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Abstract We demonstrate the applicability of the polynomial degree bound technique to
notions such as the nonexistence of Turing-hard sets in some relativized world,
(non)uniform gap-definability, and relativized separations. This way, we settle
certain open questions of Hemaspaandra, Ramachandran & Zimand [HRZ95]
and Fenner, Fortnow & Kurtz [FFK94], extend results of Hemaspaandra, Jain &
Vereshchagin [HJV93] and construct oracles achieving desired results.
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1. Introduction
1.1 Background
In this paper, we are concerned with degree bounds of polynomials represent-
ing (not necessarily boolean) functions and their applications in constructing
oracles. Polynomials were used in obtaining lower bounds for constant depth
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circuits [Smo87, AB00], proving upper bounds on the power of complexity
classes [Tod91, TO92], proving closure properties of counting classes [BRS95],
proving bounds on the number of queries to compute a boolean function in the
quantum black-box computing model [BBC � 01], and in the construction of
oracles in complexity theory [Tar91, dGV02, FFKL03]. See Beigel [Bei93]
and Regan [Reg97] for nice surveys on the application of polynomials in circuit
complexity and computational complexity theory.

In relativization theory, the technique of using degree bounds of polynomi-
als has been extensively used in constructing oracles that separate complex-
ity classes (see, for instance [Tar91, Bei94, dGV02]). Beigel, Buhrman and
Fortnow [BBF98] and Fenner et al. [FFKL03] showed that degree bounds of
polynomials can be used to obtain relativized collapses as well. In particu-
lar, [BBF98] used polynomials to construct an oracle � such that �
	������	
and ��� 	 ������� 	 , and [FFKL03] showed that relative to an ��� -generic
oracle, ������� (a class defined in Section 2) equals � . We demonstrate the
applicability of the polynomial degree bound technique to notions such as the
nonexistence of Turing-hard sets in some relativized world, (non)uniform gap-
definability, and relativized separations. Before stating our contributions, we
give an overview of gap-definable counting classes which will be of interest to
us in the paper.

1.2 Gap-definable Counting Classes
In this paper, we will study the relativized complexity of gap-definable counting
classes using lower and upper bounds on the degree of polynomials representing
certain functions. Informally speaking, a gap-definable counting class is a col-
lection of all sets such that, for any set in the class, the membership of a string in
the set depends (in a way particular to the class) on the gap (difference) between
the number of accepting and rejecting paths produced by some nondetermin-
istic polynomial-time Turing machine associated with the set. (See Section 2
for the definition of classes and Figure 1 for the inclusion relationship between
classes mentioned here.) Gap-definable classes like ��� ��� and ��� ��� are, for
instance, interesting because of their relevance to quantum computing: ��� ���
is the best known classical upper bound for �"!�� (a quantum analog of � ) and
�#� ��� is the best known classical upper bound for $
!�� (a quantum analog of
$"��� ) [FR99]. Thus the investigation of gap-definable classes may shed light
on the structure of the quantum classes �%!�� and $
!�� . The gap-definable
class &'��� is low for several counting classes including ��� , (�)*� and +-,/.102� ,
and is known to contain an important natural problem—the graph isomorphism
problem [AK02].

98

(c) 2004 IFIP



1.3 Our Contributions
The existence of complete sets in a class is a topic of interest in complexity
theory. Though classes like �3� , ( ) � and ��� possess polynomial-time many-
one complete sets, for several other natural classes like 43� , $"��� , etc., no
complete set (under any weak enough to be interesting notion of reducibility)
is known. This motivates the investigation of completeness for these promise
classes in relativized worlds. That line of research was pursued in several pa-
pers [Sip82, HH88, HJV93]. In particular, Hemaspaandra, Jain and Vereshcha-
gin [HJV93] showed that there is an oracle relative to which 43�65879,�4�� , 4�� ,:';=< � and

