CMOS Model's FLAG Control System

PhD student of "Microelectronic Circuits and Systems"

Interdepartmental Chair of State Engineering University of Armenia (SEUA),

R&D Engineer of "SYNOPSYS Armenia" CJSC

Tigran Petrosyan

Contest

- Evolution of CMOS transistors models
- Results of CMOS transistors models evolution
- Drawbacks of existing approaches
- Proposed approaches for model speed and accuracy increase
- Target function definition for CMOS model speed and accuracy increase
- Proposed flow for model speed and accuracy increase
- Example Accuracy and speed increase flow application
- Accuracy and speed increase flow application results
- CMOS model speed and accuracy increase software structure and functionality
- FLAG software graphical interface
- FLAG efficiency estimation

CMOS transistors models evolution (1)

BSIM1

 $V_{th} = \begin{cases} V_{Thideal.} = V_{th0} = V_{Fb} + \Phi_s + K_1 \cdot \sqrt{\Phi_s} \\ \Phi_s = 2 \cdot V_{tm0} ln \left(\frac{N_{ch}}{n_{i0}}\right), \text{at } T = T_{nom} \\ V_{tm0} = \frac{K_B \cdot T_{nom}}{q} \end{cases}$

CMOS transistors models evolution (2)

BSIM4

$$V_{\text{th}} = V_{\text{thideal}} + \Delta V_{\text{th}(1)} + \Delta V_{\text{th}(2)} + \Delta V_{\text{th}.(3)} + \Delta V_{\text{th}.(4)} + \Delta V_{\text{th}.(5)} + \Delta V_{\text{th}.(6)}$$

$$\Delta V_{\text{th}(1)} = K_1 \cdot \frac{T_{\text{ox}}}{T_{\text{oxm}}} \cdot \sqrt{\Phi_s} \cdot V_{\text{bseff}} - K_2 \cdot \frac{T_{\text{ox}}}{T_{\text{oxm}}} \cdot V_{\text{bseff}}$$
$$\Delta V_{\text{th}(2)} = K_1 \cdot \frac{T_{\hat{u}x}}{T_{\hat{u}xm}} \cdot \sqrt{1 + N \cdot L_{\text{eff}} / L_{\text{eff}}} \cdot \sqrt{\Phi_s}$$

$$\Delta V_{th}(4) = D_{VTO} \left(e^{\left(-D_{VT1} \frac{W_{eff}L_{eff}}{2L_{tw}} \right)_{+2e} \left(-D_{VT1} \frac{W_{eff}L_{eff}}{L_{tw}} \right)} \right) \cdot \left(V_{bi}^{-\phi_s} \right)$$

$$\Delta V_{th}(6) = \left(e^{\left(\begin{array}{c} D_{VT1} \cdot \frac{L_{eff}}{2^{*}L_{t0}} \right)} + 2 \cdot e^{\left(\begin{array}{c} D_{VT1} \cdot \frac{L_{eff}}{L_{t0}} \right)} \right)} \cdot \left(E_{ta0} + E_{tab} \cdot V_{bseff} \right)$$
$$I_{t0} = \sqrt{\frac{\varepsilon_{si} \cdot T_{ox} \cdot X_{dep}}{\varepsilon_{sio2}}}$$

 $Vbseff = V_{bc} + 0.5 \cdot \left[V_{bs} - V_{bc} - \delta_1 + \sqrt{\left(V_{bs} - V_{bc} - \delta_1\right)^2 - 4 \cdot \delta_1 \cdot V_{bc}} \right]$

$$K_1 = \gamma_2 - 2 \cdot K_2 \cdot \sqrt{\Phi_s - V_{bm.}}$$

$$\kappa_{2} = \frac{(\gamma_{1} - \gamma_{2}) \cdot (\sqrt{\Phi_{s} - V_{bx.}} - \sqrt{\Phi_{s}})}{2\sqrt{\Phi_{s}} \cdot (\sqrt{\Phi_{s} - V_{bx.}} - \sqrt{\Phi_{s}}) + V_{bx.}}$$

$$\gamma_1 = \frac{\sqrt{2 \cdot q \cdot \varepsilon_{si} \cdot N_{ch}}}{C_{\hat{u}x}}$$

$$v_2 = \frac{\sqrt{2 \cdot q \cdot \varepsilon_{si} \cdot N_{ch.}}}{C_{\hat{u}x}}$$

$$X_{t} = \Phi_{s} - \frac{q \cdot N_{ch} \cdot X_{t}^{2}}{2 \cdot \varepsilon_{si}}$$
$$V_{bc} = 0.9 \cdot \Phi_{s} + \frac{K_{1}^{2}}{4 \cdot K_{2}^{2}}$$

