
Moscow-Bavarian Joint Advanced Student School (MB-JASS) 2009:
Design Methods for Micro- and Nanoelectronic ICs and Systems

Probabilistic CMOS Technology

Sebastian Schießl

Technische Universität München

1

Contents
1 Introduction 3

2 Basic Principles 3

3 Applications 4
3.1 Applications that harness probabilistic behavior 4

3.1.1 Metric to analyze gains . 5
3.1.2 Analyzing gains . 6
3.1.3 Reducing the number of different voltage levels 7
3.1.4 Quality of Randomness . 8

3.2 Applications that can tolerate probabilistic behavior 8
3.3 Applications that can not tolerate probabilistic behavior 9

4 Conclusion 10

2

1 Introduction
Scaling CMOS devices into the nanometer regime creates several new challenges, such as
parameter variations and noise susceptibility, which can lead to unreliable behavior of those
devices. Especially when regarding thermal noise, the resulting behavior is probabilistic,
what is undesired in many applications. If you take a calculator, for instance, 2+2 must
always equal 4, it is not acceptable that the result would be 5 in some cases.

However, there are some applications that can tolerate probabilistic behavior at the
device level or even benefit from it. In this article, we will focus on CMOS devices which
show controlled probabilistic behavior and its effects on those applications.

2 Basic Principles
Our main consideration in this article is enhancing energy effiency and performance of
applications by using devices based on probabilistic CMOS (PCMOS) technology. We
will not look at devices rendered probabilistic or even completely faulty by factors like
parameter variations or other pertubations, which may be caused by device scaling into the
nanometer regime. We will only look at CMOS devices which show controlled probabilistic
behavior due to controlled reduction of the supply voltage Vdd and the presence of thermal
noise. Those devices are called PCMOS devices. In figure 1(a) you see a CMOS inverter
which is rendered probabilistic due to thermal noise. The probabilities that this noise
leads to wrong outputs are shown as gray-shaded regions in figure 1(b). Therefore, the
probability of correctness p for this PCMOS switch can be expressed as:

p = 1− 1
2erfc

(
Vdd

2
√

2σ

)
(1)

As shown in [ACKP06, p. 2, eq.(4)], the switching energy E for this switch, while
E = 1

2CV
2
dd, can be lower-bounded like this:

E(p, C, σ) > Cσ2
(4

1.275

)
ln
(

0.28
1− p

)
(2)

It can be directly seen from this equation, that the switching energy E grows quadratically
with σ. As you see figure 1(b), this is quite natural, because Vdd must grow linearly with
σ if p remains constant, and therefore E must grow quadratically with σ.

It is also shown in [ACKP06, pp. 2-3] that the switching energy E grows with the
probability of correctness p, and that this growth is lower-bounded by an exponential in p.

3

Figure 1: (a) PCMOS switch (b) Representation of digital values 0 and 1 and the proba-
bility of error for a PCMOS switch [ACKP06, p. 2]

3 Applications

3.1 Applications that harness probabilistic behavior
While probabilistic behavior is undesired in many applications, there are some algorithms
which benefit from it. In this article, we will focus on applications based on four of those
algorithms: Bayesian Inference, Probabilistic Cellular Automata, Random Neural Networks
and Hyperencryption. They will be abbreviated as bn, pca, rnn and he. All of these
algorithms use a so-called core probabilistic step (Table 1) with an associated probability
parameter p.

This core probabilistic step will be implemented on a PCMOS coprocessor, while the
determistic parts of the algorithms are executed on a host processor, in our example the
StrongARM SA-1100 host. The coprocessor is connected to the host with memory mapped
IO (Figure 2). This architecture will be called probabilistic system on a chip (PSOC)
architecture.

