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Abstract In the STS-based mapping, we are requested to obtain the correct order of probes
in a DNA sequence from a given set of fragments or equivalently a hybridization
matrix A. It is well-known that the problem is formulated as the combinatorial
problem of obtaining a permutation ofA’s columns so that the resulting matrix
has the consecutive-one property. If the data (the hybridization matrix)is error
free and includes enough information, then the above column order determines
the correct order of the probes uniquely. Unfortunately this is no longertrue if
the data include errors, which has been one of the popular research targets in
computational biology. Even if there is no error, ambiguities in the probe order
may still remain. This in fact happens by the lack of some information of the
data, but almost no further investigation was made previously. In this paper, we
define a measure of such imperfectness of the data as a minimum amountof
additional fragments which are needed to fix the probe order uniquely. Several
polynomial-time algorithms to compute such additional fragments of minimum
cost are presented.
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1. Introduction

The STS-based mapping is one of the most popular techniques for physical
mapping of DNA sequences. In this procedure, a DNA sequenceS is cloned
into many copies and then they are cut into smaller, overlapped subsequences
calledfragments. An STS (sequence-tagged site), also called aprobe, is used
as a marker; each probe is supposed to appear at a unique position in the entire
DNA sequenceS. Now we are given ahybridization matrix, anH-matrix in
short,A = (aij) such thataij = 1 if probepj exists in fragmentfi andaij = 0
otherwise. Our goal is to compute the order of probesP={p1, . . . , pn} in the
original DNA sequenceS from the given H-matrixA. It is well-known that
this can be formulated as the following combinatorial problem: Given an H-
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matrix, obtain a permutation of the columns so that the resulting matrix has the
so-calledconsecutive-one property, i.e., all 1s are consecutive in each row of
the matrix.

The problem can be solved in linear time by using the famous data stracture
calledPQ-trees [12]. Unfortunately, there are several kinds of errors involved
in experiments, which makes the data, H-matrices in our case, imperfect. Typ-
ical errors include the case that (i) an entry of the H-matrix changes from0
to 1, and vice versa, and that (ii) two fragments which are not consecutive in
the DNA sequence put together into a “chimeric” fragment [3, 4, 6–9]. Inthe
presence of such noises, we cannot use PQ-trees any longer; the problem now
becomes several optimization problems due to different assumptions of noises.
Not surprizingly, they are NP-hard in most cases [3, 7, 9, 11].

Even if there are no such errors, there may still remain ambiguities in the
probe order. See for example Fig. 1 (a), which illustrates an example of an
H-matrix consisting of six fragments (rows)f1 to f6, and ten probes (columns)
A to J . By exchanging columns, the matrix can be transformed into the ma-
trix in Fig. 1 (b) which satisfies the consecutive-one property, (i.e., eachrow
has a single block of consecutive ones). One can see however that there are
several other orders of the columns, say EGBFIADHC, which also achieve the
consecutive-one property. Thus we cannot fix the order of probesuniquely
from the requirement of the consecutive-one property in the case of thisH-
matrix, which is obviously due to the imperfectness of the data. There is a
few literature which mentions the existence of this fact, e.g., [2], but no further
investigation was made previously.

Our contribution . In this paper, we propose a measure of such imperfect-
ness in H-matrices. Recall that the imperfectness is due to the lack of infor-
mation. For example, if we add two extra fragments to the H-matrix of Fig.
1 (a) as in Fig. 1 (c), then the order of probes is now determined uniquely as
shown in Fig. 1 (d). Thus the amount of additional fragments being neededto
uniquely fix the probe order looks closely related to the degree of the imper-
fectness. It is apparently convenient to know this quantity for conductingthe
STS-based physical mapping.