CMOS transistors models evolution (3)

$$\begin{split} & \mathsf{I}_{h} = \mathsf{W}_{eff} \cdot \mathsf{L}_{eff} \cdot \mathsf{A} \bigg(\frac{\mathsf{TOXREF}}{\mathsf{TOXE}} \bigg)^{\mathsf{NTOX}} \cdot \frac{1}{\mathsf{TOVE}^{2}} \cdot \mathsf{V}_{th} \cdot \\ & \cdot \mathsf{V}_{aux1} \cdot \exp(-\mathsf{B} \cdot \mathsf{TOXE} \cdot (\mathsf{AIGBACC} - \mathsf{BIGBACC} \cdot \mathsf{V}_{oxacc}) \cdot \\ & \cdot (1 + \mathsf{CIGBACC} \cdot \mathsf{V}_{oxacc})) \\ & \mathsf{I}_{h} = \mathsf{W}_{\dot{c}} \dot{y} \dot{y} \cdot \mathsf{L}_{\dot{c}} \dot{y} \dot{y} \cdot \mathsf{C} \cdot \bigg(\frac{\mathsf{TOXREF}}{\mathsf{TOXE}} \bigg)^{\mathsf{NTOX}} \cdot \frac{1}{\mathsf{TOVE}^{2}} \cdot \mathsf{V}_{th} \cdot \\ & \cdot \mathsf{V}_{aux2} \cdot \exp(-\mathsf{D} \cdot \mathsf{TOXE} \cdot (\mathsf{AIGBINV} - \mathsf{BIGBINV} \cdot \mathsf{V}_{oxdep}) \cdot \\ & \cdot (1 + \mathsf{CIGB} \cdot \mathsf{ACCINV} \cdot \mathsf{V}_{oxdep})) \end{split}$$

$$|\mathbf{I}| = |\mathbf{U}| \cdot \boldsymbol{\omega} \cdot \mathbf{C}$$

$$C_{db} = C_{s.b} + C_{d.b} + C_{h.b}$$

$$C_{s} = C_{s} = \frac{1}{2} \cdot \mathbf{W} \cdot \mathbf{L} \cdot C_{ox}$$

$$C_{ch} = \frac{2}{3} \cdot \mathbf{W} \cdot \mathbf{L} \cdot C_{ox}$$

 $\begin{array}{ll} C_{\tilde{N}\acute{a}.\tilde{N}^3}=W\cdot L\cdot C_{\hat{U}\grave{U}\ddot{e}} C_1\\ C_{^3\!\ddot{I}}=C_{^3\!\widetilde{I}}=0 \end{array}$

$$\begin{split} & \mathsf{I}_{\mathsf{h}} = \mathsf{W}_{\dot{\zeta}}\dot{y}\dot{y}\cdot\mathsf{L}_{\dot{\zeta}}\dot{y}\dot{y}\cdot\mathsf{E}\cdot\left(\frac{\mathsf{TOXREF}}{\mathsf{TOXE}}\right)^{\mathsf{NTOX}}\cdot\frac{1}{\mathsf{TOVE}^2}\cdot\mathsf{V}_{\mathsf{gse}}\cdot\mathsf{NIGC}\cdot\\ & \cdot\mathsf{V}_{\mathsf{t}}\cdot\mathsf{log}\!\!\left(1 + \exp\!\!\left(\frac{\mathsf{V}_{\mathsf{gse}}-\mathsf{VTH0}}{\mathsf{NIGC}^*\mathsf{V}_{\mathsf{t}}}\right)\right)\!\!\right)\\ & \cdot\exp(-\mathsf{F}\cdot\mathsf{TOXE}\cdot(\mathsf{AIGC}-\mathsf{BIGC}\cdot\mathsf{V}_{\mathsf{oxde}})\cdot\\ & \cdot(1 + \mathsf{CIGB}\cdot\mathsf{ACCINV}\cdot\mathsf{V}_{\hat{\mathsf{u}}\mathsf{xde}})) \end{split}$$

Results of CMOS transistors models evolution

Proposed approaches for model speed and accuracy increase (1)

