
EFFICIENT ALGORITHMS FOR HANDLING
MOLECULAR WEIGHTED SEQUENCES

Costas S. Iliopoulos,1 Christos Makris,2,3 Yannis Panagis,2,3 Katerina Perdikuri,2,3

Evangelos Theodoridis,2,3 and Athanasios Tsakalidis,2,3

1Department of Computer Science
King’s College London, Strand, London WC2R2LS
England
csi@dcs.kcl.ac.uk

2Department of Computer Engineering and Informatics
University of Patras, 26500 Patras
Greece
{makri, panagis, perdikur, theodori}@ceid.upatras.gr

3Research Academic Computer Technology Institute
61 Riga Feraiou Str., 26221 Patras
Greece
tsak@cti.gr

Abstract In this paper we introduce the Weighted Suffix Tree, an efficient data struc-
ture for computing string regularities in weighted sequences of molecular data.
Molecular Weighted Sequences can model important biological processes such
as the DNA Assembly Process or the DNA-Protein Binding Process. Thus
pattern matching or identification of repeated patterns, in biological weighted
sequences is a very important procedure in the translation of gene expression
and regulation. We present time and space efficient algorithms for constructing
the weighted suffix tree and some applications of the proposed data structure to
problems taken from the Molecular Biology area such as pattern matching, re-
peats discovery, discovery of the longest common subsequence of two weighted
sequences and computation of covers.

Keywords: Molecular Weighted Sequences, Suffix Tree, Pattern Matching, Identifications
of repetitions, Covers.

1 Introduction

Molecular Weighted Sequences appear in various applications of Computational
Molecular Biology. A molecular weighted sequence is a molecular sequence (either a
sequence of nucleotides or aminoacids), where each character in every position is as-

265

(c) 2004 IFIP

signed a certain weight. This weight could model either the probability of appearance
of a character or the stability that the character contributes in a molecular complex.

Thus in the first case a molecular weighted sequence can be the result of a DNA
Assembly process. The key problem today in sequencing a large string of DNA is that
only a small amount of DNA can be sequenced in a single read. That is, regardless
of whether the sequencing is done by a fully automated machine or by a more man-
ual method, the longest unbroken DNA substring that can be reliably determined in
a single laboratory procedure is about 300 to 1000 (approximately 500) bases long
[4],[5]. A longer string can be used in the procedure but only the initial 500 bases
will be determined. Hence to sequence long strings or an entire genome, the DNA
must be divided into many short strings that are individually sequenced and then used
to assemble the sequence of the full string. The critical distinction between different
large-scale sequencing methods is how the task of sequencing the full DNA is divided
into manageable subtasks, so that the original sequence can be reassembled from se-
quences of length 500.

Reassembling DNA substrings introduces a degree of uncertainty for various po-
sitions in a biosequence. This notion of uncertainness was initially expressed with
the use of “don’t care” characters denoted as “∗”. A “don’t care” character has
the property of matching against any symbol in the given alphabet. For example
the stringp = AC ∗ C∗ matches the patternq = A ∗ GCT under the alphabet
Σ = {A,C,G, T, ∗}. In some cases though, scientists are able to go one step further
and determine the probability of a certain character to appear at the position previ-
ously characterised as wildcard. In other words, a “don’t care” character is replaced
by a probability of appearance for each of the characters of the alphabet. Such a se-
quence is modelled as aweighted sequence.

In the second case a molecular weighted sequence can model the binding site of
a regulatory protein. Each base in a candidate motif instance makes some positive,
negative or neutral contribution to the binding stability of the DNA-protein complex
[7], [13]. The weights assigned to each character can be thought of as modeling
those effects. If the sum of the individual contributions is greater than a treshold, the
DNA-protein complex can be considered stable enough to be functional.

