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1 Introduction

Recently, there has been renewed interest in density matrix functional the-
ory (DMFT) [1], which is a formalism for treating the ground state of a
many-electron problem. Approximations for the exchange-correlation (xc)
energy functional have been found, which are fairly accurate for atoms,
small molecules, and the homogeneous electron gas. The level of accuracy
approaches that of computationally more demanding methods, such as the
method of configuration interaction.

Formally, DMFT is similar to density functional theory (DFT). The chief
difference is that in DMFT the basic variable is the one-particle reduced
density matrix (referred to as the “1-matrix” in the following) instead of
the density. Both the 1-matrix and the density are single-particle quantities,
but the 1-matrix contains more information: it contains all single-particle
information, e.g., the current density, kinetic energy density, magnetization
density, and of course, also the particle density. The additional information
content of the 1-matrix may assist in the construction of approximate xc
functionals. Indeed, consider a quantity with yet more information content,
the two-particle reduced density matrix (2-matrix.) The energy is a simple
linear functional of the 2-matrix (see Sec. 3.) In DFT, on the other hand,
the ground state energy is a complicated nonlinear and nonlocal functional
of the density. In terms of information content, the 1-matrix is intermediate
between the density and the 2-matrix. One may ask why the simple 2-matrix
energy functional is not minimized directly. This cannot be done, because it is
not known how to restrict the trial space to “physical” 2-matrices, that is, 2-
matrices that could be obtained from the contraction of some many-particle
wavefunction. Fortunately, it is known how to restrict the trial space to
“physical” 1-matrices, and the energy can be minimized directly by searching
over all trial 1-matrices.
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It is important for 1-matrix functional theory that the kinetic energy is a
known functional of the 1-matrix. This is not the case in DFT. The kinetic
energy is not a functional of the density alone, and it must be calculated
indirectly. The most successful approach is to map the many-particle problem
onto a fictitious system of noninteracting particles, called the Kohn-Sham
system, whose kinetic energy is readily evaluated, though it does not coincide
with the exact kinetic energy. For the reasons above, the approximate xc
energy functionals of DMFT have a different structure than the common
approximations of DFT, such as the local density approximation (LDA) and
generalized gradient approximation (GGA).

This report is structured as follows. In section 2, we review the concept
of the density matrix. In section 3, we outline the foundations of DMFT.
In section 4, we describe approximations that have been proposed for the
energy functional in DMFT. In section 5, we survey some of the results
obtained using these approximations. The conclusions and outlook are given
in section 6.

2 Review of the density matrix

Depending on the context, the state of a quantum system is described by
either a wavefunction or a density matrix. A system that can be described
by a wavefunction is said to be in a pure state. It is not always possible
to describe a system by a wavefunction. In particular, this is true of open
systems and situations where the state is incompletely specified. Such a
system is said to be in a mixed state and is described by a density matrix,

ρ(x1, x2, . . . xN ;x′1, x
′
2, . . . x

′
N) =

∑
i

wi Ψi(x1, x2, . . . xN) Ψ∗
i (x

′
1, x

′
2, . . . x

′
N) (1)

where x = (r, σ). Expanded in a complete basis for the system {φj}, the
many-particle states are Ψi =

∑
j cijφj. In the {φj} basis, the density matrix

has elements

ρjk =
∑

i

wi cijc
∗
ik. (2)

The statistical weights wi represent incomplete knowledge of the state. The
statistical nature of the density matrix is clearly illustrated in the calculation
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of averages. Consider the expectation value of an observable Â in a pure state〈
Â

〉
=

∑
a

a |〈a|Ψ〉|2 , (3)

where |a〉 is the eigenstate of Â with eigenvalue a. For a mixed state, the
expectation value is the statistical average of the expectation values of the
individual states that comprise the mixture,〈

Â
〉

=
∑

i

wi

〈
Ψi

∣∣∣Â∣∣∣ Ψi

〉
=

∑
a

a 〈a|
∑

i

wi |Ψi〉 〈Ψi| |a〉

= Tr
(
ρ̂ Â

)
. (4)

The last line is the familiar expression for calculating averages with respect
to a mixed state with the density matrix expressed as an operator,

ρ̂ =
∑

i

wi |Ψi〉 〈Ψi| . (5)

The basic variable of density matrix functional theory is the 1-matrix.
The 1-matrix is a contraction of the full many-particle density matrix,

ρ1(x;x
′) = N

∫
dx2 . . . dxN ρ(x, x2, . . . xN ;x′, x2, . . . xN) (6)

where
∫
dx =

∑
σ

∫
dr. An equivalent definition is

ρ1(x;x
′) = Tr

(
ρ̂ ψ̂†(x′)ψ̂(x)