More formally we consider the following problem: For a given H-matrix,
obtain the minimum amount of additional fragments such that there is only
one order of columns for the augmented H-matrix to have the consecutive-one
property. Here are some issues which should be taken into consideration:(i)
The minimum amount of fragments differs according to the order of probes to
be selected as a unique one among possible different orders. For example, we
needed two additional fragments in Fig. 1 (d), but three additional fragments
are needed to fix the column order as BGEAIDHCFJ. (ii) There are different
measures for the “amount” of fragments, such as the number of fragments and
the total length of them.
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Our main result is to give polynomial-time algorithms which compute (1)
for a given H-matrix having the consecutive-one property, the minimum num-
ber of additional fragments which are enough to fix the probe order to the
current order (i.e., the order of the columns in the given H-matrix), (2) the
minimum total length of additional fragments under the same setting, (3) for
a given H-matrix not necessary having the consecutive-one property, the min-
imum number of additional fragments enough to fix the probe order uniquely
(but the order itself may be arbitrary) so that the augmented H-matrix has the
consecutive-one property, (4) the minimum total length of additional fragments
under the same setting. We also mention a computer simulation using genes of
human chromosome 20.

Related Work. As mentioned previously, if the data are perfect, then the
problem can be solved in linear time by using PQ-trees [12]. Several possibili-
ties of errors have been investigated including obtaining a sub-matrix have the
consecutive-one property [1], obtaining most-likely probe orders in thepres-
ence of false position and false negative hybridization errors using a different
data structure [7], using the LP-relaxation for optimizing the most-likely probe
order [6], and exploiting the fact that each probe occurs at a unique position
in a more sophisticated way to handle errors such as chimeric fragments [3].
Also see [4, 8–11] for other related work including parallelization of the con-
struction of PQ-trees [5].

2. PQ-trees

PQ-trees are a convenient data structure for our problem. Fig. 3 shows an
example of a PQ-tree. A PQ-treeT consists ofP-nodes denoted by circles,
Q-nodes denoted by rectangles, andleaf-nodes. P (T ) denotes a set of permu-
tations of leaf-nodes that is defined by the following rules: (i) Children of a
P-node may be arbitrarily permuted. (ii) Children of a Q-node must be consec-
utive but may be arranged in reverse order. For example, letT0 be the PQ-tree
in Fig. 3. ThenP (T0)={BGEJAIDHCJF, EGBJIADHCF, . . .}. Two
PQ-treesT andT ′ are said to be equivalent ifP (T ) = P (T ′).

There is a linear-time algorithm [12] which constructs a PQ-treeT from H-
matrix A such that (i)T ’s leaf-nodes correspond to columns ofA and (ii) A

has the consecutive-one property iffA′s columns are rearranged into an order
in P (T ). (If A cannot be rearranged into any matrix having the consecutive-
one property, then the algorithm can detect it. IfA is an H-matrix, this does not
happen unlessA includes errors. Although details are omitted, the algorithm
constructs a target PQ-tree by transforming PQ-trees step-by-step, begining
with a PQ-tree of a single P-node. In each step, a row of the H-matrix is
selected and the PQ-tree changes so that the constraint by that row is added.
For example, from the H-matrix in Fig 1(a), we can construct the associated
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(a) (b)

(c) (d)

A B C D E F G H I
probes

       f2
       f3

       f1

       f5
       f4

1  0  0  1  0  0   0  0  1  0
0  1  0  0  0  0   1  0  0  0
0  0  0  0  1  0   1  0  0  0
0  0  0  0  0  1   0  0  0  0
0  0  1  1  0  0   0  1  0  0

J

       f6 0  0  0  0  0  0   0  0  0  1

AB CDE FG HI
probes

       f2
       f3

       f1

       f5
       f4

0  0  0  0  1  1  1   0  0  0
1  1  0  0  0  0  0   0  0  0
0  1  1  0  0  0  0   0  0  0
0  0  0  0  0  0  0   0  0  1
0  0  0  0  0  0  1   1  1  0

J

       f6 0  0  0  1  0  0  0   0  0  0

A B C D E F G H I
probes

       f2
       f3

       f1

       f5
       f4

1  0  0  1  0  0   0  0  1  0
0  1  0  0  0  0   1  0  0  0
0  0  0  0  1  0   1  0  0  0
0  0  0  0  0  1   0  0  0  0
0  0  1  1  0  0   0  1  0  0