Thus we need new and efficient algorithms in order to analyze molecular weighted
sequences. A fundamental problem in the analysis of Molecular Weighted Sequences
is the computation of significant repeats which represent functional and structural sim-
ilarities among molecular sequences. In [10] authors presented a simple algorithm for
the computation of repeats in molecular weighted sequences. Although their algorithm
is simple and easy to be implemented, it is not efficient in space needed. In this pa-
per we present an efficient algorithm, both in time and space limitations, to construct
the Weighted Suffix Tree, an efficient data structure for computing string regularities
in biological weighted sequences. The Weighted Suffix Tree, was firstly intoduced
in [9]. In this work, which is primarily motivated by the need to efficiently compute
repeats in a weighted sequence, we further extend the use of the Weighted Suffix Tree
to other applications on weighted sequences.

The structure of the paper is as follows. In Section 2 we give all the basic definitions
used in the rest of the paper, in Section 3 we present the Weighted Suffix Tree while

266

(c) 2004 IFIP

Wordw

Position 1 2 3 4 5 6 7 8 9 10 11
A C T T (A,0.5) T C (A,0.5) T T T

(C,0.5) (C,0.3)
(G, 0) (G,0)
(T, 0) (T,0.2)

Figure 1. Example of a weighted word with three weighted positions. Positions consisting of
a single character indicate that this character appears with probability 1.

in Section 4 we list a set of applications for the data structure. Finally in Section 5 we
conclude and discuss our research interest in open problems of the area.

2 Preliminaries
Let Σ be a finite alphabet which consists of a set of characters (or symbols). The

cardinality of an alphabet, denoted by|Σ|, expresses the number of distinct characters
in the alphabet. Astringor word is a sequence of zero or more characters drawn from
an alphabet. The set of all words over the alphabetΣ is denoted byΣ+. A word
w of lengthn is represented byw[1..n] = w[1]w[2] · · ·w[n], wherew[i] ∈ Σ for
1 ≤ i ≤ n, andn = |w| is the length ofw. The empty word is the empty sequence (of
zero length) and is denoted byε; we writeΣ∗ = Σ+ ∪ {ε}. Moreover a word is said
to beprimitive if it cannot be written asve with v ∈ Σ+ ande ≥ 2.

A subwordu of lengthp is said to occur at positioni in the wordw if u = w[i..i +
p− 1]. In other wordsu is a substring of lengthp occurring at positioni in wordw. A
word has arepeatwhen it has two equal subwords.

In the case that for a given position of a wordw we consider the presence of a set
of characters each with a given probability of appearance, we define the concept of a
weighted wordw, as following:

Definition 1 A weighted wordw = w[1]w[2] · · ·w[n] is a sequence of positions,
where each positionw[i] consists of a set of ordered pairs. Each pair has the form
(s, πi(s)), whereπi(s) is the probability of having the character s at position i. For
every positionwi, 1 ≤ i ≤ n,

∑
∀s πi(s) = 1.

For example, if we consider the DNA alphabetΣ = {A,C,G,T} the wordw shown
in Fig. 1 represents a word having 11 letters: the first four are definitely ACTT, the
fifth can be either A or C each with 0.5 probability of appearance, letters 6 and 7 are
T and C, and letter 8 can be A, C or T with probabilities 0.5, 0.3 and 0.2 respectively
and finally letters 9 to 11 are T. Some of the words that can be produced are:w1 =
ACTTATCATTT , w2 = ACTTCTCATTT 1, etc. The probability of presence
of a word is the cumulative probability which is calculated by multiplying the relative
probabilities of appearance of each character in every position. For the above example,
π(w1) = π1(A)∗π2(C)∗π3(T)∗π4(T)∗π5(A)∗· · ·∗π8(T) = π5(A)∗π8(A) = 0.25.
Similarly π(w2) = π5(C) ∗ π8(A) = 0.25. The definition of subword can be easily
extended to accommodate weighted subwords.

1underlined letters indicate the choice of a particular letter in a weighted position

267

(c) 2004 IFIP

The Suffix Tree
The suffix tree is a fundamental data structure supporting a wide variety of effi-

cient string searching algorithms. In particular, the suffix tree is well known to allow
efficient and simple solutions to many problems concerning the identification and lo-
cation either of a set of patterns or repeated substrings (contiguous or not) in a given
sequence. The reader can find an extended literature on such applications in [8].

