
Chapter 8

Analysis of Pattern
Occurances
Roland Aydin

This paper will summarize the proof for the formula to compute the
expected number of occurrences of a given pattern H in a text of size n.
The intuitive solution of E[On(H)] = P (H)(n −m + 1) will be verified
utilising generating functions. Frequency analysis will rely on the decom-
position of the text T onto languages, the so-called initial, minimal, and
tail languages. Going from there to their generating functions both for
a Markovian and a Bernoulli environment, the formula will be shown to
work due to properties of the respective generating functions.

8.1 Preliminaries

Markov sequence

A sequence X1, X2, ... of random variates is called a Markov sequence of order 1 iff,
for any n,

F (Xn|Xn−1, Xn−2, ...X1) = F (Xn|Xn−1)

i.e., if the conditional distribution F of Xn, assuming Xn−1, Xn−2, ...X1 equals the
conditional distribution F of Xn assuming only Xn−1.

Markov chain

If a Markov sequence of random variates Xn take the discrete values a1, ..., aN then

P (xn = ain|xn−1 = ain−1, ..., x1 = ai1) = P (xn = ain|xn−1 = ain−1)

and the sequence xn is called a Markov chain of order 1.

Correlation of patterns

A correlation of two patterns X (size m) and Y is a string, denoted by XY , over the
set Ω = {0, 1}.

|XY | = |X|

67



68 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

Each position i can be computed as

i = 1⇔ place Y at Xi ∧ all overlapping pairs are identicalelse i = 0

Example of pattern correlation

Let Ω = {M,P}, X = MPMPPM and Y = MPPMP . Then XY can be deduced
in the following manner:

whilst Y X can be shown to equal 00010

Representation of the correlation

Other representations of either string:

1. as a number in some base t. Thus, e.g. XY2 = 9

2. as a polynomial. Thus, e.g. XYt = t3 + 1

Autocorrelation

Furthermore, autocorrelation of X can be defined as XX. It represents the periods of
X, i.e. those shifts of X that cause that pattern to overlap itself. Using Y = MPPMP
from our previous example, Y Y evaluates to 10010 Using A = MMM , AA evaluates
to 111

Autocorrelation set

Given a string H, the autocorrelation set AHH or just A is defined as

AHH = {Hm
k+1 : Hk

1 = Hm
m−k+1}

Example of an autocorrelation set

Let H = SOS The autocorrelation reveals to be

HH = 101

whereas the autocorrelation set in that case is

A = {ε, 01}



8.2. SOURCES 69

Let’s play a game

The Penny game - invented by Penney.

Each player chooses a pattern.

They then flip a coin until the pattern comes up consecutively. The player who chooses
only one symbol (k times), has a chance to win of at least 0.5 This is because of the
”optimal” autocorrelation.

8.2 Sources

Bernoulli

A Bernoulli Source, or memoryless source, generates text randomly.

Every subsequent symbol (of a finite alphabet) is created independently of its prede-
cessors, and the probability of each symbol is not necesserily the same.

If it is, the Source is called a symmetric, or unbiased Bernoulli Source.

If text over an alphabet S is generated by a Bernoulli Source, then each symbol s ∈ S
always occurs with probability P (s).

Markovian Source

A Markovian Source generates symbols based not on the a priori probability of each
symbol.

Instead, it only heeds a (finite) set of predecessors to ascertain the probability of each
next symbol.

In order to do so, it requires a memory of previously emitted symbols.

Text generated by a Markovian Source is a realization of a Markov sequence of order
K.

K denotes the number of previous symbols that the probability of the next symbol
depends on.

In our application, this sequence will be stationary and K = 1, i.e. a first-order
Markov sequence.

When computing the next symbol, we only need to observe the last symbol.

In our case (K = 1), the transition matrix is defined by

P = {pi,j}i,j∈S

where

pi,j = Probability (tk+1 = j|tk = i)

The matrix entry (i, j) denotes the conditional probability of the next symbol being j
if the current symbol is i.

