Chapter 8

Analysis of Pattern Occurances

Roland Aydin

This paper will summarize the proof for the formula to compute the expected number of occurrences of a given pattern H in a text of size n. The intuitive solution of $E[O_n(H)] = P(H)(n - m + 1)$ will be verified utilising generating functions. Frequency analysis will rely on the decomposition of the text T onto languages, the so-called initial, minimal, and tail languages. Going from there to their generating functions both for a Markovian and a Bernoulli environment, the formula will be shown to work due to properties of the respective generating functions.

8.1 Preliminaries

Markov sequence

A sequence X_1, X_2, \dots of random variates is called a *Markov sequence* of order 1 iff, for any n,

 $F(X_n|X_{n-1}, X_{n-2}, \dots, X_1) = F(X_n|X_{n-1})$

i.e., if the conditional distribution F of X_n , assuming $X_{n-1}, X_{n-2}, ..., X_1$ equals the conditional distribution F of X_n assuming only X_{n-1} .

Markov chain

If a Markov sequence of random variates X_n take the discrete values $a_1, ..., a_N$ then

 $P(x_n = a_{in} | x_{n-1} = a_{in-1}, \dots, x_1 = a_{i1}) = P(x_n = a_{in} | x_{n-1} = a_{in-1})$

and the sequence x_n is called a *Markov chain* of order 1.

Correlation of patterns

A correlation of two patterns X (size m) and Y is a string, denoted by XY, over the set $\Omega = \{0, 1\}$.

$$|XY| = |X|$$

Each position i can be computed as

 $i = 1 \Leftrightarrow$ place Y at $X_i \land$ all overlapping pairs are identically i = 0

Example of pattern correlation

Let $\Omega = \{M, P\}$, X = MPMPPM and Y = MPPMP. Then XY can be deduced in the following manner:

\times :	НТНТТН	
Υ:	HTTHT	0
	НТТНТ	0
	H⊤TH⊤	1
	HTTHT	0
	НТТНТ	0
	H⊤TH⊤	1

whilst YX can be shown to equal 00010

Representation of the correlation

Other representations of either string:

- 1. as a number in some base t. Thus, e.g. $XY_2 = 9$
- 2. as a polynomial. Thus, e.g. $XY_t = t^3 + 1$

Autocorrelation

Furthermore, *autocorrelation* of X can be defined as XX. It represents the periods of X, i.e. those shifts of X that cause that pattern to overlap itself. Using Y = MPPMP from our previous example, YY evaluates to 10010 Using A = MMM, AA evaluates to 111

Autocorrelation set

Given a string H, the autocorrelation set A_{HH} or just A is defined as

$$A_{HH} = \{H_{k+1}^m : H_1^k = H_{m-k+1}^m\}$$

Example of an autocorrelation set

Let H = SOS The autocorrelation reveals to be

$$HH = 101$$

whereas the autocorrelation set in that case is

 $A = \{\epsilon, 01\}$

8.2. SOURCES

Let's play a game

The Penny game - invented by Penney.

Each player chooses a pattern.

They then flip a coin until the pattern comes up consecutively. The player who chooses only one symbol (k times), has a chance to win of at least 0.5 This is because of the "optimal" autocorrelation.

8.2 Sources

Bernoulli

A Bernoulli Source, or memoryless source, generates text randomly.

Every subsequent symbol (of a finite alphabet) is created independently of its predecessors, and the probability of each symbol is not necesserily the same.

If it is, the Source is called a *symmetric*, or *unbiased* Bernoulli Source.

If text over an alphabet S is generated by a Bernoulli Source, then each symbol $s \in S$ always occurs with probability P(s).

Markovian Source

A *Markovian Source* generates symbols based not on the *a priori* probability of each symbol.

Instead, it only heeds a (finite) set of predecessors to ascertain the probability of each next symbol.

In order to do so, it requires a *memory* of previously emitted symbols.

Text generated by a Markovian Source is a realization of a Markov sequence of order K.

K denotes the number of previous symbols that the probability of the next symbol depends on.

In our application, this sequence will be stationary and $K=1, \mbox{ i.e. }$ a first-order Markov sequence.

When computing the next symbol, we only need to observe the last symbol. In our case (K = 1), the transition matrix is defined by

$$P = \{p_{i,j}\}_{i,j\in S}$$

where

$$p_{i,j} =$$
Probability $(t_{k+1} = j | t_k = i)$

The matrix entry (i, j) denotes the conditional probability of the next symbol being j if the current symbol is i.

8.3 Generating functions of languages

What is a language, after all

A language L is a collection of words. This collection must satisfy certain properties to belong to a specific language.