Definition 2 We denote byT (S) the suffix tree ofS, as the compressed trie of all
the suffixes ofS$, $ 6∈ Σ. Let L(v) denote the path-label of nodev in T (S), which
results by concatenating the edge labels along the path from the root tov. Leafv of
T (S) is labeled with indexi iff L(v) = S[i..n]. We define the leaf-listLL(v) of v as a
list of the leaf-labels in the subtree below v.

Linear time algorithms for suffix tree construction are presented in [14], [17].

3 The Weighted Suffix Tree
In this section we present a data structure for storing the set of suffixes of a weighted

sequence with probability of appearance greater than1/k, wherek is a given constant.
We use as fundamental data structure the suffix tree, incorporating the notion of proba-
bility of appearance for every suffix stored in a leaf. Thus, the introduced data structure
is called theWeighted Suffix Tree(abbrev. WST).

The weighted suffix tree can be considered as a generalisation of the ordinary suffix
tree to handle weighted sequences. We give a construction of this structure in the
next section. The constructed structure inherits all the interesting string manipulation
properties of the ordinary suffix tree. However, it is not straightforward to give a
formal definition as with its ordinary counterpart. A quite informal definition appears
below.

Definition 3 Let S be a weighted sequence. For every suffix starting at position
i we define a list of possible weighted subwords so that the probability of appearance
for each one of them is greater than1/k. Denote each of them asSi,j , wherej is the
subword rank in arbitrary numbering. We defineWST (S) the weighted suffix tree of a
weighted sequenceS, as the compressed trie of a portion of all the weighted subwords
starting within each suffixSi ofS$, $ 6∈ Σ, having a probability of appearance greater
than 1/k. LetL(v) denote the path-label of nodev in WST (S), which results by
concatenating the edge labels along the path from the root tov. Leafv of WST (S) is
labeled with indexi if ∃j > 0 such thatL(v) = Si,j [i..n] andπ(Si,j [i · · ·n]) ≥ 1/k,
wherej > 0 denotes thej-th weighted subword starting at position i. We define the
leaf-listLL(v) of v as a list of the leaf-labels in the subtree below v.

We will use an example to illustrate the above definition. Consider again the
weighted sequence shown in Fig. 1 and suppose that we are interested in storing all
suffixes with probability of appearance greater than a predefined parameter. We will
construct the suffix tree for the sequence incorporating the notion of probability of
appearance for each suffix.

For the above sequence andk ≥ 1/4 we have the following possible prefixes for
every suffix:

268

(c) 2004 IFIP

0

12

A C
 T $

CTT

T

A
TC

A
...$

C
T

C
A

...$

S1,2S1,1

TT$

S8,1S5,1

T

CTTT$

S7,2

T

C

S5,2

ATCA...$

C
T

C
A

...$

S2,2

S2,1 S8,2

T$

ATCA...$

C
T

C
A

...$

S3,1

S3,1

T$

$

S10,1S9,1

ATC
A...$

S4,1

T
 C $

S11,1

TC
A

...$

S4,2S6,1

A
T

T
T

$

CTTT$

S6,2

C
A

...$

S7,1

ATTT$

A
...$

$

S5,3

Figure 2. A Weighted Suffix Tree example.

Prefixes for suffixx[1 · · · 11]: S1,1 = ACTTATCATTT , π(S1,1) = 0.25, and
S1,2 = ACTTCTCATTT , π(S1,2) = 0.25.

Prefixes for suffixx[2 · · · 11]: S2,1 = CTTATCATTT , π(S2,1) = 0.25, and
S2,2 = CTTCTCATTT , π(S2,2) = 0.25, etc.

The weighted suffix tree for the above subwords appears in Fig. 2.