:';=<
have no polynomial-time Turing complete sets. The existence of

a relativized world where promise classes like &>��� , �?����� , � ��� and ��� ���
do not have complete sets has been unresolved for a long time [HRZ95]. We
use the method of symmetrization, introduced by Minsky and Papert [MP88],
combined with a result from approximation theory [EZ64, RC66] to construct a
relativized world in which ��� ��� has no polynomial-time Turing hard set
for 43�@5�79,�4�� . As a corollary we obtain that none of the classes &>��� ,
��� ��� , � ��� and �#� ��� have Turing complete sets in some relativized world.
This settles an open question in [HRZ95] and extends one of the main results
in [HJV93]. Using a similar, though somewhat indirect, technique we construct
another relativized world where �#� ��� has no polynomial-time Turing hard
set for AB��� . The crux in both the proofs involves proving a lower bound on
the degree of a univariate polynomial. We note that similar techniques have
been used in proving a lower bound on the degree of univariate polynomials
in [Bei94, NS94, BBC � 01].

Fenner, Fortnow and Kurtz [FFK94] showed that &>��� is low for every uni-
formly gap-definable class (see Section 4 for the definition of uniform and non-
uniform gap-definability). Thus &>��� is low for each of ��� , ( ) � , +-,>.C02� ,
and itself. Both ��� ��� and ����� are known to be nonuniformly gap-definable
and, prior to this paper, it was an open question whether or not these classes
are uniformly gap-definable. Thus [FFK94] asked whether &>��� is also low for
��� ��� or ����� . We give a relativized answer to their question by exhibiting an
oracle relative to which 4��D5E79,�43� is not low for �?����� as well as for ����� .
We further relate showing the existence of a relativized world where &>��� is not
low for a relativized class F to proving that F is not uniformly gap-definable.
As a consequence, we settle an open question of [FFK94] that both ��� ��� and
����� are not uniformly gap-definable.

Certain classes are known to be weak in some relativized worlds while their
composition with themselves lead to powerful classes in every relativized world.
( ) � is a class that is immune to GH� in a relativized world [STT03], but its
composition with itself, i.e. (3)*��ICJ/K , contains the polynomial-time hierarchy
in every relativized world. (In fact, ��LNMO�
P KRQ SUT MV4�� I J K MW(X)�� I J K .)
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Since AB���ZYM[����� in some relativized world [STT03] and relative to an oracle
����� is not self-low (present paper), it is interesting to ask whether � ��� , a
class similar to (H)*� , behaves in the same way as (3)�� when composed with
itself. We use properties of low degree multilinear polynomials to construct an
oracle world in which AB��� is not contained in � ���X\ K/K ; thus we falsify this
intuition. We also use an upper bound on the approximate degree of a boolean
function to construct an oracle relative to which �3�]5^79,�����YM[��� ��� .

The proof technique that we use is quite general and is applicable also to
classes that are not known to be gap-definable. For instance, we use the degree
lower bound of polynomials in constructing a relativized world where +-_`�a5
79,?+b_c� has no polynomial-time Turing hard set for Ad��� . This result can be
viewed as an extension of a result from [HJV93], that states that relative to an
oracle, _c�65^79,e_c� has no polynomial-time Turing hard set for AB��� .

2. Preliminaries
Let f , g and h denote the set of positive integers, real numbers and inte-
gers, respectively. Our alphabet is iV�Njlk>mon2p . For any set q of variables,
and for any polynomial r]s-gHt q-u , . ;=vxw rBy denotes the total degree of r . If z]{
jlk>mon2p}|Z~�jlk>mon2p is a boolean function and r6s�gHt � S m����2m=�=�=�lm�� | u is a multilin-
ear polynomial such that, for every � S m�� � m=�=�=�}m�� | s6jlk>mon2p , z

w � S m�� � m=�=�=�lm�� | y��r w � S m�� � m=�=�=�}m�� | y , then r is said to be a polynomial representing z . If r is a
smallest degree multilinear polynomial representing a boolean function z , then
we use . ;=vRw z�y to denote . ;=vxw rBy , the total degree of r .