Generating functions

Given a sequence $\{a_n\}_{n>0}$, we know its generating function is defined as

$$A(z) = \sum_{n \ge 0} a_n z^n$$

For sinister purposes, we represent it differently as

$$A(z) = \sum_{\alpha \in S} z^{w(\alpha)}$$

where S is a set of objects (words ...) and $w(\alpha)$ is a weight function. Henceforth we will interpret it as the size of α , i.e. $w(\alpha) = |\alpha|$

The equivalence becomes evident when we set a_n to be the number of objects α satisfying $w(\alpha) = n$. Now we have a more combinatorial view

Generating function of a language

Now, for any language L, we define its generating function L(z) as

$$L(z) = \sum_{w \in L} P(w) z^{|w|}$$

where P(w) is the probability of word w's occurence and |w| is the length of w. So the coefficient of $z^{|w|}$ is the sum of the probabilites all words of that length. In addition, we assume that $P(\epsilon) = 1$. So every language includes the empty word (as we know).

Conditional generating function

In addition, the H-conditional generating function of L is given as

$$L_H(z) = \sum_{w \in L} P(w|w_{-m} = h_1 \dots w_{-1} = h_m) z^{|w|}$$
$$= \sum_{w \in L} P(w|w_{-m}^{-1} = H) z^{|w|}$$

where w_{-i} is the symbol preceding the first character of w at distance i. We use this definition for Markovian sources, where the probability depends on the previous symbols.

Example: autocorrelation generating function

In our previous example, the autocorrelation set was

$$4 = \{\epsilon, 01\}$$

The generating function of the set is

$$A(z) = 1 + \frac{z^2}{4}$$

given a Bernoulli source, and

$$A_{SOS}(z) = 1 + p_{SO}p_{OS}z^2$$

given a Markovian source of order one.

Formulating our objective

We will now formulate the special generating functions whose closed form we will later strive to compute:

- 1. $T^{(r)}(z) = \sum_{n>0} Pr(O_n(H) = r)z^n$
- 2. $T(z,u) = \sum_{r=1}^{\infty} T^{(r)}(z)u^r = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r)z^n u^r$

8.4 Declaring languages

Introduction

Let H be a given pattern.

- The *initial language* R is the set of words containing only **one** occurrence of H, located at the **right** end.
- The *tail language* U is defined as the set of words u such that Hu has exactly **one** occurrence of H, which occurs at the **left** end.
- The minimal language M is the set of words w such that Hw has exactly two occurrences of H, located at its **left** and **right** ends.

Component languages

We differentiate several special languages, given a pattern H. "." stands for concatenation of words.

1. $R = \{r : r \in T_1 \land H \text{ occurs at the right end of } r\}$

2.
$$U = \{u : H \cdot u \in T_1\}$$

3. $M = \{ w : H \cdot w \in T_2 \land H \text{ occurs at the right end of } H \cdot w \}$

8.5 Language relationships

Qualities of T_r

At first, we will try to describe the languages T and T_r in terms of R,~M and $U\colon \forall r\geq 1$:

$$T_r = R \cdot M^{r-1} \cdot U$$

Composition proof (T_r)

Proof: First occurance of H in a T_r word determines the prefix pwhich is in R. From that prefix on, we look onward until the next occurance of H. The found word w is $\in M$. After r-1 iterations, we add a H-devoid suffix, which is in U, because its prefix has H at the end.

Qualities of T

The "extended" version of T_r , its words including an arbitrary number of H occurrences, can be composed similarly:

$$T = R \cdot M^* \cdot U$$

where $M^* := \bigcup_{r=0}^{\infty} M^r$

Composition proof (T)

Proof:

A word belongs to T, if for some $1 \le r < \infty$ it belongs to T_r . As $\bigcup_{r=1}^{\infty} M^{r-1} = \bigcup_{r=0}^{\infty} M^r = M^*$, the assertion is proven.

Four language relationships

Analyzing the relationships between M, U and R further, we introduce

- 1. W, the set of all words
- 2. S, the alphabet set
- 3. the operators "+" and "-", which denote disjoint union and language subtraction

Four language relationships I

$$\bigcup_{k\geq 1} M^k = W \cdot H + (A - \{e\})$$

Proof:

 $\begin{array}{l} \leftarrow : \\ \text{Let } k \text{ be the number how often } H \text{ occurs in } W \cdot H. \\ k \geq 1. \\ \text{The } last \text{ occurrence of } H \text{ in every included word is on the right.} \\ \text{That means, that } W \cdot H \subseteq \bigcup_{k \geq 1} M^k. \\ \rightarrow : \\ \text{Let } w \in \bigcup_{k \geq 1} M^k. \\ \text{Iff } |w| \geq |H|, \text{ then surely the inclusion is correct.} \end{array}$

Iff |w| < |H| (how can that be?), then $w \notin W \cdot H$.