Construction of the WST
In this paragraph we describe an efficient algorithm for constructing the WST for

a given weighted sequencew = w[1..n], of lengthn. Firstly we describe the naive
approach, which is quadratic in time. As already discussed the weighted suffix tree,
(which consists of all subwords with probability of appearance greater than1/k, k is
a given constant), is a generalized suffix tree (GST) that can be built as follows.

Step 1: For eachi, (2 ≤ i ≤ n), generate all possible weighted suffixes of the
weighted sequence with probability of appearance greater than1/k.

Step 2: Construct the Generalized Suffix TreeGST , for the list of all possible weighted
suffixes.

The above naive approach is not optimal since the time for construction isO(n2).
In the following paragraphs we present an alternative efficient approcah. The exact
steps of our methodology for construction are:

Step 1: Scan all the positionsi (1 ≤ i ≤ n) of the weighted sequence and mark each
one according to the following criteria:

mark positioni black, if noneof the possible characters, listed at position
i, has probability of appearance greater than1− 1/k,

269

(c) 2004 IFIP

...

...

...

Figure 3. Producing all possible subwords from left to right

mark positioni gray, if at least oneof the possible characters listed at
positioni, has probability of appearance greater than1− 1/k,

and finally mark positioni white, if one of the possible characters has
probability of appearanceequal to1.

Notice that the following holds: at white positions we have only one possible
character appearing, thus we can call themsolid positions, at black positions
since no character appears with probability greater than1 − 1/k, more than
one character appear with probability greater than1/k hence we can call them
branchingpositions. At gray positions, only one character eventually survives,
since all the possible characters except one, have probability of appearance less
than 1/k, which implies that they can not produce an eligible subword (i.e.
π(subword) ≥ 1/k). During the first step we also maintain a listB of all black
positions.

Step 2: Scan all the positions inB from left to right. At each black positioni a list of
possible subwords starting from this position is created. The production of the
possible subwords is done as follows: moving rightwards, we extend the current
subwords by adding the same single character whenever we encounter a white or
gray position, only one possible choice, and creating new subwords at black po-
sitions where potentially many choices are provided. The process is illustrated
in Fig. 3. At this point we define for every produced subword two cumulative
probabilitiesπ′, π′′. The first one measures the actual subword probabilities
and the second one is defined by temporarily treating gray positions as white.
The generation of a subword stops when it meets a black position andπ′′ (which
skips gray positions) has reached the1/k threshold. We call this positionex-
tended position. Notice that the actual subword may actually be shorter asπ′

(which incorporates gray positions) may have met the1/k threshold earlier. For
every subword we store the differenceD of the actual ending position and the
extended one as shown in Fig. 4. Notice that only the actual subwords need to
be represented with the GST.

Step 3: Having produced all the subwords from every black position, we insert the
actual subwords in the generalised suffix tree in the following way. For every
subword we initially insert the corresponding extended subword in the GST and
then remove from it the redundant portionD. To further illustrate the case,
suppose thatX ′ = x[i.. i + f ′ − 1] is the extended subword of the actual
subwordX = x[i.. i + f − 1] (f ≤ f ′) that begins at black positioni of the
weighted sequence in Fig. 4. Observe the following two facts:

270

(c) 2004 IFIP

...

extended
subword

actual
subwords

D

i i+1 i+f-1

D1

D4
D5

i+f'-1

D2

D3

X

positions

Figure 4. Insertion of subwords in the GST

There is no need to insert every suffix ofX in the GST apart from those
starting to the left of the next black positioni′, as all the other suffixes will
be taken into account when step 2 is executed fori′.

A suffix of X ′ can possibly extend to the right of positioni+f −1, where
the actual subword ends, sinceπ′ does not take gray positions into account
(cf. Fig. 4). No suffix can end though at a position greater thani + f ′− 1,
where the extended subword ends.

