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Abstract A Boolean function is callednormal if it is constant on flats of certain dimen-
sions. This property is relevant for the construction and analysis of cryptosys-
tems. This paper presents an asymmetric Monte Carlo algorithm to determine
whether a given Boolean function is normal. Our algorithm is far faster than the
best known (deterministic) algorithm of Daumet al. In a first phase, it checks
for flats of low dimension whether the given Boolean function is constant on
them and combines such flats to flats of higher dimension in a second phase.
This way, the algorithm is much faster than exhaustive search. Moreover, the
algorithm benefits from randomising the first phase. In addition, by evaluating
several flats implicitly in parallel, the time-complexity of the algorithm decreases
further.
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1. Introduction

1.1 Motivation
Boolean functions and maps play a central role in cryptology. They are basic build-

ing blocks of bit-oriented block and stream ciphers. In order to construct secure cryp-
tographic ciphers,i.e., ciphers which resist all known attacks, it is important to study
the structure and behaviour of Boolean functions.

Normality of a Boolean function is the property which determines if the function
is constant on a flat of dimensiondn/2e. This concept was introduced by Dob94, in
order to construct highly nonlinear balanced Boolean functions. Later, this property
was used to distinguish different classes of bent functions. As the first bent function
which is non-normal occurs for dimension 14 (Can03), we needa highly optimised
algorithm for determining the normality of Boolean functions. This is non-trivial as
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the total number of flats increases exponentially for increasing dimensionn (MWS91).
Table 1 lists the number of flats of dimensiondn/2e; this clearly shows that even for
moderate dimensions (n ≥ 13 . . . 15) establishing normality by exhaustive search is
infeasible.

Table 1. The number of flats of dimension
⌈

n

2

⌉

to test for different dimensionsn

n 8 9 10 11 12 13 14 15 16 17 18 19 20
log

2
(# flats) 22 26 32 37 44 50 58 65 74 82 92 101 112

1.2 Related Work
The first attempt for determining the normality of a Boolean function, better than

exhaustive search, is due to DDL03. The main idea of their algorithm is to search
exhaustively all flats of small dimension on which the function is constant and then to
combine these to flats of higher dimension.

1.3 Achievement
In our algorithm, we replace the exhaustive search through all flats of small dimen-

sion by a random search. This has several advantages over thealgorithm of Daum
et al. First, we do not need a unique representation of flats which means less condi-
tions to test and therefore a lower time complexity. Second,the number of repetitions
needed to determine with high probability that a function isnon-normal, is far smaller
than an exhaustive search on all flats of small dimension (cf Sect. 4.2). Our algorithm
is of theasymmetric Monte Carlotype and may output “non-normal" with probability
2−c for a normal function and some confidence levelc ∈ N. The output “normal" is
always correct. This asymmetric Monte Carlo algorithm has afar smaller running time
than the deterministic algorithm of DDL03 — even with a reasonable error-probability
(c = 80 in our case).

1.4 Outline
This paper is organised as follows. In Sect. 2, we introduce the basic definitions

together with a description of the main ideas in our algorithm. Sect. 3 presents more
details and explains several optimisations for our algorithm. In Sect. 4, we give a
detailed complexity analysis of the algorithm and compare the total time complexity
of our algorithm with the time complexity of the previous algorithm from DDL03.
This paper concludes with Sect. 5.

2. Background
In this section we present some definitions and a simplified algorithm to test the

normality of a Boolean function.
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2.1 Definitions
Before we can describe our algorithm, we need to define several objects. We start

with vectors and vector spaces and finish with some definitions concerning Boolean
functions.

Let a vectoru ∈ F
n
2 be represented by then-tuple (un−1, . . . , u0) with the coef-

ficientsui ∈ F2 from the field with 2 elements. Letu1, . . . , uk ∈ F
n
2 bek linearly

independent vectors. Then they form the base of the subspace

<U> := <u1, . . . , uk> := {α1u1 ⊕ . . .⊕ αkuk | αi ∈ F2}.