8.3 Generating functions of languages

What is a language, after all

A language L is a collection of words.

This collection must satisfy certain properties to belong to a specific language.

Thus, we can associate with a language L its generating function L(z).



70 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

Generating functions

Given a sequence {an}n≥0, we know its generating function is defined as

A(z) =
X

n≥0

anz
n

For sinister purposes, we represent it differently as

A(z) =
X

α∈S

zw(α)

where S is a set of objects (words ...) and w(α) is a weight function.
Henceforth we will interpret it as the size of α, i.e. w(α) = |α|
The equivalence becomes evident when we set an to be the number of objects α
satisfying w(α) = n. Now we have a more combinatorial view

Generating function of a language

Now, for any language L, we define its generating function L(z) as

L(z) =
X

w∈L

P (w)z|w|

where P (w) is the probability of word w’s occurence and |w| is the length of w.
So the coefficient of z|w| is the sum of the probabilites all words of that length.
In addition, we assume that P (ε) = 1. So every language includes the empty word (as
we know).

Conditional generating function

In addition, the H-conditional generating function of L is given as

LH(z) =
X

w∈L

P (w|w−m = h1 . . . w−1 = hm)z|w|

=
X

w∈L

P (w|w−1
−m = H)z|w|

where w−i is the symbol preceding the first character of w at distance i.
We use this definition for Markovian sources, where the probability depends on the
previous symbols.

Example: autocorrelation generating function

In our previous example, the autocorrelation set was

A = {ε, 01}

The generating function of the set is

A(z) = 1 +
z2

4

given a Bernoulli source, and

ASOS(z) = 1 + pSOpOSz
2

given a Markovian source of order one.



8.4. DECLARING LANGUAGES 71

Formulating our objective

We will now formulate the special generating functions whose closed form we will later
strive to compute:

1. T (r)(z) =
P

n≥0 Pr(On(H) = r)zn

2. T (z, u) =
P∞

r=1 T
(r)(z)ur =

P∞
r=1

P∞
n=0 Pr(On(H) = r)znur

8.4 Declaring languages

Introduction

Let H be a given pattern.

• The initial language R is the set of words containing only one occurrence of H,
located at the right end.

• The tail language U is defined as the set of words u such that Hu has exactly
one occurrence of H, which occurs at the left end.

• The minimal language M is the set of words w such that Hw has exactly two
occurrences of H, located at its left and right ends.

Component languages

We differentiate several special languages, given a pattern H. ”·” stands for concate-
nation of words.

1. R = {r : r ∈ T1 ∧H occurs at the right end ofr}
2. U = {u : H · u ∈ T1}
3. M = {w : H · w ∈ T2 ∧H occurs at the right end of H · w}

8.5 Language relationships

Qualities of Tr

At first, we will try to describe the languages T and Tr in terms of R, M and U :

∀r ≥ 1 :

Tr = R ·Mr−1 · U

Composition proof (Tr)

Proof:

First occurance of H in a Tr word determines the prefix p

which is in R.

From that prefix on, we look onward until the next occurance of H.

The found word w is ∈ M .

After r − 1 iterations, we add a H-devoid suffix, which is in U , because its prefix has
H at the end.

2



72 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

Qualities of T

The ”extended” version of Tr, its words including an arbitrary number of H occur-
rences, can be composed similarily:

T = R ·M∗ · U
where M∗ :=

S∞
r=0M

r

Composition proof (T )

Proof:
A word belongs to T , if for some 1 ≤ r <∞ it belongs to Tr.
As
S∞

r=1M
r−1 =

S∞
r=0M

r = M∗, the assertion is proven.