But then, necessarily, $w \in A - \{\epsilon\}$, because the second H in Hw overlaps with the first H by definition (it is element of M^k), so w must be in the autocorrelation set A.

Four language relationships II

$$U \cdot S = M + U - \{e\}$$

Proof:

All words of S consist of a single character s.

Given a word $u \in U$ and concatenating them, we differentiate two cases.

If Hus contains a second occurrence of H, it is clearly at the right end. Then $us \in M$. If Hus does contain only a single H, then us must be non-empty word of U.

Four language relationships III

$$H \cdot M = S \cdot R - (R - H)$$

Proof: \rightarrow : Let *sw* be a word in $H \cdot M$, $s \in S$ (we can write every such word in this way WLOG).

sw contains exactly two times H, evidently at its left, and also at its right end. Thus, sw is also $\in S\cdot R$

 \leftarrow : If a word swH from $S \cdot R$ is not in R, then because it contains a second H starting at the left end of sw, because $wH \in R$. Of course, in that case it is $\in H \cdot M$.

Four language relationships IV

$$T_0 \cdot H = R \cdot A$$

Proof:

Let wH be $\in T_0 \cdot H$. Then there can be either be one or more occurences of H in wH, one of which is at the right end.

If there is no second one, then wH is $\in R$ by definition of R

If, however, there is a second one, then it overlaps somehow with the first one.

So we view the word until the end of the *first* H, which is in R. Due to the overlapping, the remaining part is $\in A$.

One more

Combining relationships II and III yields

$$H \cdot U \cdot S - H \cdot U = (S - \epsilon)R$$

No proof is necessary, as we have validated both ingredients. Using II, the left side is $H(U \cdot S - U) = H \cdot M$ The right side is

$$S \cdot R - R = S \cdot R - (R \cap S \cdot R) = S \cdot R - (R - H)$$

Together, that is just relationship III.

8.6 Languages & Generating Functions

in the bernoulli environment

We will now transcend from languages to their generating functions. Given any language L_1 , we know its generating function to be

$$A_1(z) = \sum_{w \in L_1} P(w) z^{|w|}$$

So what is the the result of multiplying two languages (i.e. concatenating them) in respect to their gen. func.? What is $L_3 = L_1 \cdot L_2$?

$$A_{3}(z) = \sum_{w \in L_{3}} P(w) z^{|w|}$$

=
$$\sum_{w \in L_{1} \land w \in L_{2}} P(w_{1}) P(w_{2}) z^{|w_{1}| + |w_{2}|}$$

=
$$\sum_{w \in L_{1}} P(w_{1}) z^{|w_{1}|} \sum_{w \in L_{2}} P(w_{2}) z^{|w_{2}|}$$

=
$$A_{1}(z) A_{2}(z)$$

! The assumption P(wv) = P(w)P(v) only holds true with a memoryless source.

Special Cases

A few particular cases:

- S (alphabet set) $\Rightarrow S(z) = \sum_{s \in S} P(s) z^{|s|} = z$
- $L = S \cdot L_1 \Rightarrow L(z) = zL_1(z)$
- $\{\epsilon\} \Rightarrow E(z) = \sum_{w \in \{\epsilon\}} P(w) z^{|w|} = 1 \cdot 1 = 1$
- $H \Rightarrow H(z) = \sum_{w=H} P(H) z^{|H|} = P(H) z^m$
- W (the set of all words) $\Rightarrow W(z) = \sum P(w)z^{|k|} = \sum_{k\geq 0} z^k = \frac{1}{1-z}$

8.7 Looking for Generating Functions

Translating I

We will now attempt to translate our known language relationships into generating functions: In case I only, the formula we derive is correct just for a memoryless source.

$$\bigcup_{k \ge 1} M^k = W \cdot H + (A - \{e\})$$
$$\sum_{k=1}^{\infty} M_H(z)^k = W(z) \cdot P(H)z^m + A_H(z) - 1$$
$$\sum_{k=0}^{\infty} M_H(z)^k - 1 = \frac{1}{1-z} \cdot P(H)z^m + A_H(z) - 1$$
$$\frac{1}{1-M_H(z)} = \frac{1}{1-z} \cdot P(H)z^m + A_H(z)$$

Translating II

$$U \cdot S = M + U - \{e\}$$
$$U \cdot S - U = M - \{e\}$$
$$U_H(z)z - U_H(z) = M_H(z) - 1$$
$$U_H(z)(z - 1) = M_H(z) - 1$$
$$U_H(z) = \frac{M_H(z) - 1}{(z - 1)}$$