We will compare this implementation of the probabilistic algorithms with two other
implementations: The first competitor is a single host processor like the StrongARM SA-
1100, which will execute both the deterministic and the probabilistic part of the algorithm,
while the probabilistic part uses a pseudorandom number generator to create randomness
(Figure 3(b)). The second competitor runs the deterministic part of the algorithm also on
the normal StrongARM SA-1100 host, but uses a CMOS-based coprocessor for the prob-
abilistic part, which again uses pseudorandom numbers for randomness. The coprocessor
is connected to the host with memory mapped IO (Figure 3(c)). Figure 3(a) shows an
implementation for a completely deterministic algorithm. There are some probabilistic
algorithms which have a completely deterministic counterpart, for example the celebrated
probabilistic tests for primality [ACKP06, p. 3] of course have deterministic counterparts,
conventional deterministic algorithms for primality testing. But since not all the algo-
rithms have such a deterministic counterpart, this issue will not be further investigated in

4

Table 1: Core probabilistic steps for the discussed algorithms [CKAP07, p. 9]

this article. [CKAP07, pp. 5-6]
Executing the core probabilistic step in a PCMOS device can basically be described as

tossing a coin or throwing a dice, except that the results will only be 1 or 0 instead of heads
or tails and 1 to 6. The chances for getting 1 s are specified with probability parameters
p, according to the probability parameters of the core probabilistic steps of an algorithm.
This is implemented with probabilistic switches with fixed input values (1 or 0). Their
probability parameter p is controlled through the supply voltage Vdd, Vdd is lowered so that
thermal noise will lead to random outputs (see chapter 2). For example, the probability
parameter of 0.40 (for a logical 1) will be generated from a probabilistic inverter, with a 1
at the input and a probability of correctness of 0.60.

3.1.1 Metric to analyze gains

We will compare the different implementations regarding performance (running time) and
the amount of energy consumed. For analyzing this, we introduce only one single metric:
The energy performance product or epp as the product of energy consumed and running
time. According to [CKAP07, pp.7-8], this metric captures both metrics of interest, energy
and time. Furthermore, if you would enhance performance by replication or voltage scaling,

5

Figure 2: PSOC architecture [CKAP07, p. 6]

Figure 3: Conventional implementation alternatives [CKAP07, p. 6]

this would consume more energy accordingly. But the epp would remain almost constant
in this case, making it a reasonable metric to compare different implementations.

To analyze the benefits of our PCMOS implementation I compared the baseline im-
plementation β, we use the energy performance product gain ΓI as the ratio of the EPP of
the baseline β to the EPP of the implementation I:

ΓI = Energyβ × Timeβ
EnergyI × TimeI

(3)

The implementation I will be based on PSOC architecture with a probabilistic CMOS
(PCMOS) coprocessor, whereas the baseline β will be the single host processor (Fig. 3(b))
or a host processor connected to a conventional CMOS based coprocessor (Fig. 3(c)).

3.1.2 Analyzing gains

The EPP gains vary broadly from application to application. When the baseline imple-
mentation β is a software which runs completely on the StrongArm SA-1100 host (as
shown in figure 3(b)), the EPP gains for PSOC architectures based on PCMOS devices

6

are shown in table 2. This means that for random neural networks (RNN), the PSOC
implementation I with PCMOS-based coprocessor can run up to 300 times faster than the
baseline implementation β, while energy consumption remains the same. Although the

Table 2: EPP gains [CKAP07, p. 10]

PCMOS technology saves a little energy on the device level (due to lowered voltage levels),
the main reason for saving time and energy when using a PSOC architecture is found on
the application level, because complex and expensive pseudorandom number generation
becomes unnecessary. The various factors which influence the EPP gains are described
in detail in [CKAP07, Chapter 4.3]. When the StrongARM SA-1100 host is replaced for
both the baseline implementation and the PSOC implementation by a more efficient host
built with custom ASIC logic, these gains increase even more, to 9.38 for hyperencryption
and 561 for probabilistic cellular automata, what indicates that PSOC architectures will
become even more efficient when host processors get better. [CKAP07, Chapter 4.4]

3.1.3 Reducing the number of different voltage levels

As mentioned before, different probability parameters are usually archieved by different
voltage levels. In the probabilistic cellular automata algorithm, there are probabilistic
transition rules for each cell, and the probability of a cell transition depends on its current
state and the state of its two nearest neighbours [CKAP07, pp. 20-21], which results
in 23 = 8 different transition rules. So in this application there are typically 8 distinct
probability parameters, which will result in up to 8 different voltage levels. However,
the number of different voltage levels should be small, because each voltage level has to be
generated and distributed on the chip, which increases complexity and power consumption.

