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What is Static-Timing Analysis?

A tool for analysing and computing delays for digital circuits.

Advantageous over difficult-to-construct vector-based timing
simulations.

Provides conservative analysis of the delay.

Traditional STA is deterministic and computes the delay for specific
process conditions.

Separate analysis for each condition is ran using corner files.
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From Deterministic STA to Statistical STA

Due to process scalling accross die variations are non-negligible.

Fundamental weakness of DSTA is the inability to model within-die
variations.

This results in either under- or overestimation of the delay (no longer
conservative).

Further increase in process parameters increases the runtime of DSTA

These give a rise to Statistical Static-Timing Analysis (SSTA)
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Sources of Timing Variation

There are three sources of timing variation that need to be considered:

Model Uncertainty

Process Uncertainty

Environment Uncertainty

Model Uncertainty Process Uncertainty Environment Uncertainty
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Sources of Timing Variation

There are three sources of timing variation that need to be considered:

Model Uncertainty

Process Uncertainty

Environment Uncertainty
Uncertainty in the operating environment of a device: temperature,
operating voltage, mode of operation, lifetime wear-out

Model Uncertainty Process Uncertainty Environment Uncertainty
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Sources of Process Variation

Physical
Parameter
Variations

−→
Electrical
Parameter
Variations

−→
Delay
Variations

A

Critical Dimension
Oxide Thickness
Channel Doping
Wire Width
Wire Thickness

−→
Saturation Current
Gate Capacitance
Treshold Voltage
Wire Capacitance
Wire Resistance

−→
Gate Delay
Slew Rate
Wire Delay

Variations are Correlated

Physical variations are result of process variations and may be
correlated as one process variation may result in many physical.

Electrical variations are also correlated as one physical variation may
result in more than one electrical variation. (Ex. R and C are
negatively correlated with respect to wire width.)
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Classification of Physical Variations

Physical variations may be character-
ized as either deterministic or statisti-
cal.
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Classification of Physical Variations

Follow well understood behavior.

Predicted upfront by analyzing
the design layout

Arise due to proximity effects
and chemical metal polishing.

Deterministic treatment at later
stages of the design.

Advantageous to treat them
statistically at early stages.
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Classification of Physical Variations

Truly uncertain component of
variation.

Result from processes
orthogonal to design
implementation.

Only statistics are known at
design time.

Modeled as random variables
(RVs).
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Classification of Physical Variations

Affect all devices on the same
die in the same way.

Result in shifts that occur from
lot to lot, wafer to wafer, reticle
to reticle and accross a reticle.
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Classification of Physical Variations

Affect each device on the same
die differently.

Only caused by within reticle
variations in the confines of a
single chip layout

Divided into correlated and
independent variations.
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Classification of Physical Variations

Processes that cause within die
variation change gradually with
position

Affect closely spaced devices in
similar manner (these exhibit
similar characteristics)

Referred to as Spatially
Correlated Variation.
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Classification of Physical Variations

The residual variability of a
device that is statistically
independent of all other devices

Increasing effect with continued
process scalling.

Examples are line-edge
roughtness and random-dopant
fluctuations.
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Impact of Variation on Circuit Delay

Single Path Delay

P1 P2 P3 P4 . . . Pn

Gates connected in series with delay probabilities Pi

Delays-normally distributed and independent with mean µ and
variance σ2

The total delay distribution results in the sum of the distributions on
the path

n∑
i=1

N (µ, σ2) = N

(
n∑

i=1

µ,

n∑
i=1

σ2

)
= N (nµ, nσ2)

Which results in total coefficient of variation(
σ

µ

)
path

=

√
nσ2

nµ
=

1√
n

(
σ

µ

)
gate

Vladimir Todorov (MB-JASS 2009) SSTA March 19, 2009 10 / 31



Impact of Variation on Circuit Delay

Single Path Delay

P1 P2 P3 P4 . . . Pn

Gates connected in series with delay probabilities Pi

Delays-normally distributed and independent with mean µ and
variance σ2

The total delay distribution results in the sum of the distributions on
the path

n∑
i=1

N (µ, σ2) = N

(
n∑

i=1

µ,

n∑
i=1

σ2

)
= N (nµ, nσ2)

Which results in total coefficient of variation(
σ

µ

)
path

=

√
nσ2

nµ
=

1√
n

(
σ

µ

)
gate

Vladimir Todorov (MB-JASS 2009) SSTA March 19, 2009 10 / 31



Impact of Variation on Circuit Delay

Single Path Delay

P1 P2 P3 P4 . . . Pn

Gates connected in series with delay probabilities Pi

Delays-normally distributed and independent with mean µ and
variance σ2

The total delay distribution results in the sum of the distributions on
the path

n∑
i=1

N (µ, σ2) = N

(
n∑

i=1

µ,

n∑
i=1

σ2

)
= N (nµ, nσ2)

