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Introduction

Experimental situation

E�ectively one-dimensional system can be realized

experimentally

Number of electrons can be controled in these gated

semiconductor heterostructures

Allows to study many-body e�ects (electronic interaction) in

these systems

Low-density limit: Wigner crystal

For very low densities: Coulomb energy dominates the system

Localization of electrons as an electron crystal: Wigner crystal

Theory

Search a measure for the localization of an electronic state
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Indirect localization criteria

Spatial extension of the wave function

Inverse participation number is a measure of the region in space

where the wave function signi�cantly di�ers from zero

Inverse participation number of a single particle state

P−1 =

∫
d3r |ϕ(~r)|4[∫
d3r |ϕ(~r)|2

]2
Generalization for Density Functional Theory

P−1 =

∫
d3r (ρ(~r))2[∫
d3r ρ(~r)

]2
The larger the inverse participation number, the more localized is

the state
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Indirect localization criteria

Curvature of the ground-state energy

Idea: Extended (delocalized) state is sensitive for the boundary

conditions in a large system, a localized state not

How does the ground state energy change as a function of the

boundary conditions?

Consider the curvature of the ground state energy with respect
to the boundary conditions:

Extended system → sensitive to the boundary conditions →
large value for the curvature
Localized system → insensitive to the boundary conditions →
small value for the curvature
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Direct localization criterion: current

Persistent current of a delocalized system

Non-interacting particles: total current is a sum of the

currents of individual particles

Interacting particles in a clean sample behave as

non-interacring particles concerning the persistent current
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Direct localization criterion: current

Persistent current of a localized system

Single particle in a system with impurity: Current dictated by

single particle tunneling

Interacting particles: Correlated system tunnels as a whole

This means: persistent current is suppressed by the interaction



Introduction Localization criteria 1D Wigner crystal Model and Method Persistent current Summary and Outlook

One-dimensional Wigner crystal

One-dimensional electron gas

Kinetic energy per particle

T

N
=

L

2πN

∫ kF

−kF

~2k2

2m∗ dk ∝ n2

Coulomb energy per particle

V

N
∝ 1

d
∝ n

Wigner transition at a critical density

High density: Free electron gas-like behaviour since T � V

Low density: Localization of electrons since V � T



Introduction Localization criteria 1D Wigner crystal Model and Method Persistent current Summary and Outlook

Stability of a 1D Wigner crystal

Quantum �uctuations

Consider a 1D Wigner crystal as a chain of electrons

connected by springs

Quantum mechanical zero-point oscillations of the normal

modes of this chain lead to �uctuating displacements of the

electrons

Long wavelength �uctuations (small k) lead to a divergency of

the expectation value of the squared displacement

Should be no crystalline order in 1D
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Stability of a 1D Wigner crystal

Pinning

Idea: Pinning potential suppresses long wavelength modes

(soft modes) by creating a node for these modes at the

impurity potential sitea

No divergency of the �uctuations ⇒ 1D Wigner crystal

stabilized

aL.I.Glazman et.al., Phys.Rev.B 45, 8454 (1992)
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Model

One-dimensional quantum ring

One-dimensional N-particle

system of length L with periodic

boundary conditions

Hamiltonian

Ĥ =
N∑
i=1

[
1

2m∗

(
−i~ d

dxi
− eA

)2

+ Vimp(xi )

]
+

1

2

∑
i 6=j

e2

|xi − xj |

with

Vector potential A = Φ
L
induces a persistent current

Gaussian impurity Vimp pins the Wigner crystal
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Model

One-dimensional Wigner-Seitz radius rS

Ratio between Coulomb and kinetic energy: 〈VC〉
〈T 〉 :

rS ∝
1

N

L

aB
(dimensionless parameter)a

with the Bohr radius

aB =
ε~2

m∗
0e

2

In GaAs (ε = 12.5, m∗
0 = 0.0665me): aB = 9.95 · 10−9m

aMarkus Hofmann, PhD thesis, Universität Erlangen-Nürnberg (2005)

Changing rS from rS � 1 to rS � 1, the system should undergo a

Wigner transition
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Model

How to change rS?