Here, the dimension of<U> is k. For a given vectora ∈ F
n
2 , we represent the coset

of this subspace byUa := a⊕ <U>. Throughout this paper, we call the cosetUa a
flat. The vectora of the flatUa is called theoffsetof this flat. In addition, two flats are
said to beparallel if they are cosets of the same subspace<U>, i.e., all flats of the
form Ua, a ∈ F

n
2 are parallel flats by this definition. Finally, we denote the set of all

flats of dimensions by Flats, i.e.,

Flats := {Ua | a ∈ F
n
2 , <U>⊆ F

n
2 , dim <U>= s}.

We now move on to Boolean functions. A Boolean functionf is a mapping from
F

n
2 into F2. The property of normality for a Boolean functionf is defined as follows:

Definition 1 A Boolean functionf : F
n
2 → F2 is callednormal if there exists a

flat Wa ⊂ F
n
2 of dimensiondn/2e such thatf is constant onWa, i.e., ∀w ∈ Wa :

f(w) = c for some fixedc ∈ {0, 1}. We call the flatWa a witnessfor the normality of
the functionf .

As we see from Definition 1, the property of normality is related to the question
of the highest dimension of the flats on which the functionf is constant. As a con-
sequence, it is natural to generalise the previous definition by the introduction ofk-
normality (Dub01; Car01):

Definition 2 For a natural numberk : 1 ≤ k ≤ n, a Boolean functionf : F
n
2 →

F2, is said to be “k-normal" if there exists a flatVa ∈ Flatk such thatf is constant
on Va, i.e., ∀v ∈ Va : f(v) = c for some fixedc ∈ {0, 1}. We call the flatVa a
“ k-witness" for the normality of the functionf .

Remark:It is clear that a constant functionf(x) = c,∀x ∈ F
n
2 , c ∈ F2 is n-normal.

An affine functionf(x) = a · x⊕ b,∀x, a ∈ F
n
2 , b ∈ F2 is (n− 1)-normal, because it

is normal on the flats{x : a · x⊕ b = 0} and{x : a · x⊕ b = 1} of dimensionn− 1.

2.2 A Simple Algorithm
The previous section shows that it is important for the definition of normality and

k-normality,i.e., for a given dimensione := k (k-normality) ore := dn/2e (ordinary
normality), to find a witnessWa ∈ Flate. To ease the understanding of the algorithm
of Sect. 4, we start with a highly non-optimised version of it(cf Fig. 1). Both algo-
rithms are based on the observation made by DDL03, that a Boolean function which
is constant on a flatWa is also constant on all flats contained inWa, i.e., f|Wa

= c for

53

(c) 2004 IFIP



Figure 1. Simplified Algorithm for Checking Normality

Input: functionf , start dimensions, end dimensione, repetitionsr
Output: 1 if the function ise-normal
for i← 1 to r do

pick a flatUa ∈R Flats at random
if f|Ua

= c for somec ∈ {0, 1} then SearchFurther(Ua, e)
endfor

procedureSearchFurther(Ua, e)
c = f|Ua

if dimUa = e then
OUTPUT 1

endif
forall b ∈ F

n
2 \ Ua do

if (f|U
b

= c) then SearchFurther(a ⊕ <U, a⊕ b>, e)
endfor

endproc

somec ∈ {0, 1} impliesf|V
b

= c for all Vb ⊆ Wa. We call the flatVb a sub-witness
of Wa.

Our algorithm starts with a randomly chosen flatUa of dimensions, thestarting
dimension. If this flat is a sub-witness, the functionf must be constant on it. So, if
the functionf is constant on the flatUa, this is a possible candidate for a sub-witness
and we search for a parallel flatUb, on which the function is constant, too. Both flats
Ua, Ub can now be combined to a flat of higher dimension, namelya⊕ <U, a ⊕ b>.
We repeat this process recursively until we reach the “end dimension"e. In this case,
we have found a witnessWa and output 1.

Depending on the “confidence level"c we want to achieve, we need to repeat the
above algorithm several times. The value forr, i.e., the number of repetitions, depends
on c. We discuss the choice ofr in Corollary 10 (cf Sect. 2).