1  0  0  1  1  0   0  1  1  1
0  0  1  1  0  1   0  1  1  0

       f6
       f7

J

       f8

0  0  0  0  0  0   0  0  0  1

AB CDE FG HI
probes

       f2
       f3

       f1

       f5
       f4

0  0  0  0  1  1  1   0  0  0
1  1  0  0  0  0  0   0  0  0
0  1  1  0  0  0  0   0  0  0
0  0  0  0  0  0  0   0  0  1
0  0  0  0  0  0  1   1  1  0

0  0  1  1  1  1  1   1  0  0
0  0  0  0  0  1  1   1  1  1

       f6
       f7

J

       f8

0  0  0  1  0  0  0   0  0  0

Figure 1. Permuting the (0,1)-matrix gotten by the experiment

PQ-tree as shown in Fig. 2 by selecting rowsf1 throughf6 in each step.
Note that the final PQ-tree is the same asT0 in Fig. 3 andP (T0) includes
several different orders as mentioned before. For example, BGEJAIDHCF in
P (T0) corresponds to the H-matrix in Fig. 2 (b) which has the consecutive-one
property.

If we add two new rows (fragments)f7 andf8 as in Fig. 2 (c), then the
PQ-tree is furthermore changed as in Fig. 4 and the final PQ-tree consistsof
a single Q-node (Such a PQ-tree is called a1Q-tree.) This means that the
probe order is fixed uniquely (without its reverse order) by adding two extra
fragments, which is exactly what we wanted to do. Thus our problem can be
restated as follows.

Problem FIX(T, σ): For a given PQ-treeT (made from H-matrix by the
algorithm of [12] ) and a probe order (leaf order)σ, obtain a set of additional
fragments of a minimum cost such thatT will change into a 1Q-tree of leaf
orderσ.

If σ is not given then the problem is denoted byFIX(T,−) which requires
to obtain a minimum fragments to changeT into some 1Q-tree. As the cost of
a fragment set, we consider mainly two different definitions. One is the size of
fragment set, i.e., the number of fragments. The other is the sum of the lengths
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A  B  C  D  E   F  G  H  I  J         B  C  E  F  G  H J

A  D  I

                C  E  F  H  J

A  D  I B G

                   C  F   H  J

A  D   I

B  G   E

A
B

C
DE

F
G

HI

J

(a) (b) (c)

(d) (e)

Figure 2. The process to make the input PQ-tree

A
B

C
DE

F
G

HI

J

Figure 3. After adding fragment 5

A
B

C
DE

F
G

HI
0 0   1  1 1  1  1 1   0  0

edge1 edge2

H

0  0 0  0 0   1  1  1 1  1
edge3 edge4

B EG
A I

D C
F

B EG AIDHCF
(c)

(b)

(a)

J

J

J

Figure 4. Making a 1Q-tree

A B C
D E F

G H
I J K

L M N

the additional fragment

Figure 5. The number of fragment=1
the total length=5

A B C
D E F

G H
I J K

L M N

the additional fragments

Figure 6. The number of fragment=2
the total length=4
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of the fragments, where the length of a fragment is the number of 1s included
in the corresponding row of the H-matrix. Those two measures sometimes
conflict: As a simple example, the PQ-tree in Fig. 5 needs one fragment of
length five (i.e., the fragment including probes H, I, J, K and L) for the fixing
operation. The same fixing operation is also possible by using two fragments
of total length four as shown in Fig. 6.

3. Minimizing the number of additional fragments

In this section, we first discuss minimizing the number of additional frag-
ments forFIX(T, σ) (i.e., the probe order is to be fixed toσ which is explicitly
given) and then forFIX(T,−) (to be fixed to an arbitrary order).