Which results in total coefficient of variation(
σ

µ

)
path

=

√
nσ2

nµ
=

1√
n

(
σ

µ

)
gate

Vladimir Todorov (MB-JASS 2009) SSTA March 19, 2009 10 / 31



Impact of Variation on Circuit Delay

Single Path Delay

P1 P2 P3 P4 . . . Pn

Gates connected in series with delay probabilities Pi

Delays-normally distributed and correlated with mean µ, variance σ2

and correlation coefficient ρ

The total delay distribution results in the sum of the distributions on
the path

µpath = nµ

σ2
path =

n∑
i=1

σ2 + 2ρ
n∑

i=1

n∑
j>i

σiσj = nσ2(1 + ρ(n − 1))

Which results in total coefficient of variation(
σ

µ

)
path

=

√
nσ2(1 + ρ(n − 1))

nµ
=

√
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Impact of Variation on Circuit Delay

Maximum Delay of Multiple Paths

Two paths with equal delay
distributions

Three cases are considered:

ρ = 0
ρ = 0.5
ρ = 1

The independent case
overestimates the delay
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Impact of Variation on Circuit Delay

Impact of Assumptions

The independent assumption will underestimate the spread of single
path delay and will overestimate the maximum of delay of multiple
paths.

The correlated assumption will overestimate the spread of single path
delay and will underestimate the maximum delay of multiple paths.

Assumptions may be based on circuit topology.
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Problem Formulation

DAG G = {N,E , ns , nf }
N set of nodes (in/out
pins)
E set of edges with
weights di

ns , nf source and sink

If di are RVs then the total
delay is RV as well

Definition:
Let pi be a path of ordered edges from source to sink in G.

Let Di =
Pk dij

be the path length of pi .

Then Dmax = max(D1, . . . , Di , . . . , Dn) is referred as
the SSTA problem of the circuit.

Figure taken from the original paper Static-Timing
Analysis: From Basic Principles to State of the Art
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Problem Formulation

Figure taken from the original paper Static-Timing Analysis: From Basic Principles to State of the Art
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Challenges in SSTA

Topological Correlation

Caused by reconvergent paths
Complicates the max(. . . )

Spatial Correlation

Due to device proximity
How to model gate delays and
arrival times in order to
express the parameter
correlation?
How to propagate and
preserve the correlation
information?
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Challenges in SSTA

Nonnormal Process Parameters and Non-linear Delay Models

Nonnormal physical variations exist.
Dependence of electrical parameters can be nonlinear.
Due to reduction of geometries linear assumption no longer applies.

Skewness due to Maximum Operation

Maximum operation is nonlinear, hence
Normal arrival times will result in nonnormal delay
Maximum operation which can operate on nonnormal delays is desired
Simply ignoring the skewness introduces error
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Skewness due to Maximal Operation

Two arrival times with same mean, but different variance result in a
positively skewed maximum delay.
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Skewness due to Maximal Operation

Identically distributed arrival times result in slightly positively skewed
distribution.
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Skewness due to Maximal Operation

The maximum can safely be assumed to be the distribution with the
greater mean.
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SSTA Solution Approaches

Numerical Integration

Most general
Computationally expensive

Monte Carlo Methods

Statistical sampling of the sample space
Perform deterministic computation for each sample
Agregate these results into a final result

Probabilistic Analysis Methods

Path-based Approach
Block-based Approach
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Probabilistic Analysis Methods

Path-based Approach Block-based Approach

How it works. . .

Set of likely to become
critical paths

Compute the delay for
each path

Perform a statistical
maximum

Problems. . .

Difficult to construct set
of suitable paths

High computational
efforts for balanced
circuits

−→

How it works. . .

For all fan-in edges the
edge delay is added to the
arrival time at the source
node

Given the resulting times
the final arrival time at
the node is computed
using maximum operation

Propagates exactly 2
arrival times(rise and fall)
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Distribution Propagation Approaches

Propagation of Sampled and Renormalized Distributions

Computed using discrete sum and maximum

Summation is done by combining multiple shifted values of the
delay

z = x + y

Maximum is taken by evaluatig the probability

z = max(x , y)

fz(t) = Fx(τ < t)fy (t) + Fy (τ < t)fx(t)
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Distribution Propagation Approaches