We assume throughout the paper that the computation paths of an oracle
Turing machine include the answers from the oracle. Given a nondeterministic
Turing machine � , computation path � and ��s6i3� , let ��� v���w �-m���m��>y�����n if �
is an accepting path of � w �dy , and let ��� v���w �-m���m��>y�����n if � w �dy rejects along
� . Let ���e7=7 |��

w �dy w ���e��� |��
w �By�y denote the number of accepting (rejecting)

paths of �6� w �By . For any oracle �����H+ � and ¡¢MZi � , £¥¤lr |�� {1i � ~¦h is
defined as follows: for all �§s�iH� , £¥¤lr | �

w �By
�O���e7=7 | �
w �dy��¨�©����� | �

w �dy .
We define the following complexity classes relevant to this paper.

ªE«C¬>¯®#¯°B²±#® ³
1 [Gup91, FFK94] ´��¶µ1�·� j=£Z¸ wº¹ �����H+��]y9t £»�

£¥¤lr | uUp .
2 [OH93, FFK94] &>�����¼jl½¾¸ wº¹ £Ds]´��¶µ1�%y wÀ¿ ��s�i � y9t £ w �dy
sajlk>mon2p
Áw �]sb½ÃÂÅÄ�£ w �By��ÆnlyÇu .
3 [FFK94] �?��������jl½a¸ wº¹ £Ds-´��¶µR�%y wº¹'È s : �¾{�k-Ys�É�� �'ve;?wUÈ y�y wÀ¿ ��s
i � y9t £ w �dyXs]jlk>m È�w k'Ê Ë�ÊÌy�p%ÁD�6sb½ÃÂÅÄ�£ w �By�� È#w k'Ê Ë�ÊÍyÇuUp .

4 [FFK94] �����[�Æjl½�¸ wº¹ £�s�´��¶µ1�Xy wº¹'È s : � {¥k6Ys-É�� �Cve;¥wUÈ y�y wÀ¿ �§s
iX�=y9t £ w �dyXs]jlk>m È�w �By�pHÁD��sb½�ÂÅÄÎ£ w �dy�� È�w �ByÇuUp .
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Figure 1. Complexity graph æ where a node represents a complexity class and a directed edgeç¯èxéÇê�ë
in æ represents the fact that “class

è
is known to be robustly included in class

ê
.”

ªE«C¬>¯®#¯°B²±#®¾ìÃílîÌïXïXð8ñ�ò'óBô�ï%«C®#ò'ó¥õ`ö
A language ½ is in �#� ��� if there

exist a £Ds6´��¶µ1� , a polynomial r and ÷3ø[k such that, for all �6s�i�� ,
�6sb½ ��Ä

w n��¨÷áyù ú £
w �dyù9û¶ü Ê Ë�Ê ý ú n¶m and

�ÃYsb½ ��Ä k ú £
w �dyù û¶ü Ê Ë�Ê ý ú

w n
�§÷�yù �

The inclusion relationship between classes considered in this paper is summa-
rized in Figure 1. In our proofs, we use an encoding of finite sets (where the
sets can be viewed as a source of a possible oracle extension at some stage of
the oracle construction) defined in terms of multilinear polynomials with inte-
ger coefficients over variables representing the strings in the set. The formal
description of our polynomial encoding is given below.ªE«C¬>¯®#¯°B²±#®¨ó

Let � be a nondeterministic polynomial-time oracle Turing
machine with running time þ w �Ìy . Let ÿ m � M i � be such that ÿ¢5 � ��� ,
and let � S m�� � m=�=�=�om���� , where � � ¸ ¸ � ¸ ¸ , be the lexicographic enumeration
of strings in

�
. For any � s i � , a polynomial encoding of

�
w.r.t. ��� w �By

is a multilinear polynomial rZs h t � S m�� � m=�=�=�lm��	�Xu defined as follows: call a
computation path � of � ü�
 ý w �dy allowable if along � , all queries �8saÿ have a
“yes” answer, all queries �^Ys�ÿ� � have a “no” answer and no query ��s �
is answered in a conflicting way. Let �����ám������lm=�=�=�}m������ be the distinct queries
to strings in

