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We use Density Functional Theory to study the localization of interacting spinless electrons on
a one-dimensional quantum ring when the system undergoes a Wigner crystal transition at low
electron densities. The resulting crystalline state is pinned by a weak Gaussian potential. As
a criterion for the localization of such a correlated many particle state we suggest the persistent
current in the ring as a function of the one-dimensional Wigner-Seitz radius rS. It is shown that
for vanishing impurity potential strength the persistent current is constant up to a critical value rc

S

and decreases exponentially for rS > rc
S. We interpret this behaviour as the formation of a Wigner

crystal phase at rc
S ≈ 2.05. This result is compared to the critical value of rS obtained by using

the curvature of the ground state energy with respect to the boundary conditions as a localization
criterion.

I. INTRODUCTION

In the last few years, the experimental realization
of very narrow two-dimensional quantum rings became
possible1,2. In such systems only a few transverse states
are occupied. By increasing the curvature of the confin-
ing potential the system can finally be made effectively
one-dimensional. The number of electrons in such sys-
tems can be controlled by means of gate electrodes. Ex-
permiental studies of rings with only one or two electrons
were reported by Lorke et al.3 The possibility to vary the
number of particles from very few to several hundreds
enables experimentalists to tune the electron-electron in-
teraction in these rings. One of the most strinking con-
sequences of electron interaction is the formation of a
Wigner crystal4, a many-body state with electrons local-
ized at discrete lattice sites. However, due to the strong
fluctuations in one dimension5 the stability of such a crys-
talline phase has been a long-debated subject and it could
be shown only in the nineties that an arbitrarly weak
pinning potential indeed stabilizes the one-dimensional
Wigner crystal6.

From a theoretical point of view one question is how
to measure the localization of such a correlated many
body state. Several criteria have been suggested to dis-
tinguish between a localized and a delocalized state like
the inverse participation number7 or the curvature of the
ground state energy8. However, to our best knowledge
the electrons’ ability to carry an electric current - which
is the most direct localization criterion has not yet been
explored. In this work we concentrate on the persistent
current in a one-dimensional quantum ring penetrated by
a magnetic flux and study its dependence on the strength
of the electronic interactions.

This paper is organized as follows. In section 2 we dis-
cuss three different localization criteria including a persis-
tent current in a quantum ring as the most direct one. In
section 3 we briefly discuss the one-dimensional Wigner
crystal and its stability despite the strong fluctuations in
one dimensional systems. In section 4 we introduce our
model and the computational method we used to obtain

the persistent current as a function of rS. The numerical
resoluts for j(rS) are discussed in section 5. A conclusion
is drawn in section 6.

II. LOCALIZATION CRITERIA

A. Inverse participation number

The localization of a single-particle state may be as-
sessed qualitatively as a ”concentration” of a single-
particle wave function ϕ(~r) in a certain region of space.
For a quantitative assessment one may consider the sec-
ond moment of the probability distribution rather than
the wave function directly. This quantity is called an
inverse participation number7 and is defined as

P−1 =
∫

d3r |ϕ(~r)|4[∫
d3r |ϕ(~r)|2

]2 . (1)

To illustrate the meaning of this expression consider the
ground state of a particle of mass m in a harmonic po-
tential with a frequency ω. The typical length scale of

this system is given by a =
√

h̄
mω . Using this we find for

the wave function

ϕ(x) =
(

1
πa2

)1/4

exp
(
− x2

2a2

)
(2)

and hence for the inverse participation number

P−1 =
1√
2πa

. (3)

Now if the system gets more localized (the spread of the
wave function decreases, i.e. a decreases) P−1 increases
and if the system gets more delocalized P−1 decreases.

However, the definition (1) of the inverse participation
number given in terms of single-particle wave functions
is not suitable for a many-body state. Alternatively to
(1), one may define the inverse participation number for
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a single-particle system using the single-particle proba-
bility density ρ(~r)

P−1 =
∫

d3r |ρ(~r)|2[∫
d3r ρ(~r)

]2 . (4)

This definition allows a generalization to a many-particle
state by replacing the single-particle probability density
by the total density of the many-body system7. How-
ever, this so called generalized participation number will
not be used in the rest of this work and we concentrate
instead on two localization criteria which are more rigor-
ously justified for the many-particle case.