Propagation of Sampled and Renormalized Distributions

Computed using discrete sum and maximum

Summation is done by combining multiple shifted values of the
delay

fz(t) =
∞∑

i=−∞

fx(i)fy (t − i) = fx(t) ∗ fy (t)

Maximum is taken by evaluatig the probability

z = max(x , y)

fz(t) = Fx(τ < t)fy (t) + Fy (τ < t)fx(t)
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Discrete Distribution Propagation
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Handling Topological Correlation

Super-Gate

Statistically independent inputs
Single fan-out
Separate propagation of discrete events (enumeration) ∈ O(cn)

Ignoring Topological Correlations

Exists a pdf Q(t) which upper-bounds P(t) for all t
Results in pessimistic analysis
Original P(t) can be approximated by upper and lower bounds
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Correlation Models (Parameter Space)

Grid Model

Divide the die by a square grid
Each square corresponds to a
group of fully correlated
devices
Each square is a RV and is
correlated to all other squares
Construct a new set of RVs
by whitening
Express the old set as a linear
combination of the new one
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Correlation Models (Parameter Space)

Quadtree Model

Recursively divide the die area
into 4
Each partition is assigned to
an independent RV
Express the correlation
variation by summing the RV
of the gate with the ones
from higher levels
Correlation arises from sharing
RVs on higher levels
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Propagation of Delay Dependence (Parameter Space)

Canonical form of the delay

da = µa +
n∑
i

aizi + an+1R

Express the sum in a canonical form

C = A + B

µc = µa + µb

ci = ai + bi for 1 ≤ i ≤ n

cn+1 =
√

a2
n+1 + b2

n+1

Vladimir Todorov (MB-JASS 2009) SSTA March 19, 2009 25 / 31



Propagation of Delay Dependence (Parameter Space)

Canonical form of the delay

da = µa +
n∑
i

aizi + an+1R

Express the sum in a canonical form

C = A + B

µc = µa + µb

ci = ai + bi for 1 ≤ i ≤ n

cn+1 =
√

a2
n+1 + b2

n+1

Vladimir Todorov (MB-JASS 2009) SSTA March 19, 2009 25 / 31



Propagation of Delay Dependence (Parameter Space)

Express the maxium in a canonical form
1 Compute variance and covariance of A and B

σ2
a =

n∑
i

a2
i σ2

b =
n∑
i

b2
i r =

n∑
i

aibi

2 Compute the tightness probability TA = Pr(A > B)

TA = Φ

(
µa − µb

θ

)
Φ(x ′) =

∫ x′

−∞
φ(x)dx

φ(x) =
1√
2π

exp−
x2

2

θ =
√
σ2

a + σ2
b − 2r
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Propagation of Delay Dependence (Parameter Space)

Express the maxium in a canonical form

3 Compute mean and variance of C = max(A,B)

µc = µaTA + µb(1− TA) + θφ

(
µa − µb

θ

)
σ2

c = (µa + σ2
a)TA + (µb + σ2

b)(1− TA) + (µa + µb)θφ

(
µa − µb

θ

)
− µ2

c

4 Compute sensitivity coefficients ci

ci = aiTA + bi (1− TA) for 1 ≤ i ≤ n

5 Compute cn+1 of Capprox to get a consistent estimate
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Propagation of Delay Dependence (Parameter Space)

Capprox is only approximation and is not conservative

Therefore, by the use of the relationship

max

(
n∑
i

ai ,

n∑
i

bi

)
≤

n∑
i

max(ai , bi )

Cbound can be constructed which is conservative

µc = max(µa, µb)

cboundi
= max(ai , bi )
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Nonlinear and Nonnormal Approaches

Nonlinear device dependencies

da = µa +
n∑
i

aizi +
n∑

i=1

n∑
j=1

bijzizj + an+1R

Nonnormal physical or electrical variations

da = µa +
n∑
i

aizi +
m∑
j

an+jzn+j + an+m+1R

Generalized in

da = µa +
n∑
i

aizi + f(zn+1, . . . , zn+m) + an+1R

Handled by numerical computations and tightness probabilities
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Where are we?

1 Introduction
What is Static-Timing Analysis?
From Deterministic STA to Statistical STA

2 Statistical Static-Timing Analysis
Sources of Timing Variation
Impact of Variation on Circuit Delay
Problem Formulation and Basic Approaches
SSTA Solution Approaches
Block-based SSTA

3 Conclusion
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Conclusion

SSTA has gained excessive interest in recent years

Currently a number of commercial efforts are underway

However, state-of-the-art SSTA does not address many of the issues
taken for granted in DSTA

Coupling noise
Clock issues
Complex delay modelling

SSTA must move beyound analysis into optimization
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Discussion

. . .
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