We have kept every leaf storing a suffix ofX ′, in a list L. Let Dj denote the
redundant portion of suffixX ′[i + j..i + f ′ − 1] of X ′ (cf. Fig. 4). After we
have inserted the extended subword and the proper suffixes using McCreight’s
algorithm [14], we have to remove all theDj ’s from the GST. Starting from the
leaf corresponding to the entireX ′, we move upwards the tree byD characters.
At the current position we eliminate the extra portion ofX ′, storingX. The next
redundancy of lengthD1 is at the end ofX ′[i+1..i+f ′−1]. We locate this suffix
using the suffix link. Letλd = |Dd−1| − |Dd|, d > 1 andλ1 = D−D1. After
using the suffix link we also may descend byλ1 characters. At this position we
store the correct suffix (possibly extending it up toλ1 characters after position
i + f − 1). We continue the elimination procedure for the remaining suffixes
of X ′, as outlined above. The entire process costs at most

∑
d>0 λd = O(D),

which is the time required to complete the suffix tree construction.

Note: The above description implicitly assumes that there are no positionsi where
πi(σ) < 1/k, ∀σ ∈ Σ. If this is not the case, the sequence can be divided into
subsequences where this assumption holds and process these subsequences separately,
according to the previous algorithm.

Time and Space Analysis on the Construction of the WST
The time and space complexity analysis for the construction of the WST is based

on the combination of the following lemmas:

Lemma 4 At mostO
(
|Σ|log k/ log(k

k−1)
)

subwords could start at each branching

positioni (1 ≤ i ≤ n) of the weighted sequence.

Proof. Consider for example positioni and the longest subwordu which starts at that
position. If we suppose thatu is λ characters long, its cumulative probability will be
π(u[1.. λ]) = πi(u[1]) ∗ πi+1(u[2]) ∗ · · · ∗ πi+λ−1(u[λ]). In order to produce this

271

(c) 2004 IFIP

...

N1 N2 N3

Figure 5. Time cost for step 2

subword we have to pass throughl black positions of the weighted sequence. Recall
that at black positions none of the possible characters has probability of appearance
greater than̂π = 1−1/k. Assuming that there are no gray positions that could reduce
the cumulative probability,π(u[1..λ]) is less or equal tôπl (taking only black positions
into account). In order to store this subword its cumulative probability isπ̂l ≥ 1/k and
thusl ≤ log k/ log(k

k−1) by taking logarithms (all logarithms arelog2). For example,
typical values ofl are∼= 21.9 for k = 20 and∼= 1046 for k = 200.

Thus, regardless of considering or not the gray positions,u includes at mostl =
O(1) black positions, or in other words, positions where new subwords are produced.
Hence, every positioni of the weighted sequence can be the starting point of at most
|Σ|l number of subwords.

Lemma 5 The number of subwords with probability greater than or equal to1/k is
at mostO(n).

Proof. If every positioni of the weighted sequence is the starting point of a constant
number of subwords (Lemma 4), the total number of subwords isO(n).

Lemma 6 Step 2 of the construction algorithm takesO(n) time.

Proof. Suppose that the weighted sequence is divided into windowsNj , j ≥ 1
(cf. Fig. 5). Each window containsl = log k/ log(k

k−1) black positions. Notice
that a window can contain more thanl positions of all types and that

∑
j≥1 |Nj | = n.

Lets consider windowNi. Step 2 scans the black positions insideNi. Every black
position will generateO(1) subwords (according to Lemma 4) and none of them is
going to exceed windowNi+1 because it can not be extended to more thanl black
positions. Thus, the length of subwords will be at most equal to|Ni|+ |Ni+1|. Thus,
for the windowNi, step 2 costs at mostO(l2(|Ni| + |Ni+1|)) = O(|Ni| + |Ni+1|)
time. Summing up the costs for all windows we conclude that step 2 incurs a total of
O (

∑
(|Ni|+ |Ni+1|)) = O(n) cost.

Lemma 7 Step 3 of the construction algorithm takesO(n) time.