3. Optimisations
After given a short outline of our algorithm, we show different ways of optimising

it.

3.1 Complement Vector Space
There are in total2n − 2s parallel flatsUa, a ∈ F

n
2\ <U > for a given subspace

<U> of dimensions. However, some parallel flats are equivalent as they containthe
same points.
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Example 3 Consider some parallel flats of the following subspace of dimension 2
which is defined by<U> :=<(0, 0, 1), (0, 1, 0)>⊆ F

3
2.

(1, 0, 0) ⊕ <(0, 0, 1), (0, 1, 0)> = (1, 1, 0) ⊕ <(0, 0, 1), (0, 1, 0)>

= (1, 1, 1) ⊕ <(0, 0, 1), (0, 1, 0)>

= (1, 0, 1) ⊕ <(0, 0, 1), (0, 1, 0)>

As a consequence, the parallel flats can be divided into equivalence classes. Therefore,
we use thecomplementof a subspace<U>, i.e., the subspace<U> which satisfies

<U> ⊕ <U>= F
n
2 and <U> ∩ <U>= {0}.

This allows us to determine the representatives of the equivalence classes of the par-
allel flats, namely the flatsUa, for a ∈<U>. Because the dimension of<U> is equal
to n − s, there are in total2n−s different parallel flats. To compute the complement
<U > of a given subspace<U > efficiently, we make use of thePermuted Gauss
Basis(PGB) of a subspace. To define the PGB, we need to introduce theconcept of
left-most-one of a vector first.

Definition 4 For a given vectoru = (un−1, . . . , u0), we define theleft-most-one
as the position of the left-most one in its representation:

ν(u) := min{i ∈ {−1, . . . , n− 1} | uj = 0 for i < j ≤ n}.

Definition 5 The vectorsu1, . . . , uk form a PGB basis iff

ν(ui) 6= ν(uj), 0 ≤ i < j < n .

Remark: The name Permuted Gauss Basis is motivated as follows. Thinking about
the base vectorsu1, . . . , uk as a matrix, we would perform Gaussian elimination on
it, without swapping rows. The result would not be a triangular structure but a row
permutation.

For a subspace<U>, we denote the set of the different left-most-ones of its ele-
ments

Υ(<U>) := {ν(u) | u ∈<U> \{0}}.

The complement<U> of a subspace<U> where<U> is in PGB can be computed
as follows:

<U>= {a ∈ F
n
2 | ai = 0, wherei ∈ Υ(<U>)} .

3.2 Random Points instead of Random Bases
Instead of selecting a random flat with a PGB, we choose(s + 1) points at ran-

dom. This is cheaper than selecting a vector space at random which satisfies the PGB-
criterion. In addition, we only need to transfer a set of(s + 1) points into a PGB if
the functionf is constant on the corresponding flat. As this only happens with prob-
ability 2−2s+1, we obtain very low costs on average. Fors points, we can compute
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Figure 2. Algorithm for computing the PGB of a set of points

procedureComputePGB(p1, . . . , ps)
Input: s pointsp1, . . . , ps

Output: a PGB of thep1, . . . , ps

for k ← 2 to s do
while ν(pk) ∈ {ν(p1), . . . , ν(pk−1)} do

for i← 1 to k − 1 do
if ν(pi) = ν(pk) then pk⊕ ← pi

endproc

the PGB by the iterative algorithm from Fig. 2. The pointp0 is the offset of the flat
p0 ⊕ <p1, . . . , ps > and has to be reduced as outlined in the previous section.

Finally, we have to check whether the(s + 1) points form a flat of dimensions.
The contrary happens only with very small probability:

(2n)(2n − 1) · · · (2n − 2s)/2n·(s+1).

Using the following strategy, we can reduce the running timeof the algorithm fur-
ther: instead of picking(s + 1) points at random and evaluate explicitly if they form
a flat of dimensions on which the functionf is constant, we do this implicitly in
parallel:

Pick (2s + 1) points at random

Evaluatef on these points

if exactly (s + 1) points evaluate to 1 (resp. to 0), check if the corresponding
flat yields the constant 1 (resp. 0) on the functionf .