rS ∝
1

N

L

aB

Changing the number of particles:

Would change Fermi-level and hence the current (no

interaction e�ect)

Changing the system size:

Comparison of x-dependent quantities (e.g. density, ELF etc.)

between systems of di�erent sizes di�cult

Solution: Change Bohr radius by changing the e�ective

electron mass a

aMarkus Hofmann, PhD thesis, Universität Erlangen-Nürnberg (2005)
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Model

Directly change 〈VC〉
〈T 〉 by changing the e�ective electron mass:

replace �true� e�ective electron mass m∗
0 by a �ctitious one m∗

in the kinetic energy operator

renormalize the impurity potential Vimp → Vimp
m∗
0

m∗

calculate all observables (especially current density) using the

true e�ective electron mass m∗
0

⇒ persistent current of a system of non-interacting electrons

independent of rS
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Density Functional Theory

How to solve the interacting problem with impurity?

Density Functional Theory

One-to-one correspondence between external potential and

electronic density

All observables are functionals of the density

How to use this: Construct a non-interacting system in some

e�ective potential that gives the same density
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Current Density Functional Theory

DFT with gauge �eld

Ordinary DFT: basic variable n(~r)

Kohn-Sham orbitals give (in principle) exact density of the
interacting system
Not guaranteed that current density of the KS-System
coincides with the current density of the interacting system

Current Density Functional Theory: basic variable n(~r) and
~jp(~r)

In addition to vxc = δExc
δn an xc vector potential ~Axc = δExc

δ~jp

enters the KS-equation
KS-orbitals yield exact density and current density
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Current Density Functional Theory

Gauge invariance of the xc-functional

Total energy has to be gauge invariant, but paramagnetic

current density ~jp is not:

~j ′p(~r) =~jp(~r) +
e

m
n(~r)∇Λ(~r)

EH and Eext are gauge invariant

Gauge transformation for the non-interacting functional:

TS[n,~j
′
p] = TS[n,~jp] + e

∫
d~r~jp(~r)∇Λ(~r) +

e2

2m

∫
d~r n(~r) |∇Λ(~r)|2

Same transformation holds for the interacting functional,

hence Exc has to be gauge invariant

Exc depends on ~v = ∇×
~jp
n
rather than on ~jp directly
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Current Density Functional Theory

Local approximation

Local approximation of the xc-functional in the variable ∇×
~jp
n

leads to xc-vector potential a

Axc ∝
1

n
∇×

(
∇×

~jp
n

)

This vanishes for strictly 1D systems

Physical reason:

xc-vector potential describes distortion of the wave function in
the presence of currents
in strictly 1D systems any distortion is purely longitudinal, only
changing the density

aG.Vignale and M.Rasolt, Phys.Rev.B 37, 10685 (1988)
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Kohn-Sham equations

Kohn-Sham system

A non-interacting system in some e�ective potential that produces

the same density[
1

2m∗

(
−i~ d

dx
− eA

)2

+ vimp + vH + vxc

]
ϕi = εiϕi

with

electrostatic Hartree potential vH

exchange-correlation potential vxc contains all many-body

quantum e�ects
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Approximate xc-functional

Local density approximation

Idea: treat the inhomogeneous system locally as a

homogeneous one

xc-energy of the inhomogeneous system is a sum (integral) of

all the contributions from di�erent points of the system:

Exc[n(~r)] =

∫
d~r n(~r)exc(n(~r))

Optimized E�ective Potential

Minimize the xc-energy not with respect to the density but

with respect to the KS-orbitals

OEP potential is an explicit functional of the KS-orbitals

Correct 1
r
dependency of the xc-potential for r →∞
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Representation of the wave functions

Spline represention

Expansion in a set of basis functions:

ϕi (x) =
∑

µ

a(i)
µ bµ(x)

Chose a localized spline basis a

aMarkus Hofmann, PhD thesis, Universität Erlangen-Nürnberg (2005)
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Kohn-Sham equation in the spline basis

Generalized eigenvalue problem

Matrix representation of the KS-Hamiltonian

HKS
µ,ν = 〈bµ|ĤKS|bν〉 =

∫ ∞

−∞
dx bµ(x)ĤKSbν(x)

