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Tight Binding

ψ~k
(~r) =

∑
~R

ei
~k ~Rχ(~r − ~R)

ψ~k
(~r) = α

∑
~R

ei
~k(~R+~v1)f(~r − ~R− ~v1)+

+ β
∑

~R

ei
~k(~R+~v2)f(~r − ~R− ~v2)

=
∑

~R

ei
~k ~R
[
αei

~k~v1f(~r − ~R− ~v1) + βei
~k~v2f(~r − ~R− ~v2)

]
=:
∑

~R

ei
~k ~R
(
αϕα

~k
(~r) + βϕβ

~k
(~r)
)

= αψα
~k
(~r) + βψβ

~k
(~r)

Ervand Kandelaki Supersymmetry and Quantum Hall effect in graphene



Outline
Introduction

Properties of Hamiltonian
Supersymmetry methods

Quantum Hall effect

Topic and message of the report
Motivation of the Hamiltonian

Tight Binding

ψ~k
(~r) =

∑
~R

ei
~k ~Rχ(~r − ~R)

ψ~k
(~r) = α

∑
~R

ei
~k(~R+~v1)f(~r − ~R− ~v1)+

+ β
∑

~R

ei
~k(~R+~v2)f(~r − ~R− ~v2)

=
∑

~R

ei
~k ~R
[
αei

~k~v1f(~r − ~R− ~v1) + βei
~k~v2f(~r − ~R− ~v2)

]
=:
∑

~R

ei
~k ~R
(
αϕα

~k
(~r) + βϕβ

~k
(~r)
)

= αψα
~k
(~r) + βψβ

~k
(~r)

Ervand Kandelaki Supersymmetry and Quantum Hall effect in graphene



Outline
Introduction

Properties of Hamiltonian
Supersymmetry methods

Quantum Hall effect

Topic and message of the report
Motivation of the Hamiltonian

Tight Binding

ψ~k
(~r) =

∑
~R

ei
~k ~Rχ(~r − ~R)

ψ~k
(~r) = α

∑
~R

ei
~k(~R+~v1)f(~r − ~R− ~v1)+

+ β
∑

~R

ei
~k(~R+~v2)f(~r − ~R− ~v2)

=
∑

~R

ei
~k ~R
[
αei

~k~v1f(~r − ~R− ~v1) + βei
~k~v2f(~r − ~R− ~v2)

]

=:
∑

~R

ei
~k ~R
(
αϕα

~k
(~r) + βϕβ

~k
(~r)
)

= αψα
~k
(~r) + βψβ

~k
(~r)

Ervand Kandelaki Supersymmetry and Quantum Hall effect in graphene



Outline
Introduction

Properties of Hamiltonian
Supersymmetry methods

Quantum Hall effect

Topic and message of the report
Motivation of the Hamiltonian

Tight Binding

ψ~k
(~r) =

∑
~R

ei
~k ~Rχ(~r − ~R)

ψ~k
(~r) = α

∑
~R

ei
~k(~R+~v1)f(~r − ~R− ~v1)+

+ β
∑

~R

ei
~k(~R+~v2)f(~r − ~R− ~v2)

=
∑

~R

ei
~k ~R
[
αei

~k~v1f(~r − ~R− ~v1) + βei
~k~v2f(~r − ~R− ~v2)

]
=:
∑

~R

ei
~k ~R
(
αϕα

~k
(~r) + βϕβ

~k
(~r)
)

= αψα
~k
(~r) + βψβ

~k
(~r)

Ervand Kandelaki Supersymmetry and Quantum Hall effect in graphene



Outline
Introduction

Properties of Hamiltonian
Supersymmetry methods

Quantum Hall effect

Topic and message of the report
Motivation of the Hamiltonian

Obtaining Hamiltonian

Ĥψ~k
= ε~kψ~k

, ψ~k
= αψα

~k
+ βψβ

~k

Ĥ acts on vectors in 2-dimensional space spanned by
( 1

0 ) ≡ ψα
~k
≡ A−sublattice and ( 0

1 ) ≡ ψβ
~k
≡ B−sublattice

Ĥαβ =
〈
ψα

~k

∣∣∣ Ĥ ∣∣∣ψβ
~k

〉
=

=
∑
~R,~R′

e−i~k(~R+~v1−~R′−~v2)
〈
f(~r − ~R− ~v1)