FIX(T, σ)

Suppose that the PQ-tree is given so that the leaves are arranged in the order
σ = p1p2 . . . pn of lengthn. Then we considern + 1 differentpositions, de-
noted by(−, p1), (p1, p2), . . . , (pn−1, pn), and(pn,−). Thus a position means
a “between” of two consecutive probes or the left (right) ofp1 (pn). A posi-
tion denoted by(pi, pi+1) is called aninside position,(−, p1) and(pn,−) an
outside position. See Fig. 4 again. An additional fragment should have a con-
secutive sequence of probes, EJAIDH for example for the first added fragment
in Fig. 4, which can be designated by giving two positions, itsleft end-position
andright end-position ((G,E) and (H,C)) in the example). We sometimes say
that a fragment isterminated by its (left and/or right) end-positions.

In Fig. 4, we selected two positions (G,E) and (H,C) to terminate the first
additional fragment. As one can see later, this selection of (G,E) and (H,C)
contributes to converting the PQ-tree into the final 1Q-tree efficiently. Thus
among all positions, there are some “important” positions for our purpose. We
call such positions “edges,” since using these important positions as edges of
additional fragments plays a great role in minimizing the number of additional
fragments.Edges are divided into three types and defined as follows: A po-
sition (x, y) is called (i) anInside-P-type edge if probesx andy are children
of a single P-node, (ii) anOutside-P-type edge if probe x (or y) is − and it
is a child of the root P-node, (iii) aQ-type edge if both x andy belong to a
single Q-node which is not a root Q-node and which includes only leaf-nodes.
In Fig. 4 for example, (A,I) is Inside-P-type, (F,-) is Outside-P-type and(G,E)
is Q-type. It should be noted that if we select two edges appropriately to ter-
minate an additional fragment, like (G,E) and (H,C) in Fig. 4 then those two
edges “disappear” in the transformed PQ-tree. ((G,E) or any other Q-type edge
for the Q-node BGE. By definition, (B,G) is also a Q-type edge for the same
Q-node. As described later, we only need one Q-type edge for a Q-node for the
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fixing operation.) Thus the key point is how to select such appropriate edges
for additional fragments.

Lemma 1 A PQ-tree includes no edge if and only if it is a 1Q-tree.

Proof. If a PQ-tree has two internal nodes, there is at least one edge by the
definition. If a PQ-tree has only one internal node and if it is a P-node, it
includes at least one P-type edge from the definition.

Lemma 2 For any solution of FIX(T, σ), every edge must be selected at
least once to terminate additional fragments.

Proof. It is proved by examing all templates for transformation of PQ-trees in
each step defined in [12].

In Fig. 4, the first additional fragment is terminated by edges (G,E) and
(H,C). After adding this fragment, edges 1 and 2 disappear. However, we
cannot say that every edge always disappears when a fragment terminated by
the edge is added. For example, if the first additional fragment is terminated by
(A,I) and (H,C), two Inside-P-type edges seem to disappear. However, because
(A,I), (I,D), (D,H) and (H,C) become Q-type edges, the number of edgeswhich
are disappeared by this additional fragment is actually only one. In Fig. 4,
edges 1 and 2 have another edge, edge 3, between them. In fact, both edges
always disappear in such a case as shown in the following lemma.

Lemma 3 Suppose that a PQ-tree T1 has two edges e1 and e2, and T1 is
transformed into T2 by adding the fragment terminated by e1 and e2. Then (i)
at least one of e1 and e2 disappears in T2 and (ii) if there is another edge, say
e3, between e1 and e2, then both e1 and e2 disappear in T2 (iii) Furthermore
no new edges are created.

Proof. Let v be the lowest common ancestor ofe1 and e2. Let vl be the
internal node which is an ancestor ofe1 and a child ofv. Let vr be the internal
node which is an ancestor ofe2 and a child ofv. Let l1 be the leftest probe
included in the subtree whose root isvl. Let lr be the rightest probe included
in the subtree whose root isvr. (See Fig. 7)

Assume that a fragment terminated bye1 ande2 is added and at most one of
the two edges disappear. In this case, there are the following two cases only.