2

Four language relationships

Analyzing the relationships between M, U and R further, we introduce

1. W , the set of all words

2. S, the alphabet set

3. the operators ”+” and ”-”, which denote disjoint union and language subtraction

Four language relationships I
[

k≥1

Mk = W ·H + (A− {e})

Proof:
←:
Let k be the number how often H occurs in W ·H.
k ≥ 1.
The last occurrence of H in every included word is on the right.
That means, that W ·H ⊆ Sk≥1 M

k.
→:
Let w ∈ Sk≥1 M

k.
Iff |w| ≥ |H|, then surely the inclusion is correct.
Iff |w| < |H| (how can that be?), then w /∈ W ·H.
But then, necessarily, w ∈ A − {ε}, because the second H in Hw overlaps with the
first H by definition (it is element of Mk), so w must be in the autocorrelation set A.

2

Four language relationships II

U · S = M + U − {e}
Proof:
All words of S consist of a single character s.
Given a word u ∈ U and concatenating them, we differentiate two cases.
If Hus contains a second occurrence of H, it is clearly at the right end. Then us ∈M .
If Hus does contain only a single H, then us must be non-empty word of U .

2



8.6. LANGUAGES & GENERATING FUNCTIONS 73

Four language relationships III

H ·M = S · R− (R −H)

Proof: →: Let sw be a word in H ·M , s ∈ S (we can write every such word in this
way WLOG).

sw contains exactly two times H, evidently at its left, and also at its right end. Thus,
sw is also ∈ S ·R
←: If a word swH from S ·R is not in R, then because it contains a second H starting
at the left end of sw, because wH ∈ R. Of course, in that case it is ∈ H ·M .

2

Four language relationships IV

T0 ·H = R ·A

Proof:

Let wH be ∈ T0 ·H. Then there can be either be one or more occurences of H in wH,
one of which is at the right end.

If there is no second one, then wH is ∈ R by definition of R

If, however, there is a second one, then it overlaps somehow with the first one.

So we view the word until the end of the first H, which is in R. Due to the overlapping,
the remaining part is ∈ A.

2

One more

Combining relationships II and III yields

H · U · S −H · U = (S − ε)R

No proof is necessary, as we have validated both ingredients.

Using II, the left side is H(U · S − U) = H ·M
The right side is

S ·R −R = S ·R − (R ∩ S ·R) = S ·R − (R −H)

Together, that is just relationship III.

8.6 Languages & Generating Functions

in the bernoulli environment

We will now transcend from languages to their generating functions. Given any lan-
guage L1, we know its generating function to be

A1(z) =
X

w∈L1

P (w)z|w|



74 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

So what is the the result of multiplying two languages (i.e. concatenating them) in
respect to their gen. func.? What is L3 = L1 · L2?

A3(z) =
X

w∈L3

P (w)z|w|

=
X

w∈L1∧w∈L2

P (w1)P (w2)z
|w1|+|w2|

=
X

w∈L1

P (w1)z
|w1|

X

w∈L2

P (w2)z
|w2|

= A1(z)A2(z)

! The assumption P (wv) = P (w)P (v) only holds true with a memoryless source.

Special Cases

A few particular cases:

• S (alphabet set) ⇒ S(z) =
P

s∈S P (s)z|s| = z

• L = S · L1 ⇒ L(z) = zL1(z)

• {ε} ⇒ E(z) =
P

w∈{ε} P (w)z|w| = 1 · 1 = 1

• H ⇒ H(z) =
P

w=H P (H)z|H| = P (H)zm

• W (the set of all words) ⇒W (z) =
P
P (w)z|k| =

P

k≥0 z
k = 1

1−z

8.7 Looking for Generating Functions

Translating I

We will now attempt to translate our known language relationships into generating
functions: In case I only, the formula we derive is correct just for a memoryless source.