)
, (7)

where ψ̂†(x) and ψ̂(x) are creation and annihilation field operators that sat-
isfy the fermionic commutation relation {ψ̂(x), ψ̂†(x′)} = δσ,σ′δ(r − r′). The
1-matrix is Hermitean and may always be diagonalized. The eigenstates of
the 1-matrix are called natural orbitals (NO’s). The eigenvalue equation for
a NO with spin σ (spin up or spin down) is∫

dr′ ρ1(rσ; r′σ) χiσ(r′) = niσ χiσ(r). (8)
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The eigenvalue niσ is the occupancy of the corresponding natural orbital χiσ.
Natural orbitals play a central role in DMFT.

The two-particle reduced density matrix, the 2-matrix, is defined as

ρ2(x1, x2;x
′
1, x

′
2) =

(
N
2

) ∫
dx3 . . . dxN ρ(x1, x2, x3 . . . xN ;x′1, x

′
2, x3 . . . xN). (9)

3 Foundations of density matrix functional

theory

DMFT and DFT are different approaches to the many-electron problem with
Hamiltonian

Ĥ =
N∑

i=1

p2
i

2m
+

N∑
i=1

∫
dr′iv(ri, r

′
i) +

i6=j∑
i,j

e2

|ri − rj|
, (10)

where the external potential v(r, r′) is nonlocal in general. DFT is limited
to the case of local external potential, i.e. v(r, r′) = v(r)δ(r, r′). The energy
of a pure state Ψ is

E =
〈
Ψ

∣∣∣Ĥ∣∣∣ Ψ
〉

= Tr
(
ρ̂Ĥ

)
, (11)

where ρ̂ = |Ψ〉 〈Ψ| is the density matrix associated with the pure state Ψ.
As the Hamiltonian contains only one-particle and two-particle operators,
the energy can be expressed as a functional of the 1-matrix and 2-matrix.
Consider the kinetic energy operator in terms of the field operators

T̂ =

∫
d3xψ̂†(x)

p2

2m
ψ̂(x). (12)
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The kinetic energy of a state Ψ is〈
Ψ

∣∣∣T̂ ∣∣∣ Ψ
〉

=

∫
d3x

〈
Ψ

∣∣∣∣ψ̂†(x)
p2

2m
ψ̂(x)

∣∣∣∣ Ψ

〉
=

∫ ∫
d3x d3x′δσ,σ′δ(r − r′)

〈
Ψ

∣∣∣∣ψ̂†(x′)
p2

2m
ψ̂(x)

∣∣∣∣ Ψ

〉
=

∫ ∫
d3x d3x′δσ,σ′δ(r − r′)

(
− 1

2m
∇2

r

) 〈
Ψ

∣∣∣ψ̂†(x′)ψ̂(x)
∣∣∣ Ψ

〉
=

∫ ∫
d3x d3x′δ(x− x′)

(
− 1

2m
∇2

r

)
ρ1(x;x

′), (13)

which is a linear functional of the 1-matrix. It is also a linear functional of
the 2-matrix, because the 1-matrix is itself a linear functional of the 2-matrix.
Similarly, the energy of interaction with the external potential is〈

Ψ
∣∣∣V̂ ∣∣∣ Ψ

〉
=

∫ ∫
d3xd3x′δσ,σ′v(r, r′)ρ1(x;x

′)

=
∑

σ

∫ ∫
d3rd3r′v(r, r′)ρ1(rσ; r′σ). (14)

The electron-electron interaction is a two-particle interaction. In terms of
the field operators, it may be written

Û =
e2

2

∫ ∫
dx dx′

n̂(x)n̂(x′)

|r − r′|

=
e2

2

∫ ∫
dx dx′ψ̂†(x)ψ̂(x)

1

|r − r′|
ψ̂†(x′)ψ̂(x′), (15)

where in the first line the operator n̂(x) replaces n(x) in the classical ex-
pression for the electrostatic energy. The interation energy is not a known
functional of the 1-matrix. It is, however, a linear functional of the 2-matrix〈

Ψ
∣∣∣Û ∣∣∣ Ψ

〉
=

e2

2

∫ ∫
dx dx′

1

|r − r′|

〈
Ψ

∣∣∣ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)
∣∣∣ Ψ

〉
=

∫ ∫
dx dx′

e2

|r − r′|
ρ2(x, x

′;x, x′). (16)

Therefore, the energy is a linear functional of the 2-matrix. At the same
time, the Hohenberg-Kohn (HK) theorem asserts that the ground state en-
ergy is a variational functional of the density alone. This is remarkable be-
cause the density is a much simpler quantity than the 1-matrix or 2-matrix.