B. Curvature of the ground state energy

Rather than directly looking at the wave function one
may explore the sensitivity of the ground state energy
to the boundary conditions as a localization criterion.
Roughly speaking the localized state does not feel any
change of the boundary conditions and thus the ground
state energy does not change, whereas the response of
a delocalized state is finite irrespective of how large the
system is.

In fact, it has been shown that the curvature of the
ground state energy with respect to the boundary condi-
tions can be used to distinguish between a localized and
a delocalized system8. This quantity is related to the
charge stiffness D in the Drude model of the conductiv-
ity. In the thermodynamic limit one finds for an insulator
D → 0, whereas D approaches a finite, nonzero value for
a metal7.

In contrast to the above mentioned inverse participa-
tion number, the curvature of the ground state energy
can be directly used in a many-body case. It is espe-
cially suitable for density functional calculations since
the ground state energy is in principle given exactly by
static DFT.

C. Persistent current as a localization criterion

The most direct feature that distinguishes a localized
and a delocalized many particle state is the ability of a
state to carry the current. In this work we concentrate on
the persistent current in a ring geometry rather than on a
transport current since the persistent current is a ground-
state property and hence may be obtained by the static
DFT. This is by far easier than computing a dissipative
current which involves excitations of the many particle
system.

To illustrate why the persistent current may be used
as a localization criterion consider first a clean one-
dimensional quantum ring i.e. a system without impuri-
ties (figure 1). In the absence of the electron-electron in-
teraction the total persistent current is obtained as a sum
of currents carried by the individual particles. When the

FIG. 1: Persistent current in clean sample. Left: single-
particle contribution to the current in a non-interacting sys-
tem. Right: rigid rotation of the correlated system.

FIG. 2: Persistent current in sample with Gaussian impu-
rity. Left: single-particle contribution to the current in a
non-interacting system dictated by single-particle tunneling.
Right: tunneling of the correlated system as a whole.

electron-electron interaction is switched on the system
rotates as a whole and the current remains unchanged20.

This behaviour changes drastically in the presence of
an impurity potential (figure 2). For a system of non-
interacting particles the persistent current is still the
sum of the individual single-particle contributions and is
hence dictated by single-electron tunneling through the
impurity. In contrast to this, a correlated state has to
tunnel as a whole which significantly reduces the tunnel-
ing probability and hence the persistent current.

III. ONE-DIMENSIONAL WIGNER CRYSTAL

Consider a one-dimensional electron gas with the dis-
persion relation ε(k) = h̄2

2m∗ k2. The kinetic energy per
particle is given by

T

N
=

L

2πN

∫ kF

−kF

h̄2k2

2m∗ dk ∝ n2 (5)

whereas the Coulomb energy per particle is proportional
to the distance between the particles and hence to the
density:

V

N
∝ 1

d
∝ n . (6)

Thus, at high densities, the kinetic contribution dom-
inates the total energy of the system. Therefore the
most favourable state of the system is a deloclaized,
free electron gas-like one. In contrast, at low densities
the Coulomb repulsion dominates the total energy which
tries to keep electrons apart at possibly large separations.
The most favourable configuration in this limit is clearly
a regular arrangement of electrons at equidistant lattice
sites.
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FIG. 3: Illustration of the model used for the calculation:
a one-dimensional system with periodic boundary conditions
containg N electrons. A magnetic flux Φ penetrates the ring
and induces a persistent current. The Wigner crystal phase
is pinned by a Gaussian impurity potential.

However, this simple picture is complicated by the
quantum mechanical zero point oscillations of the nor-
mal modes of this chain of localized particles which lead
to fluctuating displacements of the electrons. In fact it
can be shown that in one and two dimensions no stable
crystalline order exits5. However, in one dimension the
Wigner crystal phase is stabilized by an arbitrarily weak
pinning potential which suppresses the long wavelength
(soft) modes of the fluctuation field6.

IV. MODEL AND METHOD

A. Model

We model the one-dimensional quantum ring as a lin-
ear system of length L with periodic boundary conditions
containing N = 10 spinless electrons (see figure 3).