This implicit evaluationstrategy exploits different observations. First, we assume that
we can form a total of#flats:=

(

2s+1
s+1

)

independent flats of dimensions using a set of
(2s + 1) points. This way, we can decrease the number of repetitions by this factor.
In addition, we observe that a set of(2s + 1) points will yield at most one flat of
dimensions on which the functionf is constant, if(s + 1) points in the set evaluate
to 1 (resp. 0) on the functionf . However, the probability for this event is rather high,

namelyPr(only one flat):=
2(2s+1

s+1 )
22s+1 .

But there is a price to pay for this strategy: we always need toperform(2s + 1)
evaluations of the functionf and also the same number of random calls.

Remark: It is natural to generalise this idea to other values than(2s+1). However,
in this case we do not obtain such a good trade-off between thefactor#flatsand the
workload to check the corresponding flats. The choice(2s+1) is optimal for the given
problem.

3.3 Combining
In the original algorithm, we searched for all parallel flatsand started a recursion on

each of them. This is obviously superfluous as we will find the same witness several
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times this way. As we know from the previous section, we will obtain at least2e−s

parallel flatsUbi
on which the function is constant. Here,e denotes the end-dimension

ands the start-dimension.
To avoid this costly computation, we use a different strategy, based on DDL03:

instead of recursively searching for all parallel flats of higher dimension, we com-
bine flats of low dimension to obtain flats of higher dimension. This is based on the
following observation:

(bi ⊕ <U>) ∪ (bj ⊕ <U>) = bi ⊕ <U, bi ⊕ bj> .

Hence, we only need to consider pairs(bi, bj) ∈<U > × <U > which lead to the
same sum and then combine them recursively until we obtain a flat of dimensione. To
do this efficiently, we introduce2n lists (depending on a vectorv ∈ F

n
2 ) which hold

an offset for each possible sum,i.e., Append(Lbi⊕bj , bi). In the following section, we
develop a branching condition for the combine method, whichallows to decrease its
running time even further.

3.4 Branching
Let the functionf take a constant valuec ∈ {0, 1} on the flatUa of dimensiond.

Denote withP (Ua) the set of all flats parallel toUa on which the function yields the
same constant. The following branching condition defined bythe cardinality of the set
P (Ua) has been observed by DDL03. We are able to improve their result by giving a
shorter proof.

Theorem 6 If |P (Ua)| < 2e−d, we can terminate the current branch of the combine-
method in<U> without violating its correctness.

Proof: Let Wb be a witness andUa ⊂ Wb its subwitness. Now, there exist exactly
(e − d) linearly independent vectorsw1, . . . , we−d ∈<W> with w1, . . . , we−d /∈<
U> and consequentlyw1, . . . , we−d ∈<U>. These vectors exist due to dimension
reasons as dimWb = e and dimUa = d. Therefore, for any subwitnessUa ⊂Wb exist
2e−d parallel subwitnesses. This implies that|P (Ua)| ≥ 2e−d. As a consequence, we
can stop at any step in the algorithm if this condition is violated because we will not
be able to extend the flatUa to a witness of dimensione. 2

4. The Improved Algorithm
Using the ideas from the previous section, we obtain the algorithm of Fig. 3. The

method SearchForParallelFlats can be found in Fig. 4 and theoptimised version of
the combine-method is presented in Fig. 5. In the following sections, we analyse this
optimised algorithm.