Proof. Consider again the windows scheme as in the previous lemma and in particular
windowNi. In step 3 we insert the extended subwords in the WST that correspond to
that window. Each one of them has length at most|Ni| + |Ni+1|. The cost to insert
those extended subwords in the WST using McCreight’s algorithm isO(l · |Ni| +
|Ni+1|) = O(|Ni| + |Ni+1|) and the cost to repair the WST (as we described in step
3) isO(l ·D). D is always smaller than|Ni|+ |Ni+1| thus for windowNi step 3 costs
O(|Ni| + |Ni+1|) time. Summing the costs for all windows, step 3 yieldsO(n) time
in total.

272

(c) 2004 IFIP

Based on the previous lemmas we derive the following theorem.

Theorem 8 The time and space complexity of constructing the WST is linear to
the length of the weighted sequence.

Proof. The WST, which is a compact trie data structure, storesO(n) subwords (by
Lemma 5) and thus the space isO(n). None of the three construction steps takes more
thanO(n) time so the total time complexity isO(n).

4 Applications
In this section we present three applications of the Weighted Suffix Tree, namely:

pattern matching in weighted sequences, computing repeats in weighted sequences,
detection of the longest common subsequence in weighted sequences and computation
of covers in weighted sequences.

Pattern Matching in Weighted Sequences
The classical pattern matching can be reformulated in weighted sequences as fol-

lows:
Problem 1. Given a patternp and a weighted sequencex, find the starting posi-

tions ofp in x, each with probability of appearance greater than1/k .

Solution. Firstly, we build the WST forx with parametrek. We distinguish two
cases. Ifp consists entirely of non-weighted positions we spellp from the root of
the tree until at an internal nodev, either we have spelled the entirep, in which case
we report all items inLL(v), or we cannot proceed further and thus we report fail-
ure. If p contains weighted positions we decompose it into solid patterns each with
Pr{occurence} > 1/k and match each one of them using the above procedure. Ap-
parently, pattern matching can be solved inO(m + α) time, m = |p| and isα the
output size, withO(n) preprocessing.

Computing the Repeats
A lot of work has been done for identifying the repeats in a word. In [6], [2]

and [15], authors have presented efficient methods that find occurrences of squares
in a string of lengthn in timeO(n log n) plus the time to report the detected squares.
Moreover in [11] authors presented efficient algorithms to find maximal repetitions in
a word. In the area of computational biology, algorithms for finding identical repeti-
tions in biosequences are presented in e.g. [12] and [16].

Using the WST we can compute in linear time the repeats of a weighted sequence.
In particular, we compute the repeats of all subwordsu, with Pr{u} > 1/k, ∀u. This
version of the problem is of particular biological interest.

Problem 2. Given a weighted sequencex and an integerk find all the repeats of
all possible words having a probability of appearance greater than1/k .

Solution. We build the WST with parametrek and traverse it bottom-up. At each
internal nodev, with |LL(v)| > 1 we report the items inLL(v), in pairs. This process
requiresO(n) time by Lemma 5

273

(c) 2004 IFIP

In the example shown in Fig. 1 and Fig. 2, the longest repeat is the word CTT, which
appears in suffixes:(S2,1, S8,2), (S2,2, S8,2) (with probability greater than 1/4). The
time to required by the solution isO(n + α), whereα denotes the output size.

Remark 1 Apart from the repeats problem the repetitions detection in weighted
molecular sequences can be solved inO(n log n+α) time, by extending appropriately
either of the approaches in [15], [3].

Longest Common Substring in Weighted Sequences
A classical problem in string analysis is to find the longest common substring of

two given stringsS1 andS2. Here we reformulate thelongest common substring prob-
lemfor weighted sequences.

Problem 3. Given two weighted stringsS1 andS2, find the longest common sub-
string with probability of appearance greater than1/k in both strings.

Solution. An efficient and simple way to find the longest common substring in two
given weighted stringsS1 andS2 is to build a generalised weighted suffix tree forS1

andS2. The path label of any internal node is a substring common to bothS1 andS2

with probability of appearance greater than1/k. The algorithm merely finds the node
with greatest string-depth. A preorder traversal of the WST suffices to compute the
longest string-depth (for details see [8]). It is easily derived that the above procedure
runs inO(n) time.

