Modeling of total dose radiation effect of RF PD SOI-MOSFET using Sentaurus TCAD

- Krasukov A.Y.
- Mansurov A.N.
- Shlikova K.A.
- Griaznov E.G.

Advantages of partially depleted SOI – FETs versus bulk devices

- lower drain and source capacitances and high performance for digital and RF-applications
- full dielectric insulation of each transistor, low leakage currents, even at high operating temperatures, no latch-up in CMOS structures
- smaller layout dimensions
- higher immunity to total dose radiation and single event upsets (SEU)

Main targets of this article

- perform 2D simulation of basic process flow and create 3D A-type SOI - device structure with different channel lengths (0.35 and 0.5 mkm) and widths: W=1,2,3 mkm
- perform DC-device simulation: simulate static currentvoltage characteristics (Id(Ugs), Id(Uds))
- perform AC-device simulation: simulate small-signal dependences of H21(f) MUG(f)
- calculate dependences of f1(Ugs) and fmax(Ugs)
- calculate dependences of Id(Total Dose) using device simulation

Simulation flow

Simplified simulation flow

Total simulation flow in TCAD

4

							Family Tree					
		-	-	4		\geq						
SentaurusP		SeniaurusP	SeniaurusP	SentaurusP	SeniaurusP	Niy Tool	SentaurusSE	Mesh	SeniaurusD		SeniaurusD	
PARAM1 Region										Vd		
	SIM2D									0.1		
										3.3		
0	SIM2D1									0.1		
	Shinebi									3.3		
	SIM2D2									0.1		
	3111/202									3.3		
0.15	SIM2D									0.1		
	311012.0									3.3		
	SIM2D1									0.1		
										3.3		
	SIM2D2									0.1		
	SIMEDE									3.3		
						3D STRUCTURE			3D DEVICE			
2D PROCESS SIMULATION												
						GENERATION			SIMULATION			

2D Process simulation

A-type transistor layout

Part of the total process flow

3D structure generation

3D-device boundary

Final 3D-structures of A-type SOI-MOSFETS with W=1, 2, 3 mkm

Basic DC-simulation results

Simulated output DC- characteristics

W=1 mkm

W=2 mkm

W=3 mkm

- Operating points for AC-analysis:
- Uds=2V, Ugs= 1- 4V

Results of AC-frequency analysis

1E11

1E10

f. Gz

20

10

3.5

H21(f), MUG(f) for transistors with L=0.35 mkm and W=1,2,3 mkm

H21(f), MUG(f) for transistors with L=0.5 mkm and W=1,2,3 mkm

Analysis of AC-simulation results

Dependences:
f1(Ugs,L,W)
fmax(Ugs, L,W)

L=0.35 mkm, Ugs=3V, Uds=2V: **f1 = 24 GGz, fmax = 57 GGz** L=0.5 mkm, Ugs=3V, Uds=2V: **f1 = 17 GGz, fmax = 43 GGz**

Simulation of total dose effects

 Positive charge trapping occurs in oxides of SOIstructure, changing the potential distribution

 Define maximum
 concentration of neutral traps in oxide (Ctrap).
 This value strongly depends on oxide fabrication conditions

Potential distribution in A-type SOI-MOSFET before and during radiation. Uds=2V Ugs=0

Publications about charge trapping in oxides during irradiation

R.K. Lawrence et. al, "Positive charge trapping in SOI materials", Proc. IEEE Intern. SOI Conf., 1996, p.34

> Dependence of surface trapped charge density versus total dose in different oxides Qtrap(Dose)

Dependence of bulk trapped charge density versus total dose Ctrap(Dose) in BESOI with Dox=400 nm

Ctrap=Qtrap/Dox

Results of total dose effect simulation

No body contact (2D) With body contact, W=1mkm (3D)
Dependences of drain leakage current versus total dose
Uds=2V, L=0.5 mkm, DoseRate=100 krad/s
Ctrap – parameter: 1e17 – 5e20 cm-3

Dependences of drain leakage current versus maximum oxide traps concentration for different transistors at 1 and 2 Mrads

Qtrap=2.75e17 cm⁻³ < Ctrap=1e18 cm⁻³

all our transistors, even without body contact – are radiation hard

Thank You!