5



The HK theorem was extended by Gilbert to DMFT [1], where it states that
the ground state energy is a variational functional of the 1-matrix. This
energy functional may be minimized by searching over all admissible trial
1-matrices. The following conditions are satisfied by an admissible 1-matrix:
1) it is Hermitean, 2) the natural orbitals are orthogonal, 3) the natural or-
bitals have occupancies between 0 and 1, i.e., 0 ≤ niσ ≤ 1, and 4) the sum
of the occupancies equals the number of particles. A necessary condition for
an energy minimum is that the energy functional is stationary with respect
to variations of the 1-matrix. Conditions 2) and 4) are enforced by Lagrange
multipliers. We introduce the energy functional

E [χiσ, niσ] = E[χiσ, niσ]− µ
( ∑

iσ

niσ −N
)
−

∑
iσ,jσ′

λiσjσ′
(
〈χiσ|χjσ′〉 − δijδσσ′

)
,(17)

where the occupancies are confined to lie between 0 and 1. The stationary
conditions are

δE
δχiσ

= 0,
δE
δχ∗

iσ

= 0, and
∂E
∂niσ

= 0. (18)

As we have considered a spin-independent Hamiltonian, the natural orbitals
are spin-restricted orbitals, i.e., each member of a complete and orthonormal
set of spatial orbitals is multiplied by a spin factor which is spin up or spin
down. Therefore, spin up and spin down orbitals are mutually orthogonal.

4 Müller approximation

It has been proved that the energy is a variational functional of the 1-matrix.
However, the functional is unknown in general. As shown in the previous
section, some parts of the energy are known functionals of the 1-matrix,
namely the kinetic energy and interaction energy with the external poten-
tial. Only the electron-electron interaction energy needs to be approximated.
In DMFT, approximations are constructed in terms of the natural orbitals
and occupancies. Therefore, they have a different stucture than the common
approximations in DFT, such as the local density approximation (LDA) and
generalized gradient approximation (GGA). Most of the approximations pro-
posed for the electron-electron interaction energy functional U [χiσ, niσ] are
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descendents of the following functional introduced by Müller [2]

UM [χiσ, niσ] =
∑
iσ,jσ′

niσnjσ′
e2

2

∫ ∫
dr dr′

φ∗iσ(r)φ∗jσ′(r′)φiσ(r)φjσ′(r′)

|r − r′|

+
∑
i,j,σ

√
niσnjσ

e2

2

∫ ∫
dr dr′

φ∗iσ(r)φ∗jσ(r′)φjσ(r)φiσ(r′)

|r − r′|
.(19)

It is a modification of the Hartree-Fock (HF) energy functional, where in the
exchange term niσnjσ is replaced by

√
niσnjσ. This modification is intended

to account for correlation, which is absent, by definition, in the HF approx-
imation. The presence of correlation is reflected in the appearance of frac-
tional occupancies at the energy minimum, whereas in the HF approximation
the occupancies are always 0 or 1. The square root factor

√
niσnjσ in the ex-

change term arises in the following way. Recall that the interaction energy is a
linear functional of the 2-matrix. Therefore, an approximation of the interac-
tion energy implies an approximation for the 2-matrix and vice versa. Müller
modified the exchange term by the replacement niσnjσ → (niσ)p (njσ)1−p.
Such a modification has the virtue that it implies an approximation for the
2-matrix that satisfies exactly the rule∫

dx2 ρ2(x1, x2;x
′
1, x2) =

N − 1

2
ρ1(x1, x

′
1), (20)

which follows directly from the definitions of the 1-matrix and 2-matrix.
The particular exponent p = 1/2 is found upon minimizing the violation
of the Pauli principle. Specifically, consider the diagonal element of the
two-particle density n2(x, x) = ρ2(x, x;x, x). It should be zero owing to
the Pauli principle. However, after the modification introduced by Müller,
n2(x, x) ≤ 0. The unique exponent p = 1/2 results from maximizing n2(x, x).
At the time of writing, most of the approximate functionals that have been
proposed are related to the Müller functional.

