Voltage Overstress Protection in CMOS ICs

PhD student of "Microelectronic Circuits and Systems" Interdepartmental Chair of State Engineering University of Armenia (SEUA), R&D Engineer of "SYNOPSYS Armenia" CJSC

Alik Sargsyan

MB-JASS 2009

Overview

- Introduction
- Overview of technologies
- Problem description
- Schematic approaches
- Proposed solutions
- Level shifter design
- USB Full-Speed driver architecture
- Lifetime calculations
- Conclusion

Introduction

- Continuing technological shrinkage brings to lowering allowed maximum voltages applied to MOS devices and IC supply voltages
- High voltages applied to CMOS devices:
 - devices' failures
 - parametrical degradation over the time
- Physical phenomenon causing MOS degradation/failure
 - HCI Hot Carrier Injection
 - NBTI Negative Bias Temperature Instability
 - TDDB Time Dependent Dielectric Breakdown
 - SILC Stress Induced Leakage Current
- Device performance time can be increased either by improving technological processes or using newer approaches in circuit designs

Technology	Thick oxide transistors		Thin oxide transistors	
	Supply Voltage (V)	T _{ox} (nm)	Supply Voltage (V)	T _{ox} (nm)
130nm	2,5 V	~5,8	1,5	~3,3
90nm	2,5	~5,7	1,2	~2,6
65nm	2,5/1,8	~5,6/~3,6	11,2	~2,4
45nm	2,5/1,8	~5,5/~3,4	0,91,1	~22,3
32nm(HK-MG)	2,5/1,8	~8,6/~5,9	0,91	~3,2

• Usually max allowed voltage over MOS two different nodes is VDD+20%

 Many widespread IO standards (USB, PCI, etc.) use 3,3V supply USB/PCI PHY

- Most susceptible blocks to overstress
 - Level Shifters. Transition from low voltage to high voltage domain
 - IO cells. Wide swing signaling with low voltage devices
- Benefits
 - Gain in area/performance low cost/power
 - No need in additional mask low cost
- Drawbacks
 - Reliability issues under high voltage operation

MB-JASS 2009

Overstress Issue Conventional Level Shifter

- Conventional Level-Shifter is appropriate with 3.3V devices
- Neither 2.5V nor1.8V devices can sustain overstresses with this schematic

MB-JASS 2009

Overstress Issue USB FS Driver

- Conventional design is suitable for 3.3V devices
- Overstress issues with 2.5V nor1.8V devices

MB-JASS 2009

Overstress Protection Techniques: Cascoding

- Allows to redistribute large voltage over several series connected devices
- Costs area and performance

MB-JASS 2009

Overstress Protection Techniques: Voltage Limitation

$$V(OUT) = - \begin{bmatrix} V(A), & \text{if } V(A) > V(B) \\ V(B), & \text{if } V(B) < V(A) \end{bmatrix}$$

V(OUT) chooses highest from two inputs

- Can be used as voltage limiter, if on of the inputs is set to desired minimal value
- High impedance when |V(A)-V(B)|<V_{TH}:
 - Floating node
 - Large rise/fall times

Proposed Solution Level Shifter Based on 1.8V Devices

- Cascoding techniques employed for devices' overstress protection as well as positive feedback
- Circuit provides two invert outputs Q and QN with:

V_{LO}=VDD18 V_{HI}=VDD33

Proposed Solution Level Shifter Based on 1.8V Devices

Large swing on Q_1 and QN_1 V_{LO}=VDD18 V_{HI}=VDD33

Additional cross coupling improves performance and relieves overstress

Proposed Solution Dual output Level Shifter

MB-JASS 2009

Cascoding techniques employed for devices' overstress protection as well as positive feedback

Circuit provides two invert outputs Q and QN with:

V_{LO}=VDD18 V_{HI}=VDD33

USB FS Driver Proposed Solution on 2.5V Devices

• Cascoding techniques used for redistributing large voltage over two devices.

MB-JASS 2009

USB FS Driver Proposed Solution on 1.8V Devices

- Additional cascoding with MN1 provides overstress protection when V(pad)=3.3V
- MP1 and MP2 provide following function:

$$V(C) = \begin{cases} V(pad), V(pad) > VDD18 \\ VDD18, V(pad) < VDD18 \end{cases}$$

MB-JASS 2009

SEUA

14

Overstressed Device's Lifetime Calculation

$$T_{life} = T_{life_{DC}} / (\Delta t_{ovrstrs} * F)$$

$$\label{eq:time} \begin{split} \textbf{T}_{life} & - \text{ overstressed device lifetime} \\ \textbf{T}_{life_DC} &= \textbf{f}(\textbf{V}_{peak}) - \text{device lifetime under DC overstress} \\ & \Delta t_{ovrstrs} - \text{overstress duration} \\ \textbf{F} & - \text{frequency of repetition} \end{split}$$

• Simple in calculation

o No need to taking into account overstress voltage variation during the time

Pessimistic

 $_{\odot}$ Takes into account the maximal overstress voltage V $_{\rm peak}$

MB-JASS 2009

Conclusion

- Cascoding as a method of voltage distribution over several devices
- Voltage limitation circuit for preventing from wide voltage swing and controlling gates of additional cascodes
- Proposed USB FS driver configuration and Level-Shifter design based on 2.5V and 1.8V devices with lifetime >10yrs.
- Level-shifter and USB FS driver designs are silicon proven

Thank you

MB-JASS 2009