A magnetic flux Φ penetrates the ring and induces
a persistent current. In the region where the electrons
move the corresponding vector potential is given by

~A =
Φ
L

~eϕ (7)

where ~eϕ is the polar unit vector i.e. pointing along the
circumference of the ring. This vector potential is chosen
such that the electrons move in a region with zero mag-
netic field and the only influence of the vector potential
on the wave function is that it acquires an additional
phase depending on the number of flux quanta penetrat-
ing the ring.

Additionally, a Gaussian impurity potential of the
strength V0 and width a

Vimp(x) = V0 exp
(
−x2

a2

)
(8)

with x being the coordinate along the ring is placed in
the system. This barrier is required both for pinning the
Wigner crystal phase and to ensure the convergence of
the numerical computations.

Including these external contributions the Hamiltonian

of the system is given by

Ĥ =
N∑

k=1

[
h̄2

2m∗
0

(
−i

d

dxk
− 2π

L

Φ
Φ0

)
+ Vimp(xk)

]
+

1
2

∑
k 6=l

e2

|xk − xl|
(9)

where m∗
0 is the effective electron mass and Φ0 = h

e is
the elementary flux quantum.

The system will undergo a Wigner transition from a de-
localized electron gas like state to a localized crystalline
state when the Coulomb energy Vc exceeds the kinetic
energy T . The ratio of these energies is given by the
one-dimensional Wigner-Seitz radius

rS =
1
2

L

N

1
aB

∝ 〈Vc〉
〈T 〉

(10)

which measures the average distance between the parti-
cles in units of the Bohr radius

aB =
εh̄2

m∗
0e

2
. (11)

Using parameters for GaAs (dielectric constant ε = 12.5
and effective electron mass m∗

0 = 0.0665me) we find aB =
9.95 · 10−9m.

We expect that the system will be in a delocalized
phase for rS � 1 and in a localized phase for rS � 1. Ex-
perimentally, the parameter rS is controlled by the num-
ber of electrons in the system, i.e. the density. Yet the
density is not the most conveniant parameter to change
in the theoretical calculations, since changing the num-
ber of electrons changes the Fermi level. This, of course,
changes the persistent current even in a non-interacting
system. Therefore, the most convenient parameter to
change is the effective mass of the electrons.

First, we replace the true effective electron mass m∗
0

in the kinetic energy contribution to the Hamiltonian by
a fictitious one m∗. Yet, there is a second energy ratio
that has to be considered. In order to guarantee that the
persistent current of a single particle is not affected by
changing the effective electron mass, the Gaussian poten-
tial barrier Vimp has to be renormalized according to

V0 → V ∗
0 = V0

m∗
0

m∗ . (12)

Finally, all observables, especially the persistent current,
have to be calculated using the true effective electron
mass m∗

0. This procedure guarantees that the persistent
current of a system of non-interacting electrons is inde-
pendent of rS. Hence any change in the persistent current
as rS is varied we observe in our calculations is purely due
to the electron electron interaction.

B. Density Functional Theory

For actually solving the interacting many body prob-
lem in the presence of a magnetic flux and an impurity
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potential we use Density Functional Theory (DFT). The
fundamental statement in static DFT is the so-called
Hohenberg-Kohn theorem9 which establishes a one-to-
one correspondence between the density and the external
potential in an interacting many body system. There-
fore, all observables may be expressed as functionals of
the electronic density alone.

For practical purposes, however, the Kohn-Sham
construction10 is of special importance. It provides an
in principle exact method for calculating the density of
the fully interacting, inhomogeneous system using an ar-
tificial non-interacting system in an effective potential.
The Hamiltonian ĤKS of this system is given by

ĤKS =
1

2m∗

(
−ih̄

d

dx
− eA

)2

+ Vimp + VH + Vxc (13)

where VH is the ordinary electrostatic Hartree potential
and Vxc is the exchange-correlation potential which con-
tains all many-body quantum effects. Both the Hartree-
and the xc-potential are functionals of the density n(x).
Therefore, the resulting Kohn-Sham equations