4.1 Complexity Analysis
We start the analysis of the algorithm with determining the numberr of repetitions.

Then we analyse the complexity of the main loop from Fig. 3, the complexity of the
SearchForParallelFlats from Fig. 4 and the complexity of the Combine-procedure from
Fig. 5 in different steps.
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Figure 3. Main loop for the optimised algorithm

Input: functionf , start dimensions, end dimensione, repetitionsr
Output: one witness if the function ise-normal
for i← 1 to r do

S0 ← {}, S1 ← {}
for i← 1 to 2s + 1 do

p ∈R F
n
2

c← f(p)
Sc∪ ← {p}

endfor
if ((|S0| 6= s + 1) and (|S1| 6= s + 1)) then continue
c← |S1| − s
if f | p0⊕<p0⊕p1,... , p0⊕ps> (pi ∈ Sc, i ∈ {0, . . . , s}) not constantthen continue
a⊕ <U>← ComputePGB(p0, . . . , ps)
if dim<U> 6= s then continue
SearchForParallelFlats(<U>)

endfor

Figure 4. SearchForParallelFlats for the optimised algorithm

procedureSearchForParallelFlats(<U> )
<U>← ComputeComplement(<U> )
L← ∅, c← f(a)

for b ∈<U> \{a} do
if f|U

b
= c then Append(L,b)

if |L| ≥ 2e−s then Combine(<U> ,L)
endproc

Number of Repetitions.
For determining the number of repetitions, we need the following lemma from MWS91,
concerning the number of subspaces and flats of a certain dimension in a vector space.

Lemma 7 The number of subspaces of dimensions in a vector space of dimension
n is given by

NS(n, s) :=

s−1
∏

i=0

2n−i − 1

2s−i − 1
.

The number of flats of dimensions in a vector space of dimensionn is given by

NF (n, s) := 2n−s

s−1
∏

i=0

2n−i − 1

2s−i − 1
= 2n−sNS(n, s).

Before determining a bound onr, we first introduce the term complaisant flat.
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Figure 5. Combine-method for the optimised algorithm

Global Initialisation:
forall a ∈ F

n
2 do

La ← ∅

procedureCombine(<U>,L)
d← dim <U>
if d ≥ e then

Let a ∈ L
OUTPUTUa

endif
forall (bi, bj) ∈ L× L : i < j do

Append(Lbi⊕bj , bi)
forall (bi, bj) ∈ L× L : i < j do

a← bi ⊕ bj

if |La| ≥ 2e−d−1 then
L′ ← ∅
forall b ∈ La do

if b ∈<U, a> then Append(L′, b) elseAppend(L′, a⊕ b)
Combine(<U, a>,L′)

endif
La ← ∅

endfor
endproc

Definition 8 A flatUa is calledcomplaisantif the function is constant on the flat,
the flat is parallel to a sub-witness, but the flat is not contained in any witness.

Theorem 9 When choosing(s + 1) pointsp0, . . . , ps ∈ F
n
2 at random, the prob-

ability PF (n, s, e) that the flatUa formed by these(s + 1) points pass the first step in
the algorithm is equal to

PF (n, s, e) = Pr(Ua is a sub-witness) + Pr(Ua is a complaisant flat) ,

where

Pr(Ua is a sub-witness) := 2e−n ·
s

∏

i=1

2e − 2i−1

2n

Pr(Ua is a complaisant flat) := 2−2s+1 ·
2n−eNS(n, s)−NF (e, s)

NS(n, s)
.

In the above formula,e is the dimension of the witness. The formulas forNS(·, ·) and
NF (·, ·) are given in Lemma 7.
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Proof: We first determine the probability that the flatUa is a sub-witness. This
probability is justified with an inductive argument on the dimension of the sub-witness:
for one point (i.e., a flat of dimension 0), the probability of being a sub-witness is 2e

2n .
Here, the witness has2e points. This probability is also true for extending the sub-
witness from dimension(i − 1) to dimensioni (we have1 ≤ i ≤ s). In addition, we
have to consider the casepi ∈ p0+ <p1, . . . , pi−1>, i.e., the new pointpi lies in the
sub-witness of dimension(i− 1) generated by the pointsp0, . . . , pi−1.

The probability thatUa is a complaisant flat is equal to the probability that the
function is constant onUa times the number of flats which are parallel with a witness
but not part of a witness. This is exactly expressed in the formula. 2

>From the previous theorem and the implicit evaluation strategy as described in
Sect. 3.2, we can deduce the following corollary.