�
along an allowable � . Create a monomial �E, � , w �'y that is the

product of terms ����� , �¨s�t �áu , where �����^�W�	��� if ����� is answered “yes” and� � ��� w n
�]� � �}y if � � � is answered “no” along � . Define

r w � S m�� � m=�=�=�}m��	��y�� � "!  is allowable
��� v���w ��m��#m��'y$#"�E, � , w �>y��

The polynomial r w � S m�� � m=�=�=�lm��	��y has the following properties:

1 for all %¾M � , r w�&(' w � S y�m &(' w � � y�m=�=�=�lm &)' w ��� y�y��[£¥¤lr |+*-,". w �By , and
2 . ;=vxw rdy ú þ w ¸ � ¸ y .
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3. Robust Hardness under Turing Reducibility
Minsky and Papert [MP88] first introduced the technique of symmetrizing a
multivariate polynomial r sWgHt � S m����}m=�=�=�}m�� | u representing a function z {
jlk>mon2p | ~ g . A point worth noticing is that symmetrization leads to a sym-
metric polynomial r�/102�¦s�g
t � S m�� � m=�=�=�lm�� | u with . ;=vxw r3/405��y no more than
. ;=vxw rBy .1 Thus r6/405� can be used to exploit the symmetry of z within a subdo-
main, and thereby to get a lower bound on . ;=vxw rBy .
ªE«C¬>¯®#¯°B²±#®87

Let r s¨gHt � S m�� � m=�=�=�}m�� | u be a multilinear polynomial. The
symmetrization of r is defined by

r6/405� w � S m�� � m=�=�=�om�� | y �:9<;>=@?BA r w � ; ü S ý m�� ; ü � ý m=�=�=�}m�� ; ü | ý y�DC �
ñ�«FEGEIHKJÃílîMLONGP-P¥õ`ö

If rZs�gHt � S m����¶m=�=�=�om�� | u is a multilinear polynomial,
then there exists a univariate polynomial Qr�s6g
t �?u , of degree at most the total
degree of r , such that for all � S m����¶m=�=�=�om�� | s]jlk>mon2p , we have

r6/405� w � S m�� � m=�=�=�}m�� | y �RQr w � S �Ã� � �<#S#S#2�Ã� | y��
We use a theorem from [EZ64, RC66] to lower bound the degree of univariate
polynomials that satisfy certain constraints. (See also [Bei94, NS94, BBC � 01],
where the same technique has been used to get a lower bound on the degree of
univariate polynomials.)
ñ�«FEGEIH<T¨ílîMUWV$TX7dôZY\[]T-T¥õäö

Let r s�g
t �¥u be a univariate polynomial with
the following properties:

1 for any integer k ú � ú � , ^ S ú r w �oy ú ^ � , and
2 for some real k ú � ú � , the derivative of r satisfies ¸ r�_ w �¥y=¸X`ba .

Then . ;=vBw rByc`ed a9�gf w a��O^ � �h^ S y .
The proof of Theorem 7 uses Lemma 5 and Lemma 6. We mention that [HJV93]
proved, using a different combinatorial technique, that relative to an oracle,:';=< � contains no polynomial-time Turing hard set for 4�� 5�79,�4�� . Theorem 7
extends this result of [HJV93] and implies that there is a relativized world
where &'��� has no complete sets. That answers a question raised in [HRZ95]
positively.i\j «1±(kd«FEml

There exists an oracle � such that �#� ��� 	 has no ú û@n 	o -hard
set for 4�� 	 5^79,�4�� 	 .

1It is well known that symmetrization may lead to a polynomial of total degree strictly smaller than that of
the original polynomial. Example: Consider û¶ü 0 � n 0 � ý )p0 �-q 0 � .
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[ ±(kx±(rsrsH)k>t�P
There is an oracle � such that

1 for every complexity class Fas6jl43�65D79,�43� , 4�� ,
:C;=< � ,

:';=< p , F 	 has
no ú û@n 	o -complete set [HJV93], and

2 for every complexity class F saj2&>��� , �?����� , ����� , �������Xp , F 	 has
no ú û@n 	o -complete set.