∣∣∣ Ĥ ∣∣∣f(~r − ~R′ − ~v2)
〉

=
∑
~R,~R′

e−i~k(~R+~v1−~R′−~v2)
〈
f(~r − (~R+ ~v1 − ~R′ − ~v2))

∣∣∣Ĥ∣∣∣f(~r)
〉
≈

≈
∑

j

te−i~k~uj , ~uj = ~R+ ~v1 − ~R′ − ~v2, |~uj | = |~v1 − ~v2|
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Obtaining Hamiltonian (2)

Ĥ =

 0 t
∑
j
e−i~k~uj

t
∑
j
ei

~k~uj 0



Taylor-expansion around
~kK

(
~k = ~kK + ~k′

)
yields

Ĥ =
(

0 (k′x − ik′y)v
(k′x + ik′y)v 0

)
More general, using effective mass method:

Ĥ =
(

0 (p̂x − ip̂y)v
(p̂x + ip̂y)v 0

)
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Without magnetic field
With magnetic field

Dirac-Hamiltonian

Ĥ =
(

0 (p̂x − ip̂y)v
(p̂x + ip̂y)v 0

)

This is the Dirac Hamiltonian of a relativistic particle!

Only important difference: no spin involved

Extremely relativistic (no mc2-term)

Also called Weyl-Hamiltonian

Describes particles and antiparticles, e.g. neutrinos

This Hamiltonian acts around K, a similar one around K∗
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Without magnetic field
With magnetic field

Eigenvectors without magnetic field

Ĥ =
(

0 (p̂x − ip̂y)v
(p̂x + ip̂y)v 0

)

Eigenvectors

ψ~k
=
(
α
β

)
ei

~k~r, ~p = ~~k

Using of Schroedinger-equation leads to

ψ±~k
=

1√
2
ei

~k~r

(
±ie−i

θk
2

ei
θk
2

)
, ε± = ±~v

∣∣∣~k∣∣∣ ,
where kx + iky =

∣∣∣~k∣∣∣ ei(π
2
−θk)
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Without magnetic field
With magnetic field

Introducing Pauli-matrices

No ”normal” spin appears in this probem, but we use quasi-spin.

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
1 −1

)

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σ± =

1
2

(σx ± iσy)

⇒ Ĥ =
(

0 ~(kx − iky)v
~(kx + iky)v 0

)
= ~vσxkx + ~vσyky =

= ~v~σ⊥~k⊥ = ~v
∣∣∣~k⊥∣∣∣~σ⊥ ~k⊥∣∣∣~k⊥∣∣∣ =: ~v

∣∣∣~k⊥∣∣∣χ~k

~σ⊥ = (σx, σy), ~k⊥ = (kx, ky), k± = kx ± iky

Ervand Kandelaki Supersymmetry and Quantum Hall effect in graphene
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Chirality operator

Ĥ = ~v
∣∣∣~k⊥∣∣∣χ~k

χ~k
= ~σ⊥

~k⊥
|~k⊥| chirality operator

Commutes with Hamiltonian ⇒ conservation of chirality

⇒ chirality is a good quantum number, quasi-spin is a bad one

Solution can be described completely by ~k and χ~k
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Ĥ = ~v
∣∣∣~k⊥∣∣∣χ~k

χ~k
= ~σ⊥

~k⊥
|~k⊥| chirality operator

Commutes with Hamiltonian ⇒ conservation of chirality

⇒ chirality is a good quantum number, quasi-spin is a bad one

Solution can be described completely by ~k and χ~k

Ervand Kandelaki Supersymmetry and Quantum Hall effect in graphene



Outline
Introduction

Properties of Hamiltonian
Supersymmetry methods

Quantum Hall effect

Without magnetic field
With magnetic field

Chirality operator
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Without magnetic field
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Hamiltonian in magnetic field