Whenv is a P-node and there is not another edge except fore1 ande2 in
the position set betweenll andlr,

Whenv is a Q-node and there is not another edge except fore1 ande2

in the positions included by the subtree whose root isv.
Our method avoids these cases. Hence (i) and (ii) are shown. Property (iii)

can be proved by examining all templates for transformation of PQ-trees in
each step defined in [12].
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v

v vl r

l ll r

fragment

e e1 2

Figure 7. An additional fragment terminated bye1 ande2

Figure 8. A PQ-tree in whiche

2
+1 additional

fragments are necessary
Figure 9. One step before the 1Q-tree

By using Lemma 3, we can remove two edges by adding one fragment,
and thus we can show that the number of necessary additional fragments for a
fixing operation is about a half of the number of edges. Note that, there must
be at least three edges in order to apply lemma 3. In fact, there exists a case
that there are only two edges, and two fragments are needed. As the result of
this, there exists a PQ-tree that hase edges andd e

2
e + 1 additional fragments

are needed. The PQ-tree in Fig. 8 is an example of it. It becomes the PQ-tree
of Fig. 9 after addingd e

2
e fragments terminated by two.

In other words, when the number of edges is even, there are two cases,
i.e., the minimum numbers of additional fragments aree

2
and e

2
+ 1. We can

distinguish them by using a simple characterization as the following theorem.

Theorem 4 Let e be the number of edges and n be the number of probes of
(T, σ). The minimum number of additional fragments for FIX(T, σ) is shown
as follows:

1 When e is odd: e+1

2
.

2 When e is even:

2-1. When the root node is a Q-node and there is only one internal child
node of the root: e

2
+ 1.

2-2. Otherwise: e
2
.

Moreover, a fragment set with the minimum number of additional fragments
for FIX(T, σ) can be found in O(n3) time.
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For proving the theorem, we introduce the following lemma.

Lemma 5 Consider a PQ-tree (T, σ) that includes at least three edges and
doesn’t satisfy the condition of 2-1 in Theorem 1. There exists a fragment satis-
fying the condition of Lemma 3 (ii) such that the resultant PQ-tree (T ′, σ) also
doesn’t satisfy the condition of 2-1 in Theorem 1 after adding the fragment.

Proof of Theorem 1.
Whene is odd:

From Lemma 3 (ii), two edges can be decreased by adding one fragment
if e ≥ 3. Hence, by iterating this process, only one edge remains after
adding e−1

2
fragments. A PQ-tree including only one edge must satisfy

all of the following three conditions:

– The root is a Q-node.

– Every internal node has at most one internal child node.

– The lowest internal node (the internal node which doesn’t have an
internal child node.) is a Q-node.

It becomes a 1Q-tree by adding a fragment.

Whene is even:

By using the same discussion with the odd case above, a PQ-tree includ-
ing only two edges can be obtained by addinge

2
− 1 fragments. From

Lemma 4, if the original PQ-tree doesn’t satisfy the condition of 2-1,
then the resultant PQ-tree doesn’t also. Hence, it is enough to consider
the case thate = 2. It can be easily proved by examing all cases.

Because we consider only the given order of probes, there areO(n2) frag-
ments. A transformation by each additional fragment can be done inO(n)
time.

FIX(T, −)

The result of Theorem 1 can be used to solveFIX(T,−) also. That is,
FIX(T,−) can be solved by finding a leaf orderσ in which the number of
edges is minimum. The following Lemma 6 shows how to find suchσ. In the
lemma,v and l mean the number of internal child nodes and the number of
child probes, respectively, of the noticed P-node.

Lemma 6 Let a1 be the number of Q-nodes which don’t have internal child
nodes. Let a2 be the total number of max{|l| − |v| − 1, 0} for all P-nodes
which are not the root. Let a3 be max{|l| − |v| + 1, 0} if the root is a P-node,
or 0 otherwise. The minimum number of edges for FIX(T,−) is a1 +a2 +a3.
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It can be proved by definitions of edges. See an example of Fig. 3. If
probe F is moved to the space between BGE and AIDHC, the number of edges
decreases by one and it is the PQ-tree yielding the minimum solution three.