[

k≥1

Mk = W ·H + (A− {e})

∞X

k=1

MH(z)k = W (z) · P (H)zm +AH(z)− 1

∞X

k=0

MH(z)k − 1 =
1

1− z · P (H)zm +AH(z)− 1

1

1−MH(z)
=

1

1− z · P (H)zm +AH(z)

Translating II

U · S = M + U − {e}
U · S − U = M − {e}

UH(z)z − UH(z) = MH(z)− 1

UH(z)(z − 1) = MH(z)− 1

UH(z) =
MH(z)− 1

(z − 1)



8.8. MAIN FINDINGS I 75

Translating III

H ·M = S · R− (R −H)H ·M −H = S · R−R
P (H)zmMH(z)− P (H)zm = S(z) ·R(z)−R(z)

P (H)zm(MH(z)− 1) = R(z)(z − 1)

R(z) = P (H)zmMH(z)− 1

z − 1

R(z) = P (H)zmUH(z)

8.8 Main findings I

T (r)(z)

We remember, that for r ≥ 1

Tr = R ·Mr−1 · U
We have now gleaned every component, and can translate it (for r ≥ 1) into

T (r)(z) = R(z)Mr−1(z)UH(z)

T (z, u)

We do also remember, that

T = R ·M∗ · U
As T is the language with any number of Hs, its generating function is indeed ...

T (z, u) = R(z)
u

1− uMH(z)
UH(z)

8.9 On to other shores

What is left to do?

We still have no formula of gathering On(H), i.e. the frequency of H-occurrences
(|H| = m) in random text of length n over an alphabet S with |S| = V .

Let us make an educated guess, though. What we do not know, is how important
overlapping is. Assuming to disregard that topic, the answer could be

E[On(H)] = P (H)(n−m+ 1)

It is.

But why?

Using derivatives

Looking at our bivariate generating function of T ,

T (z, u) =
∞X

r=1

∞X

n=0

Pr(On(H) = r)znur



76 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES

we notice that we would like the two sums to be reversed. Deriving it after u ...

Tu(z, u) =
∞X

r=1

∞X

n=0

Pr(On(H) = r)znr (=#Occ) ur−1

... and setting u to 1 leads to ...

Tu(z, 1) =

∞X

n=0

(

∞X

r=1

Pr(On(H)r)zn

Proof Preparations

To shorten things, we introduce

DH(z) = (1 − z)AH(z) + zmP (H)

and rewrite MH(z) as

MH(z) = 1 +
z − 1

DH(z)

as well as

UH(z) =
1

DH(z)

and

R(z) = zmP (H)
1

DH(z)

Deriving the closed form formula (1)

Tu(z, u) = R(z)UH(z)
u

(1− uMH)

d

du

= R(z)UH(z)
(1− uM) + uM

(1− uMH)2

= R(z)UH(z)
1

(1− uMH)2

Deriving the closed form formula (2)

u is now set to 1 due to the previous calculus:

Tu(z, 1) = R(z)UH(z)
1

(1−MH)2

= R(z)UH(z)(1− 1 +
z − 1

DH(z)
)−2

= R(z)UH(z)
DH(z)2

(z − 1)2

= R(z)
1

DH(z)

DH(z)2

(z − 1)2

= zmP (H)
1

DH(z)

DH(z)

(z − 1)2

=
zmP (H)

(z − 1)2



8.9. ON TO OTHER SHORES 77

Main findings II

As the text has length n, we are extracting the nth coefficient of Tu(z, 1), and voilà

E[On] = [zn]Tu(z, 1)

= P (H)[zn]zm(1− z)−2

= P (H)[zn−m](1− z)−2

= (n−m+ 1)P (H)

About certainty

the variance of E(On(H) is, for a r > 1:

V ar[On(H)] = nc1 + c2 +O(r−n)

where

c1 = P (H)(2AH(1) − 1 − (2m− 1)P (H) + 2P (H)E1))

c2 = P (H)((m− 1)(3m− 1)P (H)− (m− 1)

(2AH(1)− 1) − 2A′
H(1))− 2(2m− 1)

(P (H)2E1 + 2E2P (H)2

E1, E2 are

E1 =
1

πh1

[(P −Π)Z]hm,h1E2 =
1

πh1

[(P 2 −Π)Z2]hm,h1

Without going into detail (cf. literature references), we see that the Variance depens
mainly on the length of the text plus a constant.



78 CHAPTER 8. ANALYSIS OF PATTERN OCCURANCES