Translating III

$$H \cdot M = S \cdot R - (R - H)H \cdot M - H \qquad = S \cdot R - R$$

$$P(H)z^{m}M_{H}(z) - P(H)z^{m} = S(z) \cdot R(z) - R(z)$$

$$P(H)z^{m}(M_{H}(z) - 1) = R(z)(z - 1)$$

$$R(z) = P(H)z^{m}\frac{M_{H}(z) - 1}{z - 1}$$

$$R(z) = P(H)z^{m}U_{H}(z)$$

8.8 Main findings I

 $T^{(r)}(z)$

We remember, that for $r\geq 1$

$$T_r = R \cdot M^{r-1} \cdot U$$

We have now gleaned every component, and can translate it (for $r \ge 1$) into

$$T^{(r)}(z) = R(z)M^{r-1}(z)U_H(z)$$

T(z, u)

We do also remember, that

$$T = R \cdot M^* \cdot U$$

As T is the language with any number of Hs, its generating function is indeed ...

$$T(z,u) = R(z)\frac{u}{1 - uM_H(z)}U_H(z)$$

8.9 On to other shores

What is left to do?

We still have no formula of gathering $O_n(H)$, i.e. the frequency of *H*-occurrences (|H| = m) in random text of length *n* over an alphabet *S* with |S| = V. Let us make an educated guess, though. What we do not know, is how important *overlapping* is. Assuming to disregard that topic, the answer *could* be

$$E[O_n(H)] = P(H)(n - m + 1)$$

It is. But why?

Using derivatives

Looking at our bivariate generating function of T,

$$T(z,u) = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n u^r$$

we notice that we would like the two sums to be reversed. Deriving it after u ...

$$T_u(z, u) = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n r \; (=\#\text{Occ}) \; u^{r-1}$$

 \dots and setting u to 1 leads to \dots

$$T_u(z,1) = \sum_{n=0}^{\infty} (\sum_{r=1}^{\infty} Pr(O_n(H)r)z^n)$$

Proof Preparations

To shorten things, we introduce

$$D_H(z) = (1-z)A_H(z) + z^m P(H)$$

and rewrite $M_H(z)$ as

$$M_H(z) = 1 + \frac{z - 1}{D_H(z)}$$

as well as

$$U_H(z) = \frac{1}{D_H(z)}$$

and

$$R(z) = z^m P(H) \frac{1}{D_H(z)}$$

Deriving the closed form formula (1)

$$T_u(z, u) = R(z)U_H(z)\frac{u}{(1 - uM_H)}\frac{d}{du}$$

= $R(z)U_H(z)\frac{(1 - uM) + uM}{(1 - uM_H)^2}$
= $R(z)U_H(z)\frac{1}{(1 - uM_H)^2}$

Deriving the closed form formula (2)

 \boldsymbol{u} is now set to 1 due to the previous calculus:

$$T_u(z,1) = R(z)U_H(z)\frac{1}{(1-M_H)^2}$$

= $R(z)U_H(z)(1-1+\frac{z-1}{D_H(z)})^{-2}$
= $R(z)U_H(z)\frac{D_H(z)^2}{(z-1)^2}$
= $R(z)\frac{1}{D_H(z)}\frac{D_H(z)^2}{(z-1)^2}$
= $z^m P(H)\frac{1}{D_H(z)}\frac{D_H(z)}{(z-1)^2}$
= $\frac{z^m P(H)}{(z-1)^2}$

Main findings II

As the text has length n, we are extracting the nth coefficient of $T_u(z, 1)$, and voilà

$$E[O_n] = [z^n]T_u(z, 1)$$

= $P(H)[z^n]z^m(1-z)^{-2}$
= $P(H)[z^{n-m}](1-z)^{-2}$
= $(n-m+1)P(H)$

About certainty

the variance of $E(O_n(H))$ is, for a r > 1:

$$Var[O_n(H)] = nc_1 + c_2 + O(r^{-n})$$

where

$$c_1 = P(H)(2A_H(1) - 1 - (2m - 1)P(H) + 2P(H)E_1))$$

$$c_{2} = P(H)((m-1)(3m-1)P(H) - (m-1))$$

(2A_H(1) - 1) - 2A'_{H}(1)) - 2(2m-1)
(P(H)²E_{1} + 2E_{2}P(H)²)

 E_1, E_2 are

$$E_1 = \frac{1}{\pi_{h_1}} [(P - \Pi)Z]_{h_m, h_1} E_2 \qquad \qquad = \frac{1}{\pi_{h_1}} [(P^2 - \Pi)Z^2]_{h_m, h_1}$$

Without going into detail (cf. literature references), we see that the Variance depens mainly on the length of the text plus a constant.