ĤKSϕi(x) = εiϕi(x) n(x) =
∑

i

|ϕi(x)|2 (14)

have to be solved self-consistently.
Since our goal is to calculate the persistent current di-

rectly from the Kohn-Sham orbitals ϕi the question arises
whether we have to use Current Density Functional The-
ory (CDFT)11 instead of ordinary DFT. In contrast to
DFT where the basic variable is the density alone, CDFT
includes the (paramagentic) current density ~jp as a sec-
ond basic variable. This means that the KS orbitals of
CDFT are guaranteed to reproduce in principle the exact
current density as well as the exact density whereas the
KS orbitals of ordinary DFT merely reproduce the ex-
act density but not the current density. From a practical
point of view, the only difference between the KS sys-
tems in DFT and CDFT is that in addition to the scalar
xc-potential an exchange-correlation vector potential en-
ters the KS Hamiltonian in CDFT due to the fact that
now all observables are functionals of the density and the
paramagnetic current density21.

Clearly, the ground state energy has to be gauge in-
variant while the paramagnetic current density changes
under a gauge transformation ~A → ~A′ = ~A−∇Λ accord-
ing to

~j′p(~r) = ~jp(~r) +
e

m
n(~r)∇Λ(~r) . (15)

This requires that the xc-energy functional does not de-
pend directly on ~jp but on the vorticity ~v = ∇× ~jp

n .11 It
can be shown that a particularly simple approximation
of the xc-energy functional is local in the vorticity and
leads to an xc vector potential of the form

~Axc ∝
1
n
∇×

(
∇×

~jp
n

)
.11 (16)

FIG. 4: Illustration of the Local Density Approximation. An
inhomogeneous system (black curve) is considered to be lo-
cally homogeneous (red lines).

For strictly one-dimensional system this expression van-
ishes. Physically this may be traced back to the fact
that ~Axc describes a distortion of the wavefunction in
the presence of currents11. In one dimension this distor-
tion is purely longitudinal and hence described by the
scalar xc-potential. Therefore in our specific case of a
strictly one-dimensional quantum ring CDFT reduces to
ordinary DFT.

Still, an approximate expression for the xc-potential
is needed while the Hartree potential is known exactly.
A widely used form is the so-called Local Density Ap-
proximation (LDA)10 where the inhomogeneous system
is considered to be locally homogeneous (see figure 4).
The xc-energy of the inhomogeneous system is then given
as an integral of the contributions of the locally homoge-
neous parts of the system

ELDA
xc [n] =

∫
dx n(x)exc(n(x)) (17)

with the xc-energy per particle exc(n) of a homogeneous
electron gas with density n. This approximation is valid
if the length scale of the density variation l is much larger
than the typical length scale in the system which is given
by k−1

F : kFl � 1.
However, a better local approximation for the exchange

energy is availabe which will be used in this work, namely
the Optimized Effective Potential method (OEP)12. The
idea behind the OEP is to minimize the exchange energy
functional not with respect to the density directly but
with respect to the Kohn-Sham wavefunctions. This re-
sults in an integral equation for the exchange potential
which in general cannot be solved. However, with the
KLI approximation13,14 a very good approximate solu-
tion is avilable. In contrast to the LDA potential the
OEP potential has the correct 1

r -dependence for large
distances (r →∞) and in fact, the OEP potential is the
best local approximation for the exchange potential.

C. Computational method

For the numerical solution of the Kohn-Sham equa-
tions, a representation of the wavefunctions has to be
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FIG. 5: A single spline function, taken from Ref. 7

FIG. 6: Overlap of adjacent spline functions, taken from
Ref. 7

chosen. A widely used method is to expand the wave-
functions in a plane-wave basis. However, it would re-
quire a large number of plane waves to describe a local-
ized state. Therefore it is more suitable to use a set of
localized functions as a basis. The basis functions cho-
sen in this work are spline functions7 which are piecewise
defined real third order polynomials:

bν(x) =



1
4

(
2 + x−xν

h

)3 : −2 < x−xν

h ≤ −1

1− 3
2

(
x−xν

h

)2 − 3
4

(
x−xν

h

)3 : −1 < x−xν

h ≤ 0

1− 3
2

(
x−xν

h

)2 + 3
4

(
x−xν

h

)3 : 0 < x−xν

h ≤ 1
1
4

(
2− x−xν

h

)3 : 1 < x−xν

h ≤ 2
0 : else.