Computing the Covers in a Weighted Sequence
In this section we address the problem of computing the set of covers in a weighted

sequence. In a more formal manner the problem can be defined as:

Problem 4 Given a weighted sequenceX of lengthn and an integer k, find all
possible covers ofX that have probability of appearance larger than1/k.

A subwordu of X is called acover of X if and only if X can be constructed
by concatenations and superpositions ofw, so that every position ofX lies within
some occurrence ofw in X. Two problems have been investigated in the computation
of covers, known as theshortest-coverproblem(finding the shortest cover of a given
string of lengthn), and theall-coversproblem(finding all the covers of a given string).
Apostolico, Farach and Iliopoulos first introduced the notion of covers in [1] as well as
that ofshortest-cover, where a linear-time algorithm for this problem was presented.

Using the WST we can compute inO(n log n log n) time the covers of a weighted
sequence. All proper covers ofX along withX itself compose the set of covers of the
weighted sequence.

Solution. We build WST(S) with parametrek for the sequenceS in which every
subword appears with probability above1/k. We merely have to examine the path to
S[1..n]. Let s1 be the leaf storingS[1..n]. Let alsov be an internal node of WST(S).
At each such nodev, let sv denote the string spelled in the path from the root tov.

274

(c) 2004 IFIP

First we need to perform a depth-first search to construct at each internal node,
the leaf-lists of its subtree, as those correspond to occurrences ofs inside the indexed
string. We organize these lists as simple linked lists, namelyLL(v) at a nodev. We
also need to maintain a gap-treeG, implemented as a van Emde Boas tree [18] over the
universeU = [1, 2, ..., n]. The gap-tree keeps track of the indices of leaf-lists on the
way froms1 to the root and performs predecessor-successor queries. The algorithm
entails moving upwards froms1 to the root and keeping at each node encountered, the
maximum distance,dmax of consecutive indices stored atG as well as the maximum
index valueimax.

In order for an internal path label at nodesv on the path from root tos1 to form a
cover, it must hold thatdmax ≤ |sv| andn − imax ≤ |sv|. More informally,LL(v)
of v stores several indices in[1..n]. These correspond to repetitive occurrences ofsv

in S. Consequently,sv is a cover whenever the maximum difference between any two
starting points of these occurrences is less than the|sv|.

More concretely, we start ats1 and construct an empty van Emde Boas treeG,
insert value1 and setdmax = n andimax = 1. At each internal node we must check
whether it forms a cover according to the conditions stated above. As moving from
a nodev to father(v), we insert all the items of theLL(w), ∀w = sibling(v) to the
treeG. After having inserted itemi we perform an operationsucc(i) andpred(i) in
the tree and setdmax = min{i− pred(i), succ(i)− i, dmax}. We also need to check
whetheri > imax and updatedmax accordingly.

Theorem 9 Computing all covers requiresO(n log n log n) time.

Proof. The initialisation procedure takesO(n), to construct theLL lists at the children
of each node in path from root tos1. At each transition from a nodev to father(v)
a number of insertions need to be made to the gap-treeG. The number of insertions
equals the cardinality of eachLL(w), ∀w = sibling(v). Each of these insertions costs
O(log log n) (see [18]). The item of eachLL is only once inserted inG and subse-
quently left intact. Furthermore, each of then positions inS occurs only once within
a leaf-list, thus inserted only once inG. Each such insertion causes a predecessor and
a successor operation inG which are also performed inO(log log n) time. Hence, our
algorithm incurs a total ofO(n) cost for constructing leaf-lists, anotherO(n) maybe
spent during the bottom up traversal of thes1-to-root path and a totalO(n log log n)
time for performing operations onG, yielding the overall time complexity.

5 Conclusions
In this paper we have presented the Weighted Suffix Tree, an efficient data structure

solving a wide range of problems in weighted sequences such as: pattern matching,
repeats finding, least common substring in weighted molecular sequences, and com-
putation of covers.

