situation is pretty similar with the previous algorithm. Let’s start from
presenting algorithm itself.

Algorithm. General Automaton Search

1. Convert the regular expression(query) into minimized DFA(independent of the
size of the text)

2. Eliminate outgoing transitions from final states

3. Convert character DFA into binary DFA (Each state will then have at most two
outgoing transitions, one labeled with 0 and one labeled with 1), i.e. applying
some encoding

4. Simulate binary DFA on the binary trie of all suffixes we’ve constructed(See
pictures of DFA and binary index trie).
That is:

(a) root of the tree with initial state.

(b) for any internal node associated with state i, associate its left descendant
with state j, if i > j for a bit 0, and associate its right descendant with
state k, if i > k for a bit 1.

5. For every node of the index associated with a final state, accept the whole
subtree and halt.

6. On reaching an external node, run the remainder of the automaton on the single
string determined by this external node.

12.7 Efficiency Estimation for the General Al-
gorithm

The precise average case analysis of the above algorithm is not simple. Some explana-
tions were given in “few words” in the start of the paper, There I’ll try to clarify the
situation a bit, for precise explanation reader is referred to the original paper.

12.7.1 The structure of the proof

The situation is as follows. We have Patricia indexing trie with O(n) nodes and the
DFA(Deterministic finite automaton) and we want to calculate how many nodes of
the Patricia indexing trie will be visited by automaton. We want to prove that this
quantity is less then O(n) (asymptotically).
There I want to give a sketch of the proof on step by step basis.

1. We introduce N i
n, i.e. the quantity of nodes of our index Patricia tree that was

visited by Automaton when the quantity of suffixes in the tree is n and we’ve
engaged our automaton on the i-th node.

136 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

Figure 12.3: DFA with corresponded index trie
4

2. We note that our automaton from each node can go only in 2 directions in the
index tree and taking into account all the possible combinations of the ways
suffixes could go in i-th node we can say , therefore we can say that:

N i
n = 1 +

1

2n

nX

l=0

n

l

!
“

N j
l +Nk

n−l

”
!

where j, k are states DFA goes on 0, 1 correspondingly (see picture with DFA
and trie)

3. Now it looks like equation could be solvable with generating function. We apply
generate function,

4. and convert it to matrix equation writing it for all the starting nodes in a unit.

5. Then we “solve” equation and find the generating function. The generating
function equals to the matrix series, where the matrix is incidence matrix of
DFA.

6. Then we convert it to a Jordan form and decompose matrix equation looking at
the single values in a matrix.

7. Then we apply Mellin transform method to get some knowledge about this single
values series and about matrix series

8. Using that we got some estimation of eigenvalues and information about N , i.e.
about number of nodes was visited and about number of comparison DFA made
(in average case)

9. Finally we obtain following theorem(taking in account number of steps we need
for verifying in case of Patricia tree):

Theorem 12.1. The expected number of comparisons performed by a minimal
DFA for a query q represented by its incidence matrix H while searching the trie
of n random strings is sublinear, and given by:

O
`
(log2n)t nr

´

,where r = log2λ,λ = maxi(|λi|),t = maxi(mi − 1,such that |λ| = λi), and the
λi are the eigenvalues of H with multiplicities mi.

12.8. APLLYING THE GENERAL ESTIMATION THEOREM 137

12.8 How to apply “general estimation theorem”
to the particular cases

To analyze average time of searching for particular query or particular type of the
query ,we need to consider DFA of the query and its incidence matrix and eigenvalues
of the matrix. And then we can apply “the main theorem” to obtain estimation.

Example 12.4. For example, DFAs having only cycles of length 1, have a largest
eigenvalue equal to 1, but with multiplicity proportional to the number of cycles,
obtaining a complexity of O(polylog(n)).

Example 12.5. For the regular expression (0(011)0)∗1, the eigenvalues are:

21/3,−1

2
(21/3 − 31/221/3i),−1

2
(21/3 − 31/221/3i), 0

, and the first 3 have the same modulus. The solution in this case is N 1
n = O(n1/3)

12.9 Heuristic for optimizing the query

12.9.1 What we mean by optimizing

In this section, we present a general heuristic, which we call substring analysis,
to plan what algorithms and order of execution should be used for a generic pattern
matching problem, which we apply to regular expressions.
The aim of this section is to find from every query a set of necessary conditions that
have to be satisfied.

12.9.2 Substring graph

Definition 12.5. Substring graph of a regular expression is an acyclic directed
graph such that each node is labeled by a string. And its defined recursively by the
following rules:

1. G(ε) is a single node labeled ε.

2. G(x) for any x ∈ Σ is a single node labeled with x.

3. G(s+t) is the graph built from G(s) and G(t) with an ε-labeled node with edges
to the source nodes and an ε-labeled node with edges from the sink nodes.

4. G(st) is the graph built from joining the sink node of G(s) with the source node
of G(t), and relabeling the node with the concatenation of the sink label and
the source label.

5. G(r+) are two copies of G(r) with an edge from the sink node of one to the
source node of the other.

6. G(r∗) is two ε-labeled nodes connected by an edge .

12.9.3 How to Use

reducing the size of the query

After building G(q), we search for all node labels in G(q) in our index of suffixes, deter-
mining whether or not that string exists in the text (O(|q|) time). For all nonexistent
labels, we remove:

1. the corresponding node,

138 CHAPTER 12. AUTOMATON SEARCHING ON TRIES.

2. adjacent edges,

3. and any adjacent nodes (recursively) from which all incoming edges or all out-
going edges have been deleted.

This reduces the size of the query.

estimating final answer size

From the number of occurrences for each label we can obtain an upper bound on the
size of the final answer to the query:

1. for adjacent nodes (serial, or “and” nodes) we multiply both numbers

2. for parallel nodes (“or” nodes) we add the number of occurrences

Note. ε-nodes are treated in special way.

Managing ε-nodes:

1. consecutive serial ε-nodes are replaced by a single ε-node.

2. chains that are parallel to a single ε-node, are deleted

3. the number of occurrences in the remaining ε-nodes is defined as 1

After the simplifications,ε-nodes are always adjacent to non-ε-nodes, since ε was as-
sumed not to be a member of the query

12.10 Open problems and conclusion

We have shown that using a trie or Patricia tree, we can search for many types of
string searching queries in logarithmic average time, independently of the size of the
answer. We also show that automaton searching in a trie is sublinear in the size of
the text on average for any regular expression, this being the first algorithm found
to achieve this complexity. Similar ideas have been used since for approximate string
searching by simulating dynamic programming over a digital tree [Gonnet et al. 1992;
Ukkonen 1993], also achieving sublinear time on average. In particular, Gonnet et al.
[1992] have used this algorithm for protein matching.
In general, however, the worst case of automata searching is linear. For some regular
expressions and a given algorithm it is possible to construct a text such that the
algorithm must be forced to inspect a linear number of characters. The pathological
cases consist of periodic patterns or unusual pieces of text that, in practice, are rarely
found.
Finding an algorithm with logarithmic search time for any RE query is still an open
problem [Galil 1985]. Another open problem is to derive a lower bound for searching
REs in preprocessed text.