7

1. Trade-off between number of operations and achieved accuracy in avery computational case

Computational gates application flow

Proposed approaches for model speed and accuracy increase (2)

2. Elimination of information lack and excess during calculations

Proposed approaches for model speed and accuracy increase (3)

Transistor model computation flow

Proposed approaches for model speed and accuracy increase (4)

10

Proposed approaches for model speed and accuracy increase

3. Different accuracy for transitions depending on demands occurring during current computational situation

Hierarchy of adaptation criteria used in CMOS transistor's model

4. Model universality: independency from modelin circuit, technological process, circuit base, etc.

5. CMOS transistor compatibility with other electrical elements' models (diodes, resistors, etc): no need in recalculations during modeling with such models

Target function definition for CMOS model speed and accuracy increase

Target function

 $E_{mach} \rightarrow min$ Limitation

$$\Delta_{\text{calc}} < \Delta_{\text{alow}}$$
 & $\epsilon_{\text{calc}} < \epsilon_{\text{alow}}$

 $a_i \leq P_i \leq b_i, i=1,2...,S$

$$\Delta_{\text{calc}} = \vec{\textbf{Y}}_{\text{calc}} - \vec{\textbf{Y}}_{\text{real}}$$

$$\varepsilon_{\text{calc}} = \frac{\vec{Y}_{\text{calc}} - \vec{Y}_{\text{real}}}{\vec{Y}_{\text{calc}}}$$

$$\vec{Y}_{calc} = F(AC_{ij} = f(G_{ij}))_{i=1,2,...,t;j=1,2,...,q}$$

$$E_{mach} = \sum_{d=1}^{n} t_{mach} = \Psi(AC_{ij} = f(G_{ij}))_{i=1,2,...,t;j=1,2,...,q}$$

$$\begin{split} \mathsf{F}(\mathsf{AC}_{ij} = \mathsf{f}(\mathsf{G}_{ij}))_{i=1,2,...,t;j=1,2,...,q} - \vec{Y}_{real} < \Delta_{alow} \\ \frac{\mathsf{F}(\mathsf{AC}_{ij} = \mathsf{f}(\mathsf{G}_{ij}))_{i=1,2,...,t;j=1,2,...,q} - \vec{Y}_{Q\tilde{n}^{3} \ \tilde{l} \ .}}{\vec{Y}_{real}} < \mathcal{E}_{alow} \\ a_{i} \leq \mathsf{p}_{i} \leq \mathsf{b}_{i,i=1,2,...,S} \\ \mathsf{E}_{mach} = \psi(\mathsf{AC}_{ij} = \mathsf{f}(\mathsf{G}_{ij}))_{i=1,2,...,t;j=1,2,...,q} \to \mathsf{min} \end{split}$$

Proposed flow for model speed and accuracy increase

Example Accuracy and speed increase flow application (1)

Level shifter operating conditions

Low to high level shifter

Parameters	Typical	Min	Max	Dimension
Core supply (VDD)	1,2	1,08	1,32	V
I/O supply (VDDIO)	2,5	2,25	2,75	V
Clock frequency	240	120	-	MHc
Temperature	25	125	-40	ÛC
Power dissipation	10	-	11	uWt

Example Accuracy and speed increase flow application (2)

Level shifter specification and technology information

					Graph0 (V)	: t(s)
parameters	typical	min	max	Dimension	25-)
						out)
Simulation time	64	-	70	S	20-	
Calculations results						
accurse	99	97	-	%	15.	
Technology	TSMC65	-	-	-		
Thick oxide transistor	yes	-	-	-		
Thin oxide transistor					0.5-	
1 1 m	yes	-	-	-		
Channel length						
J	-	65	-	nm	1 1 1 1 1 1 1.38u 1.4u 1.42u 1.44u 1.46u 1.48u t(s)	
						_

Simplified simulation results

Example Accuracy and speed increase flow application (3)

Frequency simulation results for gate capacitive and tunneling currents

Simulation time dependence from number of computational gates for TSMC65

	FLAG	BSIM 4.4.0	Gain
Av	erage relative error with this model		
	0,0248 %	1,7%	1,67%
Tin	ne needed for simulation with this model		
	57,14 í	84.97 í	27.83 s/ 47%

More accurate results need more time

CMOS model speed and accuracy increase software structure and functionality

FLAG software graphical interface

FLAG efficiency estimation (1)

FLAG efficiency estimation (2)

Thank you