~A = (0, Bx) , ~B = ∇× ~A (Landau gauge)

Introducing magnetic field by replacements

~̂p = −i~∇ → ~̂π = ~̂p− e

c
~A, Ĥ = v~σ~p→ v~σ~π = v~σ⊥~̂π⊥

Introduce ~̂π⊥ = (π̂x, π̂y)

~σ⊥~p⊥ = σ+p− + σ−p+ ⇒ ~σ⊥~̂π⊥ = σ+π̂− + σ−π̂+

π̂± = p̂± ∓ i
e

c
Bx ⇒ [π̂+, π̂−] = 2

e~
c
B
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Analogy with ladder operators

[π̂+, π̂−] = 2
e~
c
B = 2~2 |eB|

c~
sgn(eB) = 2

~2

l2H
sgn(eB) =: γ2sgn(eB)

l2H =
c~
|eB|

→ Magnetic length

Recall: raising and lowering operators of HO are defined as

a |n〉 =
√
n |n− 1〉 , a† |n〉 =

√
n+ 1 |n+ 1〉[

a, a†
]

= 1, a†a = N̂

~̂π± can therefore be understood as raising/lowering operators
depending on sgn(eB)
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Supersymmetry methods

Quantum Hall effect

Basics of Supersymmetry
General Hamiltonian

What is supersymmetry?

We found the analogy with ladder operators of the harmonic
oscillator

More general: supesymmetic operators

We consider a system with bosons and fermions

Supersymmetry = symmetry bosons ←→ fermions

States are |nB, nF 〉, nB = 0, 1, 2, . . . , nF = 0, 1
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Basics of Supersymmetry
General Hamiltonian

Suppersymmetric operators

Annihilation and creation operators:

b |nB, nF 〉 =
√
nB |nB − 1, nF 〉 , b† |nB, nF 〉 =

√
nB + 1 |nB + 1, nF 〉[

b, b†
]

= 1, b†b = N̂B

f |nB, nF 〉 =
√
nF |nB, nF − 1〉 , f † |nB, nF 〉 =

√
nF + 1 |nB, nF + 1〉{

f, f †
}

= ff † + f †f = 1, f †f = N̂F

Q+ = bf † ⇒ Q+ |nB, nF 〉 ∼ |nB − 1, nF + 1〉
Q− = b†f ⇒ Q− |nB, nF 〉 ∼ |nB + 1, nF − 1〉
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Basics of Supersymmetry
General Hamiltonian

Suppersymmetric operators (2)

Q+ = bf † ⇒ Q+ |nB, nF 〉 ∼ |nB − 1, nF + 1〉
Q− = b†f ⇒ Q− |nB, nF 〉 ∼ |nB + 1, nF − 1〉

f2 =
(
f †
)2

= 0 ⇒ Q2
+ = Q2

− = 0

Q1 = Q+ +Q−, Q2 = −i(Q+ −Q−) ⇒ {Q1, Q2} = 0

Consider Ĥ = {Q+, Q−} = Q2
1 = Q2

2 (Simplest Hamiltonian)
[H,Q] = 0, where Q = Q+, Q−, Q1 or Q2

Therefore the values of these operators are conserved
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Consider Ĥ = {Q+, Q−} = Q2
1 = Q2

2 (Simplest Hamiltonian)
[H,Q] = 0, where Q = Q+, Q−, Q1 or Q2

Therefore the values of these operators are conserved

Ervand Kandelaki Supersymmetry and Quantum Hall effect in graphene



Outline
Introduction

Properties of Hamiltonian
Supersymmetry methods

Quantum Hall effect

Basics of Supersymmetry
General Hamiltonian

Suppersymmetric operators (2)