Corollary 10 For a given start dimensions and an end dimensione, we need at
most

Rep(n, s, e, c) =
c

PF (n, s, e)
·

1

Pr(only 1 flat)#flats

repetitions to achieve a confidence of2−c that the functionf is note-normal.

Table 2 shows some numerical values ofr in log2. In this and all following tables,
we concentrate on even choices forn and fix e = n

2 as these cases are particularly
relevant in cryptography.

Table 2. Number of repetitions (inlog
2
) for different values ofn ands

s\n 8 10 12 14 16 18 20

2 15.49 18.35 21.28 24.25 27.23 30.22 33.22
3 18.68 22.31 26.14 30.06 34.02 38.00 41.99
4 26.11 30.72 35.54 40.45 45.40 50.38

Complexity of the main loop.
Obviously, picking(2s+1) random points and checking if the function is constant for
a given flat, will be the most expensive operations. Therefore, we start with a lemma
on the average complexity for checking that a function is constant on a given set of
points.

Lemma 11 For a given random functionf : F
n
2 → F2 and a given set of points

P ⊆ F
n
2 , the algorithm from Fig. 6 needs on average 3 evaluations off to check if this

function is constant when restricted to vectors in the setP .

Proof: The average number of evaluations depends on the number of pointsp := |P |
of this algorithm; it is given by

Ev(p) :=

p−1
∑

i=1

1

2i
(i + 1) +

1

2p−1
p = 3−

1

2p−2
.
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Figure 6. Algorithm to determine if a function is constant on a set of points

Input: functionf , a setP with p := |P | points
Output: 1 iff is constant onP and 0 otherwise
Let q1 ∈ P , c← f(q1)
for q ∈ P \ {q1} do

if f(q) 6= c then OUTPUT 0
OUTPUT 1

To justify this formula, we observe that we need to evaluatef at least once to obtain
the constantc. As the function is a random function by definition, we have a proba-
bility of 1

2 to obtain a different constant for every further evaluation, i.e., to terminate
this algorithm. After checking a total ofp points, the algorithm terminates. For this
last check, we still have a probability of12 to output 0. However, the workload of
outputting 0 or 1 is exactly the same, namelyp evaluations. 2

As a consequence, the complexity of the main loop so far depends on the costs of
picking the(2s + 1) random points, evaluating the functionf on the corresponding
flat with probability Pr(Only one flat)and some other negligible operations whose
complexity we set to one,i.e., (2s + 1+3Pr(Only one flat)+1)r, wherer represents
the number of repetitions. We obtain the following values (log2) if we evaluate the
above formula numerically (cf Table 3).

Table 3. Numerical results for the time-complexity (inlog
2
) of the main loop

n s = 2 s = 3 s = 4 s = 5

8 18.47 21.95
10 21.33 25.58 29.63
12 24.26 29.41 34.24 39.12
14 27.23 33.33 39.06 44.72
16 30.21 37.29 43.97 50.53
18 33.20 41.27 48.93 56.44
20 36.20 45.26 53.90 62.40

Complexity of the SearchForParallelFlats-method.
From a computational point of view, the for-loop is very expensive, as we have to
check2n−s−1 parallel flats every time. However, each flat costs only 3 operations on
average (cf Lemma 11). In addition, we only need this for-loop in 2−2s+1 of all cases
as this is the probability that the function is constant on the corresponding flat. The
other steps in the method are negligible in comparison to thefor-loop. We therefore
identify their average workload as 1. Consequently, the complexity can be approxi-
mated by(1+3·(2−2s+1Pr(only one flat))2n−2s−s+1)r for the SearchForParallelFlats-
method, wherer denotes the number of repetitions. Numerical values for thetime-
complexity (inlog2) of the SearchForParallelFlats-method are presented in Table 4.
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Table 4. Numerical results for the time-complexity (inlog
2
) of the SearchForParallelFlats-

method
n s = 2 s = 3 s = 4 s = 5

8 19.50 19.18
10 24.28 23.71 26.11
12 29.20 29.06 30.73 35.38
14 34.16 34.83 35.60 40.98
16 39.14 40.75 40.69 46.79
18 44.13 46.72 46.20 52.70
20 49.13 52.71 52.37 58.66

Complexity of the Combine-procedure.
The complexity analysis of the combine-procedure is a little more tricky. In particular,
we have to deal with the problem that its complexity depends quadratically on the
number of parallel flats we find,i.e., the number|P (Ua)| for a given flatUa. Therefore,
we cannot simply take the average number of flats for this analysis as the result does
not reflect the real time complexity of this algorithm. In addition, we have to deal with
the branching condition (cf Sect. 3.4).