Theorem 7 In FIX(T,−), a fragment set, in which the number of addi-
tional fragments is minimum, can be found in O(n3) time, where n is the num-
ber of probes.

Proof. It is clear from Lemma 3 and 6, and Theorem 1.

4. Minimizing the total length of additional fragments

In this section, we pay attention another cost function, i.e., minimizing the
total length of additional fragments.

FIX(T, σ)

As shown in Fig.s 5 and 6, the smallness for the number of additional frag-
ments and the shortness for the total length of additional fragments may con-
flict each other. For a fixing operation, for every edge, there must be at least
one fragment terminated by the edges. However, there is a case that we can
shorten the total length by using a fragment which is terminated by two non-
edge positions. The fragment which consists of KL shown in Fig. 6 is an
example of this. As shown in this example, “edge” is a concept related to the
number of fragments, and there is scarcely any relation between edges and the
total lengths of fragments.

We propose an algorithm, which scans from the leaves to the root and base
on a dynamic programming, for this problem. We explain the basic ideas by
using simple examples. Before the explanation, we introduce some notations
as follows. A fragmentcovers position(i, j) if the fragment includes bothi
andj. A setF of fragmentscovers a setP of consecutive probes if for each
neighbor probesi, j ∈ P , F has a fragment that covers position(i, j). If a set
F of fragments doesn’t cover a set P of consecutive probes, then there is at
least one “cut” defined as follows. Acut of F for P is a position(i, j) such that
i, j ∈ F and the position is not covered by any fragment in F.

We consider a PQ-tree shown in Fig. 10 (c). It consists of only one P-
node and leaves. The lengths of fragments are2, 3, 3, 3, . . . , 3, 3, 3, 2. The
numbers of 1s assigned to each probes are1, 2, 1, 2, . . . , 2, 1, 2, 1. Note that
the set of fragments covers the set of all probes. If additional fragment set
doesn’t cover the set of all probes as Fig. 10 (d), the fixing operationcan’t
be completed. However, if this is a subtree of the given PQ-tree, although the
additional fragment set doesn’t cover the set of all probes, there is acase that
the fixing operation can be completed. In many cases, it causes to save the total
length of additional fragments. In other words, a naive procedure such as to
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f
f
f

1
2

3

fn-1
fn

1  2  1  2  1  2  1 2  1  2  1  2  1
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3

3
3

2

f
f
f

1
2

3

1  2  1  2  1  2  1  0 1  2  1  2  1

2
3

3
2 2

3
2

2+1
3

3
2+1

  B  C  D  E  F  G  H 

A I

V

V

1

2

A  B  C  D  E   F  G  H  I

V2

A  B  C  D  E  F  G  H  I

V

V

1

2

A  B  C  D  E  F  G  H  I

V1

V2

(c) with no cut

(d) with a cut

(e) the total length = 12

(f) the total length = 11

(g) the total length = 10 
(h) the fragment assignment
of L-type

   B  C  D  E  F  G  H   I  J

A

K L

V

(i) before the replacement

b=8
l=9
r=9

b=2
l=1
r=3

V

(j) after the replacement

(a) The fragment set covers all 
 probes by a path

(b) The fragment set doesn’t cover
 all probes by a path

AB CDE FG HI

B

C

E

FH

G
 ...ATGCCATGCCAATTGGCCATGC..DNA

probes

fragment2
fragment3

fragment1

fragment4

D

E A

A I
HD

AB CDE FG HI

B

C
E

FH

G
 ...ATGCCATGCCAATTGGCCATGC..DNA

probes

fragment2
fragment3

fragment1
D

E A
A I

Figure 10. minimizing the total length of additional fragments

289

(c) 2004 IFIP



find the optimal solution in each subtree and to build them up from leaves to
the root simply may not to obtain an optimal solution.

