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Abstract 
 

Mechanical waves are waves which propagate through a material medium (solid, liquid, or 

gas) at a wave speed which depends on the elastic and inertial properties of that medium. 

Often there will be energy transferring accompany with wave propogation. In this small report, 

we would like to introduce three different main wave types which are longitudinal waves, 

transverse waves and bending waves. The general procedure for our exploration will be to 

derive the governing differential wave equations with the help of kinematic, material and 

equilibrium equations for each individual wave type. Then we have a comparison of main 

characteristics for different wave types, particularly propagation velocity. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



 
 
 
 

 

Contents 
 
 
 
 

1 
1.1 
1.2 

2 
2.1 
2.2 

3 
3.1 
3.2 

 

Classification of wave types and their characteristics 
 

Longitudinal Waves 
Pure longitudinal waves 
Quasi-longitudinal waves 
Transverse Waves 
Transverse plane waves 
Torsional waves 
Bending Waves 
Pure bending waves 
Corrected bending waves 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
1 Logitudinal Waves 
1.1 Pure Longitudinal Waves 
 

Pure longitudinal waves can occur in solids, as well as in liquids and gases. This is defined as 

waves in which the direction of the particle displacements coincides with the direction of 

wave propagation. One can readily visualize such waves by studying the motion of two planes 

which in the undisturbed medium are parallel to each other and perpendicular to the direction 

of propagation. The kinematic relations are shown in the picture below: 
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 the picture above that the unbanlanced stress causes the element to 

orresponding equation of motion maybe written according to Newton’s 
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 to describe the kinematics of a sound field in terms of velocity xv    
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One may rewrite Eq. (2a), after differentiation with respect to time, as x xv
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We can observe that the relation between the two variables x and vxσ is such that the spatial 

derivative of the one is proportional to the time derivative of the other. So differentiate with 

respect to t or x and combination of Eqs. (5) and (6) results in the wave eqution, 
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We can have a look at the solution of this partial differential equation. 
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We can see that the velocity increases with increasing stiffness and decreases with increasing 

density. 

 

1.2 Qusai-Longitudinal Waves 
 

The previously discussed pure longitudinal waves can occur only in solids whose dimensions 

in all directions are much greater than the wave length. We would now have a derivation of 

the relationship between D (longitudinal stiffness of the material) and E (modulus of elasticity 

or Young’s modulus). 

For the fist case, E is defined as the ratio of the stress to strain in the tension direction, which 

is under the condition of unconstrained cross section (cross-contraction phenomenon occurs). 
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If the lateral contraction is constrained to zero, then there results a three-dimensional instead 

of a one-dimensional stress condition, because then there are produced the additional normal 

stresses  and y zσ σ  in the directions normal to the tension direction. These stresses reduce the 

displacement in the x-direction. Poisson’s effects are taken into consideration. 
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For the case where no cross-sectional contraction is permitted, namely for 0y zε ε= =  



One finds by adding the last two of Eqs. (9) that 2
1y z x
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into the first of these equations, leads to 
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Thus the longitudinal stiffness which was introduced in Eq. (2), depends on the material 

parameters E and µ  according to the relation: 
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Clearly, D is always greater than E. 

The wave equation differs from the pure longitudinal wave only in replacement of D by E: 
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The propagation velocity here is L
Ec                                                                         (12)
ρ

=C  

This value is smaller than the velocity of pure longitudinal waves. For 0.3µ = , the difference 

between these two velocities amounts to 16%, which is not entirely negligible. It thus is 

important to note which longitudinal wave is meant in any given situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
2 Transverse Waves 
2.1 Transverse Plane Waves 
 

Solids do not only resist changes in volume, they also resist changes in shape. This resistance 

to changes in shape comes about because, unlike a liquid or gas, a solid can support tangential 

stresses on any cutting plane, even with the material at rest. It is the shear stresses which make 

it possible for solids to exist in it’s own shape. It is also because of shear stresses that 

transverse plane wave motions can occur in solids bodies, where the direction of propogation 

is perpendicular to the direction of the displacement. See below the kinematic relations: 

 

 

 

 

 

 

 

 

 
Because the transverse displacements of two planes which are a distance dx apart differ by an 

amount dx
x
η∂
∂

, an element which originally was a rectangle with sides dx and dy is distorted 

into a parallelogram. The shear angle 
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The shear deformations always are associated with shear stresses and xy yxτ τ , where the first 

subscript indicates the axis normal to the plane on which the stress acts, and the second 

indicates the direction of the stress. Moment equlibrium of the element requires that the shear 

stresses on two perpendicular plane must be of equal magnitude. These stresses are 

proportional to the strain xyγ  they produce, so that yx G                                    (14)xy xyτ τ γ= =  



With the aid of Eq. (13), G                                                                                    (14a)xy x
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The constant of proportionality G is known as the shear modulus which will be derived later. 