How can the number of different voltage levels be reduced? In some cases, application
quality might not be reduced if a probability parameter is eliminated and replaced by
another one to reduce the number of voltage levels. In other cases, logical operations
can be used to archieve the desired probability parameter. For example, if your PCMOS
device uses two different voltage levels which create probability parameters of 0.40 and
0.50, the probability parameter 0.20 can easily be created by connecting the former two
with a logical AND. Table 3 shows a way to generate even more probability parameters
with logical networks, where only 0.50 and 0.40 are generated directly. Note that you

7

can always get the complementary probabilities 1 − p (higher than 50%) by just adding
a deterministic logical NOT at the end. By the way, 50% correctness is the "worst" you
can get. 0% correctness means the output is always 1 when it should be 0 and vice versa.
This is nothing but a normal, deterministic inverter and cannot be made from probabilistic
elements.

Table 3: Reduction of number of probability parameters through logical operations
[CKAP07, p. 25]

3.1.4 Quality of Randomness

Especially in encryption algorithms the quality of random or pseudorandom bits is crucial.
The bits must be statistically uncorrelated. This means there must be no kind of "pattern"
within the sequence of bits, or else the strength of encryption will suffer severely. If the
randomness of PCMOS-based devices originates only from the randomness of thermal noise,
and if that thermal noise is really a perfect white (uncorrelated) noise, the randomness
should also be perfect. But if, for example, some physical effect would cause some kind of
oscillation in the PCMOS device, then output bits would be correlated and not completely
random. But the statistical properties of PCMOS devices were tested using the NIST suite
with very favorable results, although further research is necessary. [CKAP07, Chapter 6.4]

3.2 Applications that can tolerate probabilistic behavior
Apart from applications that benefit from probabilistic behavior on the device level, there
are also applications which are deterministic, but can tolerate probabilistic behavior. Many
applications in digital signal processing fall into this category. Some of them naturally have
to trade off between energy consumed and quality in the form of the signal-to-noise ratio
snr. As an example, let’s view on an FIR filter in the context of the H.264 decoding
algorithm. In an effort to reduce power consumption, the supply voltage of an FIR filter
could be lowered, which results in a lower probability of correctness p. Figure 4(b) shows
what happens if the supply voltage is lowered uniformly for each bit. It can be estimated
that the supply voltage was lowered to 70%, so the power consumption of this element

8

should have halved, but it results in a major degradation of picture quality. However,
if you reduce the supply voltage non-uniformly (Fig. 4(c), so that the most significant
bits will operate more or less correctly, the picture quality degrades only slightly, while
still saving a significant amount of energy. However, note that in Figure 4(c) you can see
quite a lot of different voltage levels, what should be avoided. See chapter 3.1.3 for more
information. [ACKP06, p. 4]

Figure 4: Image processing with (a) normal operation, (b) uniform voltage scaling and (c)
non-uniform voltage scaling [ACKP06, p. 5]

3.3 Applications that can not tolerate probabilistic behavior
For applications that can not tolerate probabilistic behavior, but have to be realized on
unreliable, probabilistic devices, reliable computation must be accomplished with unreliable
components. This can be done with redundant systems of those unreliable components,
combined with reliable arbitrators. But there are also other approaches like speculative
execution on unreliable logic and verification by reliable logic elements to save time and/or
energy. One example for this: a digital division, which usually needs much calculating
time, could be calculated on unreliable logic, which could save a lot of time or energy, and
the result would be verified by a fast multiplication on the conventional, reliable processor.

9

4 Conclusion
The probabilistic behavior of PCMOS devices described in this paper does not result from
problems in manufacturing chips, but is well-directed and controlled through the supply
voltage. There are some applications which benefit greatly from this specific probabilistic
behavior, resulting in huge gains of performance and energy effiency. Other applications
can tolerate that probabilistic behavior and trade off the resulting reduction of quality
with the energy saved through lowering the supply voltage. This is a first and already
very valueable step in the shift of design paradigm from deterministic to probabilistic
architectures. This shift in design paradigm will most likely be forced by the ongoing
downscaling of CMOS devices into the nanometer regime, because probabilistic behavior
at the device level will become inevitable.

References
[ACKP06] B. E. S. Akgul, L. N. Chakrapani, P. Korkmaz, and P. V. Palem. Probabilistic

cmos technology, a survey and future directions. In the Proceedings of the IFIP
International Conference on Very Large Scale Integration (VLSI-SoC), 2006.

[CKAP07] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem. Probabilistic
system-on-a-chip architectures. ACM Transactions on Design Automation of
Electronic Systems, Vol. 12, No.3, Article 29, August 2007.

10