Through a similar, though somewhat involved, technique we show that there
is a relativized world where �#� ��� has no polynomial-time Turing hard set
for Ad��� . We also have a more direct proof, that involves proving an upper
bound on the degree of a certain multilinear polynomial, for a weaker ver-
sion of Theorem 9—“existence of an oracle relative to which ��� ��� has no
polynomial-time many-one hard set for AB��� .”i\j «1±(kd«FEvuÆwº¹ �Åy9t �#� ��� 	 has no ú û@n 	o -hard set for AB��� 	 u .[ ±(kx±(rsrsH)k>t�³�ò

There is an oracle � such that

1 for every class F s j2Ad��� , G3� , 79,�GH�
p , Fd	 has no ú û@n 	o -complete
set [HJV93],

2 $%��� 	 has no ú û@n 	o -complete set ([HH88] + [Amb86]), and

3 $
!�� 	 has no ú û@n 	o -complete set [FR99].

Note: We obtained an alternative proof of Theorem 7 and Theorem 9 using a
lemma by Vereshchagin [Ver94, Ver99] on proving whether a complexity class
has a Turing-hard set for another complexity class. Fortnow and Rogers [FR99]
used this lemma to prove that $
!�� has no polynomial-time Turing hard set for
$"��� in some relativized world. Since this alternative proof is also of inde-
pendent interest, we sketch the proof of Theorem 9 in [ST03]. (An alternative
proof of Theorem 7 can be obtained in a similar way.)

4. Lowness and Gap-Definability
The low hierarchy within �3� was introduced by Schöning [Sch83] to study the
inner structure of ��� . Since the introduction of the low hierarchy, the concept
of lowness has been generalized to arbitrary relativizable function and language
classes. We now give a definition of lowness for arbitrary relativizable classes.

ªE«C¬>¯®#¯°B²±#® ³'³aí�ï�±(rswxr¥±(kd«xö
A set ½ M i
� is said to be low for a relativiz-

able class F if Fzy-M�F . A class FC� is said to be low for a relativizable class F S ,
denoted by F6{ �S M�F S if every set ½¾s^F � is low for F S . If F � is also a relativizable
class then, for any ÿ»MZiH� , we say that F � is low for F S relative to the oracle

ÿ , denoted by F { *�$| �S M§F �S , if for every set ½¾s�F �� , F y | �S M�F �S .
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Fenner, Fortnow and Kurtz [FFK94] introduced the notion of gap-definability
to study the counting classes that can be defined using ´ �¶µ1� functions alone.
Since most of the well-known counting classes, like ��� , 79,¥(�)*� , +-,>.C02� ,
etc., are gap-definable, any characterization for gap-definable classes carries
over to these counting classes. For instance, it is known that &>��� is low for
every member of a particular collection of gap-definable classes, namely the
collection of uniformly gap-definable classes. Thus, it follows that &>��� is low
for the counting classes ��� , 79,¥(H) � and +-,/.10l� . The formal definition of
gap-definability is given below.
ªE«C¬>¯®#¯°B²±#® ³¥ìÃílîÌïXïXðguX7/õ`ö

A class F is gap-definable if there exist disjoint
sets ¡ m~}¢M i
���Eh such that, for any ½ M iH� , ½¾s^F if and only if there exists
an �����H+ � such that for all ��s6i � ,

��sb½��dÄ w ��mc£¥¤or |
w �dy�y%sb¡ , and �ÃYsb½Ã��Ä w �#mc£¥¤lr |

w �By�yXs�} .

The class F is also denoted by Gap
w ¡ m~}�y .