The velocity in the y-direction is associated with displacement as yv                      (15)
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Differentiation of Eq. (14a) with respect to time as xy yv
=G                                      (16)

t x
τ∂ ∂

∂ ∂
 

The newton’s law relation is xy yv
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This procedure can be totally comparable with the procedure in derivation of pure 

longitudinal waves. Then there yields wave equation 
2 2

xy y xy y2 2G ( , v ) ( , v )     (18)
x t

τ ρ τ∂ ∂
=

∂ ∂
 

From which one finds the propogation velocity is given by T
Gc                               (19)
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G must be related  E by noticing the fact that normal stresses are always associated with 

shear stresses, and 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider, for exam

stresses. Equlibrium

or a tensile stress. 2

From Eq. (9), we c
to
vice versa. We now have a derivation: 
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If we combines these equations with Gτ γ=  

Then we obtains the desired relation between G and E: EG=                                    (21)
2(1+ )µ

 

One may observe that the shear modulus is always considerably smaller  than the modulus of 

elasticity E, and thus much smaller than the longitudinal stiffness D. For µ =0.3, the ratios 

have the values T Tc / 0.535,   c / 0.620L Lc and c ∏= = . 

 

2.2 Torsional Waves 
 

If a narrow beam is subjected to a torque, suppose the beam axis coincides with the x-axis,  

 

 

 

 

 

 

 

 

 

 

 

We can see the relations between the angles that: dr
dx

dx rd χγ χ γ= → =  where χ  represents 

the angular displacement, in radians, from the equilibrium position. 
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Torsional moment is defined as xM                                                                         (23)T
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Where T represents the torsional stiffness of a rod with an annular cross-section. If one 

introduce the time-derivative of the angle of rotation χ , that is the angular velocity about the 

x axis,                                                                                                                     (24)x t
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Then one may differentiate Eq. (23) with respect to time to obtain               (25)x xM
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We finally reach the wave equation: 
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Here 'θ  represents the mass moment of inertia. 

Propogation velocity in this case is '                                                                      (28)T
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Now we have a discuss of the value of 'and T θ . For rotational symmetric cross-section (like 

circular or annular cross-section). 4 4 ' 4 4( ) while (
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and ir rα

           (28a)T
Gc
ρΙ =  

If one consider a rectangle cross section instead, we make the cross section narrower in the 

mean time keep the area constant. We note that  ecomes smaller and smaller as the height-

to-width ratio becomes larger and larger. 
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For large values of h/b greater than 6, we can approximately evaluate  
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We can see from above that the torsional velocity could be far less than transverse velocity. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
 
3 Bending Waves 
3.1 Pure Bending Waves 
 

Bending waves are by far the most important for sound radiation because of the rather large 

lateral deflections associated with them. Bending wave differs largely from both longitudinal 

waves and transverse waves. It must be represented by 4 field variables instead of 2. Also the 
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       Four filed variables are: 

1) transverse velocity  yv

2) angular velocity zω  

3) bending moment ZM  

4) shear force  yF

he lateral displacement η and the rotation of a cross section through the small angle β are 

elated by the approximate expression                                                                    (29)
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he rate of change of angular velocity with distance is equal to the time-wise rate of change 

f the curvature, 
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s is shown in elmentary strength of materials 
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Application of the newton’s law in verticle direction , one may write 
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s. (30) (33) (34a) (35a), one obtains the equation for bending waves: 
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ed pure bending wave model needs to be modified in 2 aspects in order 

enerous condition. 



1) We need to take into consideration of deformations which are caused by shear stresses 

acting on the cross section. That is the Timoshenko beam theory. 

Eq. (29) needs to be written as 
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2) We need to add the previously omitted rotational inertia term when derive Eq. (35). 
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From the system of Eqs. (30a) (33) (34a) (35b), one obtains the equation for bending waves: 
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The first 2 terms correspond to the differential equation for the pure bending waves, the other 

3 terms represent the corrections. 
'
z
'm

θ
will occur if rotational inertia is considered. B

K
will 

occur if shear deformation is considered. The last term correspond to higher order correction. 

The propagation velocity for corrected bending wave is 2
' (1 3.6( ) )     (39)B

B hc
m λΠ = Ω −  

 

 

 

 

 

 

 

 

 

 

 

References 

 Cremer, Lothar, Heckl, Manfred. Structure-borne sound. Structural vibrations and sound 
radiation at audio frequencies. Published by Springer 1973. 

http://opac.ub.tum.de/InfoGuideClient.tumsis/search.do?methodToCall=quickSearch&Kateg=100&Content=Cremer%2C+Lothar
http://opac.ub.tum.de/InfoGuideClient.tumsis/search.do?methodToCall=quickSearch&Kateg=100&Content=Heckl%2C+Manfred