Q+ = bf † ⇒ Q+ |nB, nF 〉 ∼ |nB − 1, nF + 1〉
Q− = b†f ⇒ Q− |nB, nF 〉 ∼ |nB + 1, nF − 1〉

f2 =
(
f †
)2

= 0 ⇒ Q2
+ = Q2

− = 0

Q1 = Q+ +Q−, Q2 = −i(Q+ −Q−) ⇒ {Q1, Q2} = 0
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Basics of Supersymmetry
General Hamiltonian

Generalizing Hamiltonian

Back to our Hamiltonian

Ĥ =
(

0 vπ−
vπ+ 0

)

We introduce the mass term ∆:

Ĥ =
(

∆ vπ−
vπ+ −∆

)
Recall: there are two independent points
in momentum space: K and K∗. They
act in different subspaces, so the total
Hamiltonian has the form(

ĤK 0
0 ĤK∗

)
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Summarizing Hamiltonian around K and K∗ we get

Ĥ =


∆ vπ−
vπ+ −∆

∆ vπ+

vπ− −∆



=
(

∆σz + (σ+π− + σ−π+)v 0
0 ∆σz + (σ+π+ + σ−π−)v

)
If we interchange the last two basis vectors we get

Ĥ =
(

∆σz + (σ+π− + σ−π+)v 0
0 −∆σz + (σ+π− + σ−π+)v

)
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Squared Hamiltonian

Ĥ =
(

∆σz + (σ+π− + σ−π+)v 0
0 −∆σz + (σ+π− + σ−π+)v

)

Let us look at the square of the Hamiltonian around K:

(∆σz + (σ+π− + σ−π+)v)2 = (∆σz)
2 + ((σ+π− + σ−π+)v)2 +

+ v∆ {σz, ~σ⊥} ~̂π⊥ = (∆σz)
2 + ((σ+π− + σ−π+)v)2

Since {σz, ~σ⊥} = 0

Ĥ2 = (∆σz)
2 + ((σ+π− + σ−π+)v)2 contains therefore both

solutions for K and K∗
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Ĥ2ψ = ε2ψ = (∆σz + vσ⊥π⊥)2ψ = ∆2 + v2(σ⊥π⊥)2ψ

(~σ⊥~̂π⊥)2 =
1
2
[
{π̂+, π̂−} − γ2sgn(eB)σz

]
{π̂+, π̂−} |n〉 = γ2(2n+ 1) |n〉 always

(σ⊥π⊥)2 |n〉 |α〉 =
1
2
γ2 [2n+ 1− sgn(eB)σz] |n〉 |α〉

Landau levels correspond to bosons, quasi-spin to fermions

ε2 = ∆2 +
v2γ2

2
(2n+ 1− sgn(eB)σz)

ε2n,↓ = ε2n−1,↑ = ∆2 + v2γ2n (provided eB < 0)
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Quantum-mechanical version of the Hall effect

Observed in 2D electron systems

Low temperatures and strong magnetic fields

Hall conductance takes on quantized values σ = ν e2

h
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VAB 6= 0
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σxy = −ecρ
B
, ρ = ne − nh

filling factor: νB =
|ρ|
NB

, νB =
πc~
|eB|

|ρ|

Recall: NB =
1

2πl2H
× 2

⇒ σxy = − e2c

|eB|
|ρ|sgn(eB)sgn(µ) = − e

2

π~
νBsgn(eB)sgn(µ)
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Unusual Quantum Hall effect

ne =
1

e
ε−µ

T + 1
, nh = 1− ne

⇒ ne − nh = tanh
µ− ε
2T

νBsgn(µ) =
1
2

(
tanh

µ+ ∆
2T

+ tanh
µ−∆

2T

+ 2
∞∑

n=1

(
tanh

µ+ εn
2T

+ tanh
µ− εn

2T

))
εn =

√
∆2 + γ2v2n

tanh
( ω

2T

)
→ sgnω for T → 0
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Unusual Quantum Hall effect(2)

Intersections of the chemical potential with Landau-levels
deformed near the edges correspond to the conducting electrons:
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Unusual first half-step of σxy:
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