As we did not expect to find a closed formula for the time complexity of the
combine-procedure, we used MAG to compute it numerically. As all computations
are done with rational numbers, there are no rounding errorsin MAGMA. In particu-
lar, we computed the probability for the different numbers of parallel flats we obtain
in the searchForParallelFlats-method. We only took numbers ≥ 2e−s into account
(cf Thm. 6) and neglected levels of recursion which appear with too small probability
(< 2−40), due to the branching condition. In addition, we truncatedthe sum at points
which did not contribute to the overall workload anymore (expected workload smaller
than 1). We present the corresponding values (log2) for different choices ofn ands in
Table 5.

Table 5. Numerical results for the time-complexity (inlog
2
) of the Combine-method

n s = 2 s = 3 s = 4 s = 5

8 24.17 15.97
10 31.15 22.87 ≈ 0

12 38.03 15.76 ≈ 0 ≈ 0

14 44.97 23.68 ≈ 0 ≈ 0

16 51.93 35.02 ≈ 0 ≈ 0

18 43.34 ≈ 0 ≈ 0

20 51.33 ≈ 0 ≈ 0

These computations were matched by our empirical results. In particular, the
branching condition proved to be very powerful fors ≥ 3 andn ≥ 12 (note dif-
ference betweenn = 10 andn = 12 for s = 3). In these cases, we never needed
a recursive call of the combine-method for non-normal functions. In addition, the
probability for a function to be constant on a given flat decreases exponentially with
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increasing dimension of the flat. Therefore, we expect to findless than2e−s flats for
s ≥ 4 andn ≤ 20 which means that the combine-method is never invoked in these
cases (fields with≈ 0 in the above table).

All in all, it is necessary to chose the starting dimensions correctly, i.e., high
enough such that the combine-method is still efficient and low enough such that Search-
ForParallelFlats and the main loop do not need too much time.For dimensionn ≥ 10,
the choices = 3 turns out to be optimal (cf Fig. 7 for the casen = 16).

Figure 7. Time-complexity for the main loop (•), SearchForParallelFlats (?), and the
combine-method (×) for dimensionn = 16 and varyings
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Asymptotic Analysis.
Here we sketch the asymptotical analysis of the above algorithm: we begin with the
observation that for largen and subsequently larges, the running time will only de-
pend on the number of repetitions necessary. We justify thisreasoning as follows: as
we saw for the combine-method, we have a very powerful branching condition,i.e.,
asymptotically, this part will not contribute to the overall complexity. The same is true
for the search of parallel flats: we have a complexity ofO(2(−2s+1)(n−s)) here,i.e.,
negligible forn → ∞. In addition, we cannot use the implicit evaluation strategy
anymore in the asymptotic case, as we obtain a rather small probability for having
exactly one flats→∞. Therefore, we drop the corresponding term in our asymptotic
analysis. For our analysis, we choses = 1

4n ande = 1
2n and obtain the following

asymptotically upper bound on the number of repetitions andthus the running time of
the algorithm:

Rep(n,
1

4
n,

1

2
n, c) = O(c.2

1
8
n2+ 3

4
n) ,

wherec is the target confidence level. To obtain this upper bound, weobserve that
the probability to have a complaisant flat is asymptoticallyvery small. In addition,
we notice that for largen the factor2e−n+s(e−1−n) is a tight lower bound on the
probabilityPF (n, s, e). Using Theorem 9 and Corollary 10 yields the result.
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4.2 Comparison with the Algorithm from Daum et al.