For a relativizable class, Fenner, Fortnow and Kurtz [FFK94] introduced two
ways of defining gap-definability: uniform and nonuniform. A relativizable
class F is said to be uniformly gap-definable if it is gap-definable w.r.t. any oracle
with a fixed (independent of the oracle) choice of ¡ and } . A relativizable class
F is said to be nonuniformly gap-definable if it gap-definable w.r.t. an oracle
where the choice of ¡ and } is dependent on the oracle. Thus, the choice of ¡
and } may vary with different oracles in case of nonuniform gap-definability.
We now give a definition that expresses the oracle (in)dependence of the pairw ¡�m~}�y in the notion of gap-definability. In what follows,

w ¡�m~}�y is called an
accepting pair if ¡�m~}¢M�i � �bh and ¡[5�}���� .
ªE«C¬>¯®#¯°B²±#® ³�ó¨ílîÌïXïXðguX7/õ`ö

1 We say that a relativizable class F is gap-definable relative to an oracle ÿ
with accepting pair

w ¡ m~}�y if for any ½¾M i3� , ½¾s^F � if and only if there exists
an oracle �����H+»� such that for all �]s-i � ,
�6s�½¨�dÄ w ��mc£¥¤or | * w �dy�y%sb¡ , and �ÃYsb½Ã��Ä w �#mc£¥¤lr | * w �By�y
s�} .

2 We say that a relativizable class F is uniformly gap-definable with accepting
pair
w ¡ m~}�y if for any oracle ÿ M@i � , it holds that F is gap-definable relative

to ÿ with accepting pair
w ¡�m~}�y .

We observe that there is a stronger characterization of uniformly gap-definable
classes than the one stated in [FFK94].���6� «Fk���HC°B²±#®@³	7

If F is a uniformly gap-definable class, then for any ÿ M
iX� , it holds that F)� K¥K * � F � .
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In Theorem 17, we construct a relativized world in which 4�� 5�79,�43� is not low
for �?����� as well as for � ��� . Since 4��D5E79,�43�ÃM &>��� in every relativized
world, this also shows that relative to the same oracle, &>��� is not low for either
of �?����� or � ��� . Fenner, Fortnow and Kurtz [FFK94] proved that both
��� ��� and ����� are nonuniformly gap-definable. However, they leave open
the question whether ��� ��� and ����� are uniformly gap-definable. From
Observation 14 and Theorem 17, we conclude that ��� ��� and � ��� are not
uniformly gap-definable. Note that the definition of uniform and non-uniform
gap-definability involves relativizing a class. Therefore, they are not properties
of sets in the class, but rather are the properties of machines characterizing the
class. So, proving that � ��� and ��� ��� are not uniformly gap-definable does
not imply in any obvious way that these classes separate from any uniformly
gap-definable class in the real world.

We use a variant of the prime number theorem, stated in Lemma 15, in the
proof of Theorem 17 to estimate the number of primes between two integers.
ñ�«FEGEIH�³>JÃílîMY��3T1ì�õ`ö

For every ��`On�� , the number of primes less than or
equal to � , � w ��y , satisfies �(fx� � ���b� w ��yc�Zn¶� ù	�	� k��x�(fx� � � .

The following lemma, Lemma 17, was used in [STT03] to construct a relativized
world in which � ��� is not closed under polynomial-time Turing reductions.
We found the same lemma to be useful in proving Theorem 17.
ñ�«FEGEIH�³�T¨ílî�� i\i ò'ó¥õ`ö

Let �-m²r6s�f be such that r is a prime and r ú �gf ù .
Let �©s6h t � S m�� � m=�=�=�lm�� | u be a multilinear polynomial with . ;=vRw �2yI��r . If for
some �¥¤�� sbh , it holds that

1 � w k>m�k>m=�=�=�2m�k?y�� k , and
2 for all � S m�� � m=�=�=�om�� | s jlk>mon2p with 9 |� ) S �	�%� r , � w � S m�� � m=�=�=�lm�� | y3��¥¤��

then r]¸B�/¤>� .i\j «1±(kd«FE ³>l�wº¹ �Åy9t ��� �����1K��3���1�~�RK����¨� ��� 	 u .[ ±(kx±(rsrsH)k>t�³�P ��� ��� and ����� are not uniformly gap-definable.[ ±(kx±(rsrsH)k>t�³�u
There is a relativized world � such that (1) for any class FDs

jl43�E5 79,�4�� , 43� ,
:';=< � ,

:';=<
, &>��� , �?�����Xp , Fd	 is not low for ��� ��� 	 , and

(2) for any class F sajl4��§5�79,�4�� , 4�� ,
:C;=< � ,

:C;=<
, &'��� , �?����� , � ���
p ,

Fx	 is not low for ����� 	 .