(18)
The nodes are xν and h is the distance between two ad-
jacent nodes. A single spline function is shown in Fig. 5.

In terms of these basis functions the wavefunctions
ϕi(x) are uniquely defined by a vector of expansion coef-
ficients a

(i)
ν

ϕi(x) =
∑

ν

a(i)
ν bν(x) (19)

and the Hamiltonian is given as a matrix with matrix
elements

HKS
µ,ν = 〈bµ|ĤKS|bν〉 =

∫ ∞

−∞
dx bµ(x)ĤKSbν(x) . (20)

Since the spline basis is not orthogonal (the overlap of
adjacent splines is shown in Fig. 6) the Kohn-Sham equa-
tion expressed in this basis is a generalized eigenvalue

problem ∑
ν

HKS
µ,νa(i)

ν = εi

∑
ν

Sµ,νa(i)
ν (21)

with an overlap matrix

Sµ,ν =
∫ ∞

−∞
dx bµ(x)bν(x) . (22)

This overlap matrix depends only on the basis functions
but not on the expansion coefficients. It is therefore
suffient to decompose it only once into a lower trian-
gular matrix L̂ and its transpose L̂T using a Cholesky-
decomposition15. The generalized eigenvalue problem
(eq. 21) may then be transformed into a standard eigen-
value problem[

L̂−1ĤKS(L̂T)−1
] (

L̂T~a(i)
)

= εi

(
L̂T~a(i)

)
(23)

which has to be solved selfconsistently since ĤKS itself
dependes on the density and hence on the solution of the
eigenvalue equation.

In each iteration cycle the matrix
[
L̂−1ĤKS(L̂T)−1

]
is

diagonalized numerically using the zheev routine from
the LAPACK library16 and the resulting eigenvector
L̂T~a(i) is transformed back to obtain the eigenvector ~a(i)

of the original generalized eigenvalue problem.
The starting point for the selfconsistent scheme is a

system of non-interacting particles i.e. a system with
VH = Vx = 0. The resulting non-interacting eigenfunc-
tions are then used to construct the first approximation
for the Hartee- and the exchange potential and in the
subsequent iterations the Hartree- and the exchange po-
tential is calculated from the eigenfunctions of the previ-
ous step22. To decide whether the iteration has converged
we consider the maximum difference between two Kohn-
Sham eigenvalues in the n-th and (n − 1)-th iteration
step:

max
i

∣∣∣ε(n)
i − ε

(n−1)
i

∣∣∣ < ∆ (24)

. We found that this difference has to be extremely
small compared to the Kohn-Sham eigenvalues them-
selves which are of the order of several hundred meV,
namely ∆ ≈ 10−10meV. The reason for this very small
number are possibly very low lying excitations which cor-
respond to a charge displacement over a large distance in
the system. In fact, if ∆ is chosen too large, some density
range existes where the system seems to be in a delocal-
ized state whereas it is found to be in a localized state if
the solution is converged. Generally, to distinguish cor-
rectly between a localized and a deloclaized state of the
system a high computational accuracy is required.

V. PERSISTENT CURRENT

In this section we discuss the main result of this work.
Using the model and the numerical method described in
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the previous section we calculated the persistent current
in a one-dimensional quantum ring as a function of rS.
Rather than applying the Byers-Yang relation17 which
expresses the persistent current as a derivative of the
groundstate energy with respect to the magnetic flux

I = −∂E

∂Φ
(25)

we calculate the current directly from the Kohn-Sham
wavefunctions. The obvious advantage is that the Kohn-
Sham equations have to be solved only for one specific
value of the magnetic flux and no numerical derivative of
the ground state energy is required. The total persistent
current which is the sum of the paramagnetic current

jp(x) = − ih̄

2m∗
0

∑
i

(
ϕ∗i (x)

d

dx
ϕi(x)− ϕi(x)

d

dx
ϕ∗i (x)