In Fig. 8 and Table 6 we compare the time complexities of our algorithm with that
of DDL03, for computing the normality of a function in dimension n. We are not
aware of an asymptotical analysis of the algorithm from DDL03.

Figure 8. Time-complexity (inlog
2
) of this paper (?) and from DDL03 (•)
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The time complexity of algorithm of DDL03, is computed usingthe formulas given
there. According to these results, we expect that it is outperformed by our algorithm
for increasing dimensionn.

Table 6. Comparison of the time-complexity (inlog
2
)

n s Daumet al. Our alg.
14 2 42.58 44.97

3 ≈ 46 35.27
4 ≈ 52 39.18

16 2 51.58 51.93
3 ≈ 54 40.88
4 ≈ 62 44.11

n s Daumet al. Our alg.
18 2 61.17 > 50

3 61.01 46.72
4 > 61 49.13

20 2 71.09 > 55
3 71.04 > 55
4 >71 54.33

4.3 Empirical Results
We have implemented our algorithm in a programme with 14,000lines of C++

code. Checking random functions on an AMD Athlon XP 2000+, weobtained the
following results fore = n

2 (normality) ands = 3:

n 10 12 14 16
time [min] 0.248 1.21 42.6 2880

As we see in this table, the running time gets quickly out of hand. According
to DDL03, their programme needs approximately 50 h on a Pentium IV 1.5 GHz
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for the casen = 14. Our algorithm needs approximately 43 min forn = 14 and
approximately 2 d forn = 16. Using the complexity analysis of DDL03, we expect a
running time of more than a year for their algorithm to handlefunctions of dimension
n = 16. We also estimated (empirically) the running time for the casesn = 18, 20
and obtain 2.5 years and 130 years, respectively.

For our C++ implementation, we have included several improvements:

Combinatorial Gray codes. In order to compute vectors more efficiently for a
given basis, we used combinatorial Gray codes (Sav97) and computed all intermediate
values in a Gray code like fashion. This way, we only needed one computation on
average rather thann2 when computing elements of the vector space<U>.

Optimised Pseudo-Random Number Generator. As the programme spends
approx. 60% of its time computing random numbers, we concluded that it could
benefit from a fast way of generating pseudo-random numbers.However, due to the
high number of repetitions, we still need a long period for the pseudo-random number
generator. To meet both aims, we used a pseudo-random numbergenerator from Rho
which combines a multiply with carry generator and a simple multiplicative generator.
It achieves a period of more than260, has good statistical properties, and is also very
fast according to our measurements. For the future, tests with the cryptographically
secure pseudo-random number generator using Shamir’s T-functions class (KS04) are
planned.

Function storage. For the Boolean function to be checked, we can use several
ways of storing it: bit-wise, byte-wise or in processor-words (32 bit). To make the
best use of the internal cache of the processor, a bit-wise storage turned out to have
the best performance for dimensionsn ≥ 12. For dimensionsn ≤ 10, an word-wise
storage was clearly better as we do not have the overhead of retrieving single bits from
a word.

5. Conclusions
In this paper, we present a fast asymmetric Monte Carlo algorithm to determine the

normality of Boolean functions. It uses the fact that a function which is constant on a
flat of a certain dimension is also constant on all sub-flats oflower dimension. In ad-
dition, we evaluate “parallel" flats using the implicit evaluation strategy (cf Sect. 3.2).
Starting with flats of dimensions and combining them until a flat of dimensione is
obtained, we achieve a far lower time-complexity than with exhaustive search on flats
of dimensione.

In particular, this algorithm is far faster than the previously known algorithm (43
min in comparison to 50 h) for dimension 14 (cf 4.2). Moreover, it is the first time that
the important casen = 16 can be computed on non-specialised hardware in 2 days
(previously: more than a year). Using the fact that our algorithm can be parallelised
easily, this figure can even be improved and we can even handlethe casen = 18 (16
computers in 8 weeks). For scientific purposes and at present, n = 20 seems to be out
of reach as it would take 128 computers about 1 year.
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