Non-zero overlap of di�erent basis functions leads to overlap

matrix

Sµ,ν =

∫ ∞

−∞
dx bµ(x)bν(x)

Matrix representation of the Kohn-Sham equation∑
ν

HKS
µ,νa

(i)
ν = εi

∑
ν

Sµ,νa
(i)
ν
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Self-consistent solution of the KS-equation

Single iteration cycle

Decompostion of the overlap matrix Ŝ = L̂L̂T leads to a

standard eigenvalue problem[
L̂−1ĤKS(L̂

T)−1
] (

LT~a(i)
)

= εi

(
L̂T~a(i)

)
Matrix

[
L̂−1ĤKS(L̂

T)−1
]
is numerically diagonalized

Resulting eigenvector
(
LT~a(i)

)
is transformed back to ~a(i)

~a(i) represents the eigenstates of the Hamiltonian ĤKS
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Self-consistent solution of the KS-equation

Self-consistent scheme

Start with a non-interacting system: vH = 0 and vxc = 0

Solve KS-equations ⇒ density n(x)

Calculate Hartree- and xc-potential from the density

Solve KS-equation with new vH and vxc

Convergence criterion:

max
i

∣∣∣ε(n)
i − ε

(n−1)
i

∣∣∣ < 10−10meV
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Persistent current

Calculation of the current density

Paramagnetic current density of a state |ϕi 〉

j (i)p (x) = − i~
2m∗

0

(
ϕ∗
i (x)

d

dx
ϕi (x)− ϕi (x)

d

dx
ϕ∗
i (x)

)
Diamagnetic current density

jd(x) = − ~
m∗

0

2π

L

Φ

Φ0
n(x)

Total current density

j(x) =
N∑
i=1

j (i)p (x) + jd(x)
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Persistent current

What has been done

Persistent current has been calculated at 0.3 of the �ux quantum

for

several values of rS

di�erent impurity potential strengths

Computational parameters

System size L = 200nm

540 basis functions

Typically between 100 (far from the transition point) and

10000 (close to the transition point) iterations for full

convergence required
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Persistent current

Persistent current as a function of rS

Colors indicate (unrenormalized) pinning potential strength: black
V0 = 0.001meV, blue V0 = 1.0meV, green V0 = 5.0meV, light blue
V0 = 10.0meV; red dashed line: nonineracting system with
V0 = 0.001meV



Introduction Localization criteria 1D Wigner crystal Model and Method Persistent current Summary and Outlook

Persistent current as a function of rS

Very weak impurity potential

Very weak impurity (on the scale of the internal energy of the

crystal ≈ 2− 5meV):

rS < r cS: persistent current independent of rS

rS > r cS: persistent current decays exponentially with

increasing rS

Interpretation: Wigner crystal transition at r cS ≈ 2.05 (2D:

r cS ≈ 37± 5)a

aB.Tanatar and C.M.Ceperly, Phys.Rev.B 39, 5005 (1989)
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Persistent current as a function of rS

Non-vanishing impurity

For stronger impurity:

Transition shifted to smaller rS and smoothed

Even for very small rS no electron-gas like behaviour:

No range where the persistent current is independent of rS



Introduction Localization criteria 1D Wigner crystal Model and Method Persistent current Summary and Outlook

Total energy curvature as a localization criterion

Relative curvature of the ground state energy as a function of rS
a

Localization for rS > r cS

Critical value of rS strongly depends on disorder

Transition point consistent with results from calculation of the

persistent current

aMarkus Hofmann, PhD thesis, Universität Erlangen-Nürnberg (2005)
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Summary and Outlook

What has been done

Electron-electron interactions may drastically change the

persistent current in a one-dimensional ring

Interpretation: Formation and pinning of a Wigner crystal

phase at rS ≈ 2.05

Form of the transition depends on the strength of the pinning
potential:

Very weak pinning potential leads to a sharp transition
Stronger (but still weak) pinning potentials lead to a smooth
transition

Still to do

Study the dependence of the Wigner crystal transition on the

shape and width of the pinning potential

Extension to two-dimensional rings
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