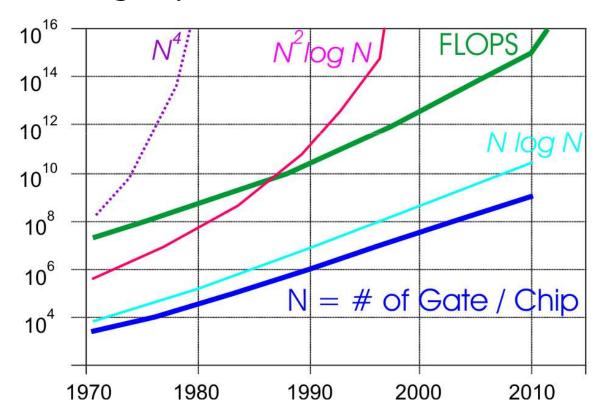


Ilya Syrtsov

Moscow Institute of Electronic Technology




- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques



#### Time-to-Market

■ IC design cycle time frame is ~ 1 Year



# Solution

- Reducing complexity of algorithm
  - $O(n!) \rightarrow O(n^4) \rightarrow O(n^2 log n) \rightarrow O(n log n)$
  - O(n log n) can be achieved by heuristic methods
- Hierarchical partition
  - Trade-off "Performance vs. Quality"
- R&D of principal new design methodology
  - Going out of Standard Cell methodology



- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques



## Chip Area

- Market: Chip cost must be reduced
- Functionality should be intelligent
  - Need to use embedded real-time SW
- Operation frequency have to be higher
- MOS channel length have to be shorter
- FAB needs to decrease min dimension
  - 1 kGate cost: 65 nm < 45 nm</p>
- Chip cost is increasing!

Conclusion: Chip area must be minimized



- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques

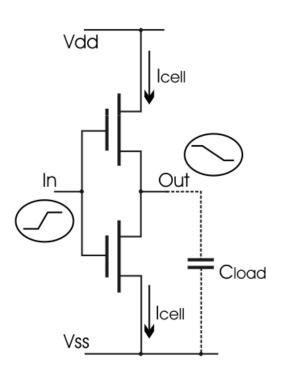


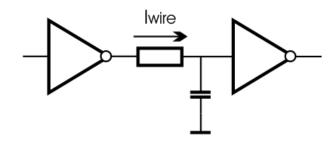
## Timing-Aware Rate

| Flow Stage     | Today | Tomorrow | Future |
|----------------|-------|----------|--------|
| Partition      | X     | ?        |        |
| Floorplanning  |       |          |        |
| Placement      |       |          |        |
| Global Routing |       |          |        |
| Detail Routing |       |          |        |
| Post Process   |       |          |        |

## Timing Estimation Models

- Detail Routing: wire geometry
  - $t_{delay} = f(L_{wire}, N_{VIA}, N_{JOG})$
- Global Routing: SMT topology
  - $t_{delay} = f(L_{wire}, N_{JOG})$
  - Cost\_SMT → (Cost\_SMT, Radius\_SMT)
- Placement: SMT cost estimation
  - Cost\_SMT → (Cost\_SMT, Radius\_SMT)
- Partition: No real solution, subject of R&D





- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques



## **Power Consumption**

$$P_{chip} = P_{leakage} + (P_{cell} + P_{wire})$$





P<sub>leakage</sub> is depend on StdCell layout

$$P_{cell} = f(C_{load}) = f(L_{wire})$$

$$P_{wire} = f(R_{wire}) = f(L_{wire})$$

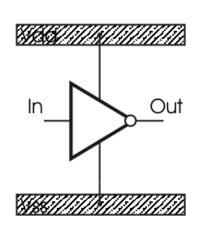
$$P_{dynamic} = P_{cell} + P_{wire} = f (2 x L_{wire})$$

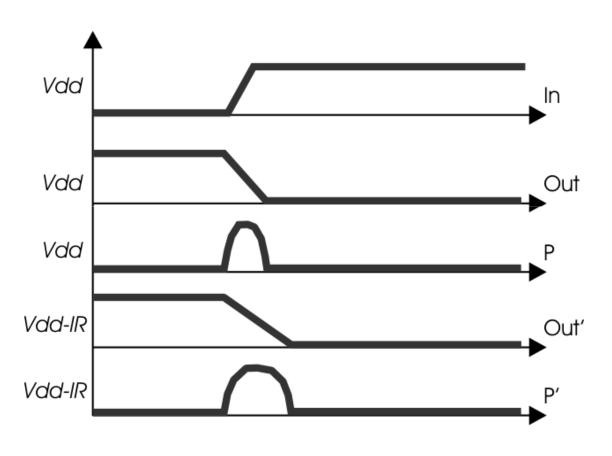
$$L_{wire} \rightarrow min$$



- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques




### Deep Submicron Effects

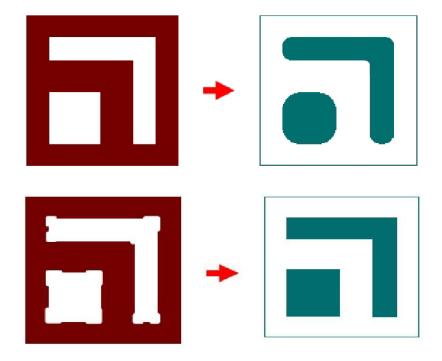

- Cross-Talk
- IR-drop
- Electromigration

- Today: Routing then Find&Repair
- Tomorrow: Find&Repair during detail routing



## Cumulative IR-drop








- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques



## **Optical Proximity Correction**



- Rule-based OPC: post processing, new design rules
- Model-Based OPC



- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques



## Design-for-Manufacturability

| Year | Layout Designer's point                                                                                  |
|------|----------------------------------------------------------------------------------------------------------|
| 1980 | DFM?! What's this?                                                                                       |
| 1990 | Agree, I need to fix "antenna".                                                                          |
| 2000 | It seems DFM impacts to yield. For first silicon it doesn't matter. Further I'll optimize design to DFM. |
| 2007 | DFM recommendation was ignored, FAB reports 30% yield. Why it's so low?                                  |
| 2010 | You didn't satisfy DFM! Yield = 0.001%                                                                   |



- Time-to-Market
- Chip Area
- Timing-Aware Design Flow
- Power Consumption
- Deep Submicron Effects
- OPC (Optical Proximity Correction)
- DFM (Design-for-Manufacturability)
- Optimization Techniques



## **Optimization Techniques**

- Deterministic Methods
  - Greedy algorithms (Bisection)
  - Iterative algorithms (Kernigan-Lin)
- Heuristic Techniques
- Global Optimization Techniques
  - Simulating Annealing
  - Simulating Evolution
- Mathematical Methods
  - Integer-Linear Programming
  - Non-Linear Programming



#### Conclusion

- Actual criteria: area, timing, power, DFM, signal integrity, density
- Actual metrics: area, wire length, number of vias, number of jogs, congestion
- Moving to native multi-objective optimization
- Moving to R&D new design methodology