Sommerakademie der Studienstiftung des deutschen Volkes

Görlitz, 2.-15. September 2007


         

Literaturliste

                                          
[AS04] A.A. Ageev, M.I. Sviridenko: Pipage rounding - A new method
of constructing algorithms with proven performance guarantee
.
J. Comb. Optimization 8, pp. 307–328, 2004
[A03] Sanjeev Arora: Approximation schemes for NP-hard geometric
optimization problems: a survey
. Math. Program., Ser. B 97,
pp. 43–69, 2003
[ACG99] G. Ausiello et al.: Complexity and approximation — Combinatorial
optimization problems and their approximability properties.
Springer-Verlag, Berlin-Heidelberg-New York, 1999
[BV04a] Rene Beier, Berthold Vöcking: Random knapsack in expected
polynomial time
. JCSS 69, pp. 306-329, 2004
[BV04b] Rene Beier, Berthold Vöcking: Probabilistic analysis of knapsack
core algorithms
. Proceedings SODA 2004, pp. 468–477
[BKRV00] Avrim Blum, Goran Konjevod, R. Ravi, Santosh Vempala:
Semi-definite relaxations for minimum bandwidth and other
vertex-ordering problems
. TCS 235, pp. 25–42, 2000
[BV04] Stephen Boyd, Lieven Vandenberghe: Convex Optimization.
Cambridge University Press, Cambridge, 2004
[D03] Martin Dyer: Approximate counting by dynamic programming.
Proceedings STOC, pp. 693–699, 2003
[FK01] Uriel Feige, Joe Kilian: Heuristics for semirandom graph problems.
JCSS 63, pp. 639–671, 2001
[H07] Rolf Harren: Approximating the orthogonal knapsack problem
for hypercubes
. Proceedings ICALP 2007, LNCS 4052, pp. 238–
249, 2007
[H95] Dorit S. Hochbaum (Hrsg.): Approximation algorithms for
NP-hard problems. PWS Publishing Company, Boston, 1995
[J94] Mark Jerrum: A very simple algorithm for estimating the
number of k-colourings of a low-degree graph
. ECS-LFCS TR,
1994
[KPP04] Hans Kellerer, Ulrich Pferschy, David Pisinger: Knapsack problems.
Springer-Verlag, Berlin-Heidelberg-New York, 2004 siehe
auch hier und hier
[LLL82] A.K. Lenstra, H.W. Lenstra Jr., L. Lovasz: Factoring polynomials
with rational coefficients
. Math. Ann. 261, pp. 515–534,
1982
[LS81] Karl J. Lieberherr, Ernst Specker: Complexity of partial satisfaction.
J. ACM 28, pp. 411–421, 1981
[LS82] Karl J. Lieberherr, Ernst Specker: Complexity of partial satisfaction
II
. TR 293, Princeton Univ., 1982
[LS85] Karl J. Lieberherr, Ernst Specker: Complexity of partial satisfaction
II
. TR GTE Labs, 1985
[RSW07] Jan Remy, Reto Spöhel, Andreas Weißl: On Eucledian vehicle
routing with allocation
. ETHZ, 2007
[Sch87] Claus P. Schnorr: A hierarchy of polynomial time lattice basis
reduction algorithms
. TCS 53, pp. 201–224, 1987
[Sch88] Claus P. Schnorr: A more efficient algorithm for lattice basis
reduction
. J. Algorithms 9, pp. 47–62, 1988
[Sch06] Claus P. Schnorr: Fast LLL-type lattice reduction. Information
and Computation 204, pp. 1–25, 2006
[Sch07] Claus P. Schnorr: Progress on LLL and lattice reduction. Proceedings
LLL+25, 2007
[S01] M.I. Sviridenko: Best possible approximation algorithm for
MAX SAT with cardinality constraints
. Algorithmica 30,
pp. 398–405, 2001
[V01] Vijay V. Vazirani: Approximation algorithms. Springer-Verlag,
Berlin-Heidelberg-New York, 2001
[W06] Rolf Wanka: Approximationsalgorithmen — Eine Einführung.
B.G. Teubner, Stuttgart-Leipzig, 2006
                 
                     
Vorträge Home