)
(26)

and the diamagnetic current

jd(x) = − h̄

m∗
0

2π

L

Φ
Φ0

n(x) . (27)

has to be constant throughout the system. This is a di-
rect consequence of the continuity equation for the static
case which states that d

dxj(x) = 0.
In Fig. 7 the relative persistent current (normalized

to the persistent current of a non-interacting system in
the presence of a weak Gaussian impurity with V0 =
0.001meV) is shown as function of rS. For the weak-
est impurity potential used in our calculations with V0 =
0.001meV (black curve) we observe that the persistent
current remains constant up to a critical value rc

S ≈ 2.05.
For larger values of rS (corresponding to lower densities)
the persistent current drops exponentially. We interpret
this transition as the formation and pinning of a Wigner
crystal phase at rc

S. Our value of the critical Wigner-
Seitz radius may be compared to the equivalent quantity
in a two-dimensional electron gas which has been found
to be rc,2D

S = 37 ± 5.18 This large critical number in 2D
is probably due to the shear modulus in the two dimen-
sional electron gas6,19.

For stronger impurity potentials (which are still weak
on the energy scale of the Kohn-Sham eigenvalues but
comparable to the internal energy of the crystal20 that
is estimated to be on the order of 2 − 5meV) the criti-
cal value of the Wigner-Seitz radius is shifted to smaller
values and instead of a sharp transition at the critical rS

we find a smooth one. For the largest values of impurity
potentials considered in this work (5.0meV and 10.0meV,
corresponding to the green and magenta curve in Fig. 7,
respectively) there is even no range of rS where we find
free electron gas-like behaviour, i.e. where the persistent
current is independent of rS. The absence of a sharp
transition for stronger impurity potentials is due to the
breaking of the rotational symmetry by the impurity po-
tential itself which inhibits a phase transition.

The evidence for a Wigner transition and the corre-
sponding critical value of rS found from calculating the

FIG. 7: Relative persistent current as a function of rS. Col-
ors indicate the unrenormalized strength of the Gaussian im-
purity potential. Black: 0.001meV, blue: 1.0meV, green:
5.0meV, magenta: 10.0meV. The red dashed line shows the
persistent current of a non-interacting system in the pres-
ence of a Gaussian impurity with unrenormalized strength
0.001meV.

FIG. 8: Curvature of the ground state energy normalized to
the non-interacting homogeneous electron gas as a function
of rS. A value of one means delocalization (homogenous elec-
tron gas-like behaviour) whereas values smaller than one cor-
respond to increasingly strong localization. Different curves
show different impurity potential strength with decreasing
disorder from left to right. Taken from Ref. 7

persistent current may be compared to the localization of
the one-dimensional electron system as described by the
curvature of the groundstate energy7. However, in the
latter calculation the crystalline phase has been pinned
by a random impurity potential rather than by a localized
single impurity as in our work. In Fig. 8 a transition to a
localized phase is clearly seen. The point of this transi-
tion depends strongly on the strength of disorder, that is
on the strength of the impurity potential. Despite being
not in perfect agreement with our result, the observed
critical value of rS is consistent with our calculations.
The deviation is mainly due to the large sensitivity of rc

S
on the strength of the impurity potential.
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VI. CONCLUSION

In this work we have studied the persistent current
in a one-dimensional quantum ring with ten interacting
spinless electrons in the presence of a weak impurity po-
tential. It has been found that the electron electron inter-
acting has a drastic effect on the value of the persistent
current. We interpret this result as the formation and
pinning of a Wigner crystal phase at a critical value of the
one-dimensional Wigner-Seitz radius. However, in our
mean-field calculation fluctuations have not been taken
into account. We expect therefore that the value of rc

S
we obtained may be underestimated. Furthermore, the

dependence of rc
S on the shape and the width of the pin-

ning potential has not yet been studied. It is thus not yet
clear whether our critical value for the one-dimensional
Wigner-Seitz radius is universal or not in the sense that it
is a property of the interacting one-dimensional electron
system alone but does not depend on the precise form of
the pinning potential provided that this is weak enough.

I would like to thank Oleg Pankratov for interesting
and very stimulating discussions that always provided a
deep physical insight into this subject as well as Markus
Hofmann who wrote the DFT code used for the calcula-
tions.
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