5. Relativized Noninclusion
Beigel [Bei94] constructed an oracle relative to which �¡  K �[��� . As a conse-
quence, there is a relativized world in which �3� is not low for ��� . However,
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in contrast to ��� , it is not clear whether �3�[5 79,��3� is not low for ��� in
some relativized world. In [STT03], it was shown that there is an oracle rela-
tive to which AB��� is not contained in ����� , a class known to be low for ��� .
Thus, it follows that relative to the same oracle, �3�[5 79,��3��� � ��� . In
Theorem 23, we extend this result and show that there is a relativized world
where ���§5�79,��3�v�Æ�#� ��� , where �#� ��� is a class known to be low for
��� . This supports our belief that �3�Ã5679,��3� might not be low for ��� in a
suitable relativized world. The proof of Theorem 23 uses a property of low-
degree multilinear polynomials over rings given by Tarui (Lemma 20), and the
notion of approximate degree of boolean functions. The use of approximate
degree of a boolean function in Theorem 23 is inspired by the proof of Theo-
rem 6.13 ( ��� ��� has polynomial certificate complexity) in [FFKL03]. Fenner
et. al. [FFKL03] used this theorem to show that relative to an ��� -generic ¢ ,
��£�� ��� £ 5D79,���� £ � ��� ��� £ .
ñ�«FEGEIH@ì/ò[ílî i H(kzuB³2õäö

Let ¤ be a ring. Let � be a multilinear polynomial
in ¤6t � S m�� � m=�=�=�lm�� | u of total degree at most ¥ and let ¦ be a nonnegative in-
teger such that k ú ¦ ú ¦��e¥ ú � and � w � S m�� � m=�=�=�lm�� | yb� k for each
� S m����2m=�=�=�}m�� | s]jlk>mon2p satisfying ¦ ú 9 |§ ) S � § ú ¦B�O¥ . Then, �©¨@k .
ªE«C¬>¯®#¯°B²±#®¾ìR³aílî«ª¬�3uX7/õ`ö

Given a boolean function z�{�jlk>mon2p | ~ jlk>mon2p
and a polynomial r@s gHt � S m=�=�=�lm�� | u , we say that r approximates z if there
exists k ú ÷¡�Zn�f ù such that, for every � S m=�=�=�}m�� | s]jlk>mon2p , ¸ z

w � S m=�=�=�lm�� | y*�r w � S m=�=�=�lm�� | y=¸ ú ÷ . The approximate degree of z , denoted by . ;=vRw z�y , is the
minimum integer ¥ such that there is a polynomial of degree ¥ that approximates
z .
Nisan and Szegedy [NS94] showed that both the degree and the decision tree
complexity of a boolean function is polynomially related to its approximate
degree. We use Lemma 22 to obtain an upper bound on the degree of boolean
functions in the proof of Theorem 23.
ñ�«FEGEIH@ì'ì�ílî«ª���uX7dô$®W®\[ � òB³2õ`ö There is a constant a such that, for any
boolean function z , . ;=vxw z�y ú . ;=vxw z�y úb¯ w z�y ú a+#�. ;=vxw z�y±° .i\j «1±(kd«FEWì/ó¢wº¹ �Åy9t �3� 	 5D79,���� 	 �¾�#� ��� 	 u .
Certain classes are not very powerful in some relativized worlds, however their
composition with themselves are found to be more powerful classes in every
relativized world. For instance, [STT03] showed the existence of a relativized
world in which G3� is immune to (3)#� . But (
)#� I J K is known to contain
the polynomial-time hierarchy in every relativized world. In fact in every
relativized world, 43�%I1J>K and AB����I1J>K , which are subclasses of (H)*��ICJ/K ,
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contain the polynomial-time hierarchy. Using Torán’s [Tor91] combinatorial
technique, [STT03] constructed an oracle relative to which Ad����� ����� .
Corollary 19 shows that there is a relativized world where ����� is not self-low,
and so we cannot conclude directly from [STT03] that AB��� is not contained in
����� \ K/K relative to an oracle. Therefore, it is interesting to ask whether or
not � ��� exhibits a similar behavior as its superclass (�)�� . That is, whether
����� \ K/K is as big a class as to contain the polynomial-time hierarchy in every
relativized world. We show in Theorem 24 that this is not the case by construct-
ing a relativized world in which Ad��� is not contained in � ���%\ K¥K . The proof
of Theorem 24 uses Lemma 20.i\j «1±(kd«FEWì>7 wº¹ �Åy9t AB��� 	 �¨� ��� \ K¥K �#u .
For any ��saf , let ����� 0 denote the �X²�³ level of � ��� hierarchy formed by
composing ����� with itself up to � levels. The proof of Theorem 24 can be
easily extended to show the following general result:

wÀ¿ �^s�f�y wÇ¹ �Ey9t AB��� 	 �
����� 0 n 	 u .
6. Extensions to Other Classes
In this section, we demonstrate the technique of using degree lower bound of
polynomials in constructing relativized worlds for classes defined by probabilis-
tic oracle Turing machines. Hemaspaandra, Jain and Vereshchagin [HJV93]
showed that relative to an oracle, _c�Ã5]79,e_c� has no polynomial-time Turing
hard set for AB��� . We extend their result in Theorem 27 by constructing an ora-
cle world where +b_c��5�79,?+b_c� has no polynomial-time Turing hard set for Ad��� .
In the proof, we use the characterization of +-_`� in terms of oracle proof systems
as given by Fortnow, Rompel and Sipser [FRS94]. Note that in the real world
(i.e., relative to � as an oracle) +-_`�µ´ 5 79,?+-_`�+´H� �������-5879,�������� and so,
+b_c� ´ 5D79,?+-_`� ´ contains polynomial-time Turing hard set for AB��� ´ �ZAB��� .
It follows that Theorem 27 does not hold in the real world.
ªE«C¬>¯®#¯°B²±#®¾ì-JÃílîÌïµY¶��uX7/õäö

We say that a set ½ has an oracle proof system
if there exists a probabilistic polynomial-time oracle Turing machine � such
that for all �6s6i
� ,
�6sb½ �dÄ wº¹(· M i � yµ¸À��É�,	¹�t ��º w �dy accepts u(`Zn
� ù Ê Ë�Ê » and

�Ofsb½ �dÄ wÀ¿¼· M i � y ¸ ��É�,	¹�t ��º w �dy accepts u ú ù q Ê Ë�Ê » m
where the probability is over the random coin tosses done by � .

The next Theorem says that the class of sets accepted by multiprover interactive
protocols ( +b_c� ) is the same as the one which contains sets that are accepted
by oracle proof systems.
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i\j «1±(kd«FEWì�T[ílîÌïµY¶�3uX7/õ`ö
A set ½ is accepted by an oracle proof system if

and only if ½ is accepted by a multiprover interactive protocol.

Since the proof of Theorem 26 relativizes, it suffices to construct a relativized
world where no oracle proof system accepts a set that is Turing hard for AB��� .
We construct such a relativized world in the next theorem.i\j «1±(kd«FEWì-l

There exists an oracle � such that +b_c� 	 5�79,?+-_`� 	 has no
ú û@n 	o -hard set for Ad��� 	 .[ ±(kx±(rsrsH)k>t ì�P

There is an oracle relative to which

1 AB��� , GH� , 79,�G3� , _c��5-79,e_c� have no polynomial-time Turing complete
sets [HJV93],

2 $%��� 	 has no ú û@n 	o -complete set ([HH88] + [Amb86]), and
3 +b_c�65�79,?+b_c� has no polynomial-time Turing complete sets.

7. Conclusions
In this paper, we apply certain complexity measures (degree, approximate de-
gree) of functions in the context of relativization theory. Likewise, Fenner et
al. [FFKL03] and Vereshchagin [Ver94, Ver99] have used (related measures)
certificate complexity and decision tree complexity, respectively, in construct-
ing relativized worlds. It would be interesting to explore more connections
between complexity measures of a function and relativization theory.
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