Our future direction is focused on using the WST for computing string regularities
(like for example borders and palindromes) on weighted biological sequences. Some
immediate applications in molecular biology include: using sequences containing de-
generate bases, where a letter can replace several bases (for example, a B will represent
a G, T or C and a H will represent A, T or C); using logo sequences which are more or

275

(c) 2004 IFIP

less related to consensus: either from assembly or from blocks obtained by a multiple
alignment program; analysis of DNA micro-arrays where expression levels of genes
are recorded under different experimental.

Moreover we believe that the Weighted Suffix Tree can also be used in the analysis
of weighted sequences in other applications of computer science. Weighted Sequences
also appear in the field of event management for complex networks, where each event
has a timestamp.

References
[1] Apostolico, A., Farach. M., Iliopoulos, C.S.: Optimal superprimitivity testing for strings,

Information Processing Letters, 39, (1991) 17-20.

[2] Apostolico, A., Preparata, F.P.,: Optimal off-line detection of repetitions in a string. Theo-
retical Computer Science, Vol. 22. (1983) 297–315.

[3] Brodal G.S., Lyngso R.B., Storm Pedersen C.N., and Stoye J.: Finding Maximal Pairs with
Bounded Gap. In Proc. 10th CPM, pp. 134–149, (1999).

[4] Celera Genomics: The Genome Sequence of Drosophila melanogaster. Science, Vol. 287.
(2000) 2185–2195

[5] Celera Genomics: The Sequence of the Human Genome. Science, Vol. 291, (2001) 1304–
1351.

[6] Crochemore, M.: An Optimal Algorithm for Computing the Repetitions in a Word. Inf.
Proc. Lett., Vol. 12. (1981) 244–250.

[7] G. Grillo, F. Licciuli, S. Liuni, E. Sbisa, G. Pesole PatSearch: a program for the detection
of patterns and structural motifs in nucleotide sequences.Nucleic Acids Res.31 (2003),
3608–3612.

[8] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, New York (1997)

[9] Iliopoulos, C., Makris, Ch, Panagis, I., Perdikuri, K., Theodoridis, E., Tsakalidis, A.: Com-
puting the Repetitions in a Weighted Sequence using Weighted Suffix Trees, In European
Conference on Computational Biology (ECCB 2003), Posters’ Track.

[10] Iliopoulos, C., Mouchard, L., Perdikuri, K., Tsakalidis, A.,: Computing the repetitions in a
weighted sequence, Proceedings of the Prague Stringology Conference (PSC 2003), 91-98.

[11] Kolpakov, R., Kucherov, G.,: Finding maximal repetitions in a word in linear time. In Proc.
FOCS99, pp. 596–604, (1999).

[12] Kurtz, S., Schleiermacher, C.,: REPuter: fast computation of maximal repeats in complete
genomes. Bioinformatics, Vol. 15, (1999) 426–427.

[13] H. Li, V. Rhodius, C. Gross, E. Siggia Identification of the binding sites of regulatory
proteins in bacterial genomesGenetics99 (2002), 11772–11777.

[14] McCreight, E.,M.,: A space-economical suffix tree construction algorithm. J. of the ACM,
Vol. 23, (1976) 262–272.

[15] Stoye, J., Gusfield, D.,: Simple and flexible detection of contiguous repeats using a suffix
tree. In Proc. 9th CPM, Vol. 1448 of LNCS, (1998) 140–152.

[16] Tsunoda, T., Fukagawa, M., Takagi, T.,: Time and memory efficient algorithm for extract-
ing palindromic and repetitive subsequences in nucleic acid sequences. Pacific Symposium
on Biocomputing, Vol. 4, (1999) 202–213.

276

(c) 2004 IFIP

[17] Ukkonen, E.,: On-line construction of suffix trees. Algorithmica, Vol. 14, (1995), 249–
260.

[18] van Emde Boas P., R. Kaas and E. Zijlstra, Design and implementation of an efficient
priority queue.Mathematical Systems Theory, 10, pp. 99-127, (1977)

277

(c) 2004 IFIP

	Select a link below
	Return to Main Menu
	Return to Previous View

