MB-JASS 2011

Diffusion in Solids and the Kirkendall-Effect

Markus Schüttler, Florian Seperant

Max Schaldach-Stiftungsprofessur for Biomedical Engineering

Max Schaldach -Stiftungsprofessur Biomedizinische Technik MSBT

Hypereutectic thermal treatment

- Heterogeneous
- Difficult to control
- Patterns forming during solidification

Fick's First Law

$$J_x = -D\frac{\partial C}{\partial x}$$

 $J_x = diffusion flux$ D = diffusion coefficientC = concentration

Equation of Continuity

• Time dependency?

$$-\frac{\partial J_x}{\partial x} = \frac{\partial C}{\partial t}$$

Fick's Second Law

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \, \frac{\partial C}{\partial x} \right)$$

If *D* is independent of x:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Atomic Jump Process

Direct exchange?

Ring exchange?

- Direct exchange requires a large distortion of the lattice and therefore has a high activation enthalpy
- Ring exchange requires less activation enthalpy but an unlikely collective motion

Those processes barely contribute to diffusion

Biomedizinisc

Fechnik

Kirkendall Effect

 $J_{Zn} \neq J_{Cu}$ but direct or ring exchange would imply $J_{Zn} = J_{Cu}$

Another process must be responsible

Max Schaldach -Stiftungsprofessur Biomedizinische Technik MSBT

The Vacancy Mechanism

• Site fraction of vacancies lie around 10^{-3} and 10^{-4} near T_s

• Under normal conditions vacancy exchange is the main mechanism of diffusion

Kirkendall Voids

 $J_1 > J_2$ \implies Net flow of metal atoms in x-direction

 \Rightarrow Vacancy flow J_V in negative x-direction

Max Schaldach -Stiftungsprofessur Biomedizinische Technik MSBT

Kirkendall Voids (example)

$$J_{Cu} > J_{Ni}$$

Vacancy flow into original copper domain

(Choi, Matlock and Olson)

Aluminum-Magnesium binary alloy

- Better understanding of Al-Mg interdiffusion
- Measurement of the interdiffusion coefficient

Infinite reservoir experiments

Experimental Setup

Measurements

Boltzmann-Matano Method

- Determination of interdiff. coeff. $\widetilde{D}(C)$
- EDX-Linescans yield C(x)

Indices:

$$i = position$$

 $\boldsymbol{k} = \text{component}$

Simulation - Parameters

Parameters:

 $m{D}_{k,i} = ext{effective diffusion coefficient}$ $m{c}_{k,i} = ext{concentration}$ $m{X}_{k,i} = ext{mole fraction}$

 $-c_{k,i}(t + \Delta t) = c_{k,i}(t) + \Delta c_{k,i-1} - \Delta c_{k,i} \quad \text{not valid, as } \Delta c_{k,i} \text{ also changes } \delta_i$

Therefore we use the relative amount of substance $n_{k,i}^*$

Simulation - Parameters

Parameters:

 $D_{k,i}$ = effective diffusion coefficient $c_{k,i} = \text{concentration}$ $X_{k,i} =$ mole fraction $\widetilde{V}_i = \sum_k X_{k,i} \cdot \widetilde{V}_k = \text{molar volume}$ $n_i = \frac{V_i}{\widetilde{V}_i} = \text{ amount of substance}$ $n_i^* = rac{\delta_i}{\widetilde{V}_i}$ $n_{k,i}^* = \delta_i \cdot c_{k,i}$ = relative amount of substance

Max Schaldach -Stiftungsprofessur

Indices:

i = position

 $\boldsymbol{k} = \text{component}$

Biomedizinische Technik MSBT

... a few calculations later ...

$$n_{A,i}^{*} = \frac{n_{A,i}^{re} (1 + \Delta c_{B,i} \ \widetilde{V}_{B}) - n_{B,i}^{re} \ \Delta c_{A,i} \ \widetilde{V}_{B}}{1 + \Delta c_{A,i} \ \widetilde{V}_{A} + \Delta c_{B,i} \ \widetilde{V}_{B}}$$
$$n_{B,i}^{*} = \frac{n_{B,i}^{re} (1 + \Delta c_{A,i} \ \widetilde{V}_{A}) - n_{A,i}^{re} \ \Delta c_{B,i} \ \widetilde{V}_{A}}{1 + \Delta c_{A,i} \ \widetilde{V}_{A} + \Delta c_{B,i} \ \widetilde{V}_{B}}$$

 $n_{k,i}^{re} = n_{k,i}^{*}(t') + \Delta c_{k,i-1} \,\delta_{i-1}(t' + \Delta t)$

Max Schaldach -Stiftungsprofessur Biomedizinische Technik MSBT

Simulation vs. Measurement

Max Schaldach -Stiftungsprofessur **Biomedizinische**

MSB1

Technik

Simulation vs. Measurement

Simulation vs. Analytical Solution

Thank you for your attention

Markus Schüttler

Max Schaldach-Stiftungsprofessur for Biomedical Engineering

Max Schaldach -Stiftungsprofessur Biomedizinische Technik MSBT