5 Survey of applications

In this section, we review some results of the application of approximate
energy functionals to three types of problems – the homogeneous electron
gas (HEG), atoms, and small molecules.
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5.1 Homogeneous electron gas

The homogeneous electron gas (HEG) is an important system by which to
test approximate functionals, because it has been well-studied. There is a
simplification regarding the application of DMFT. Due to the translational
invariance of the system, the natural orbitals are plane waves. Therefore,
only the occupancies of the plane waves must be varied in the minimiza-
tion of the energy. The occupancies of the plane waves are described by
the momentum distribution, n(k). A parametrization [3] of the momentum
distribution of the HEG as calculated by quantum Monte Carlo simulations
is shown in Figure 1. An important property of the momentum distribution

Figure 1: A parametrization of the momementum distribution of the HEG
for different values of rs. Adapted from Ref. [3]

is the smearing of occupancy over the Fermi level and the finite disconti-
nuity at the Fermi level. These properties of the momentum distribution
are consequences of the electron-electron interaction. If there were no inter-
actions, the lowest energy plane waves would be occupied up to the Fermi
level, that is, the momentum distribution would be a step function. Due to
the electron-electron interaction, the relative positions of the electrons in the
gas are correlated. This correlation tends to keep electrons away from each
other so that around every electron there is an “exchange-correlation hole,”
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representing a depletion of electron density. As an electron moves through
the gas, it does not propogate as a free particle. Instead, as it moves it is
followed by its xc hole and displaces other electrons. Such a bare electron
surrounded by a “cloud” of displaced electrons is called a quasi-particle or
“dressed” state. Due to screening, quasiparticles can be weakly interact-
ing. Therefore, they represent the elementary low energy excitations of the
electron gas. Reproducing these features of the momentum distribution is a
stringent test for approximate functionals.

Figure 2 shows results [4] from the Müller functional and a closely related
functional called BBC1 [5, 6] for the momentum distribution of the HEG.
The momentum distribution is shown for rs = 1 and rs = 5. It is seen that

Figure 2: Approximations of the momentum distribution of the HEG.
Adapted from Ref. [4]

the Müller functional overestimates the redistribution of occupancy over the
Fermi level and does not reproduce the discontinuity at the Fermi level. The
BBC1 functional describes better the redistribution of occupancy and does
exhibit a finite discontinuity at the Fermi level.
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Another quantity by which to test approximate functionals is the corre-
lation energy of the HEG. The definition of the correlation energy is

Ecorr = E − EHF , (21)

where E is the exact ground state energy and EHF is the Hartree-Fock en-
ergy. In the HF approximation, the positions of parallel spin electrons are
correlated due to the Pauli principle. The relative positions of antiparal-
lel spin electrons are not correlated. The correlation energy represents the
change to the HF energy upon correlation of antiparallel spin electrons and
additional correlation of parallel spin electrons. The correlation energy of
the HEG as predicted by various approximate functionals is shown in Fig-
ure 3. The Müller approximation overestimates the correlation energy. The

Figure 3: Correlation energy of the HEG as a function of rs. Adapted from
Ref. [4]

BBC1 approximation is fairly accurate for intermediate values of rs. Other
approximations are inaccurate in either the high density or low density limit.

5.2 Beryllium atom

The HEG is a special system because of its translation invariance. It is
interesting to test approximate functionals also for finite systems. We will
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examine the Beryllium atom, which has four electrons. Table 4 shows results
of calculations of Beryllium using approximate functionals. Results for the

Figure 4: Results for the total energy, correlation energy, and occupancies of
spin-restricted natural orbitals of Beryllium. Adapted from Ref. [7]

Müller approximation are not available. However, the approximation labeled
GU is the Müller functional with self-interaction terms omitted [8]. All rows
represent approximate 1-matrix functionals, except those labeled RHF, FCI
and exact. RHF is the restricted Hartree-Fock approximation, and FCI is
full configuration interaction. In terms of the correlation energy, the GU
approximation is comparable to FCI. Among the 1-matrix functionals, GU
gives the most accurate values for occupation numbers.

5.3 Hydrogen Fluoride

The last example we consider is Hydrogen Fluoride, a strongly ionic molecule.
Figure 5 shows the total energy as a function of the internuclear distance
R. The abbreviations are the same as for the Beryllium results. The GU
approximation is the most accurate 1-matrix functional over the depicted
range of internuclear separation. The other approximations produce minima
that are too shallow. The error is thought to be due to self-interaction. The
restricted Hartree-Fock approximation, for which self-interaction is absent,
gives an accurate value of the equilibrium internuclear distance.

11



Figure 5: Energy of Hydrogen Fluoride as a function of internuclear distance.
Adapted from Ref. [7]

6 Conclusions

Density matrix functional theory is an alternative approach to ground state
calculations of the many-electron problem. We have summarized the formu-
lation of the theory and compared it with density functional theory. The
form of the approximations introduced in DMFT looks much different than
the well-established approximations in DFT. One of the primitive approxi-
mations in DMFT is the Müller energy functional, which is an attempt to
go beyond the Hartree-Fock approximation. We have reviewed some existing
applications of the Müller energy functional and related approximate func-
tionals. For reasons remarked in the Introduction, it may be hoped that
further approximations will be found that are as accurate as those in DFT.
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