For example, if the cut is moved to F as Fig. 10 (f), the total length increases
from 10 to 11.

For example, the additional fragment set shown in Fig. 10 (g) doesn’t cover
all probes by a path in the subtree whose root isv2. However, the subtree is
also fixed by assigning fragments to A and I which are next to the subtree asin
the figure. Here, we pay attention only to the subtreev2 (the subtree rooted by
v2) of Figures 10 (e)–(g). If additional fragments on the subtree are given as
Fig. 10 (g), order of BCDE, E, and FGH cannot be fixed yet. Thus fragments
A and I, which are neighbors of the subtree, must be covered by fragments.

Hence, let us say that the pair of such subtree and such fragment assignment
is B-type (B means “both sides”.The precise definition will be done later).
Moreover, if the fragment assignment on the subtreev2 are given as Fig. 10
(h), we have to assign a fragment to B which is the left neighbor of the subtree.
Hence, let us say that the pair of such subtree and such fragment assignment is
L-type. R-type is defined symmetrically. More precisely, they are defined as
follows: (Note that a pair of a subtree and a fragment assignment can be two
or three types at a time. )

R-type A pair of a subtree and a fragment assignment, such that if there
is 1 at the right neighbor probe of the subtree, the subtree can be trans-
formed into 1Q-tree and connected to the right side.
L-type A pair of a subtree and a fragment assignment, such that if there
is 1 at the left neighbor probe of the subtree, the subtree can be trans-
formed into 1Q-tree and connected to the left side.
B-type A pair of a subtree and a fragment assignment, such that if there
are 1s at the both neighbor probes of the subtree, the subtree can be
transformed into 1Q-tree and connected to the both sides.

The minimum value of the total length of feasible fragment assignments
for each of the three types can be calculated in polynomial time, since if the
cut is fixed, then the minimum value can be obtained easily. By memorizing
the minimum values of the total length of additional fragments for each of the
three types for every subtree, we can also calculate the minimum values of
them for the upper subtrees. Now, we establish an algorithm, which examines
all candidates of the cut and finds the optimal fragment assignments in the
three types for every sub-tree, in order to find the minimum fragment set ofthe
whole PQ-tree.

The following example explains the algorithm more in detail. Fig. 10 (i) can
be replaced with Fig. 10 (j) by calculating the optimal fragment assignments
for the three types for every subtree except forv. Letb, l andr be the minimum
values for the total lengths of the additional fragment sets of B-type, L-type and
R-type, respectively.
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By using the algorithm, we obtain the following theorem.

Theorem 8 A fragment set with minimum total length for FIX(T, σ) can
be found in O(n2) time, where n is the number of probes.

Proof. We omit the proof for that the algorithm can construct the minimum
fragment set correctly. The proof for the computational time is as follows. Let
di be the degrees for each internal nodesxi. Since, the computational time for
each internal node is at mostO(di

2), the whole computational time is at most
∑

xi
O(di

2) = O(n2).

FIX(T,-)

In FIX(T,−), since there is no distinction between L-type and R-type,
they are calledLR-type. Let lr be the smaller one ofl andr. Although, in
FIX(T, σ) a cut is scanned from left to right, inFIX(T,−) a cut is fixed.
However, the algorithm has to examine all candidates of nodes for both adja-
cent sides of the cut and the leftest node and the rightest node of the subtree.
For the other nodes, the B-type assignment in which the total length of frag-
ments is less than any other B-type assignment is used. Since the position of
the cut and whether there is a cut or not are assumed in advance, the algorithm
is not allowed to make a new cut by assigning fragments to nodes. However,if
the B-type assignment is replaced by another assignment which is not B-type,
a new cut is created.

Leaves and internal nodes should be ordered alternately as far as possible.
Although the algorithm has to examine more cases, the order of the computa-
tion time doesn’t become large.

Theorem 9 A fragment set with minimum total length for FIX(T,−) can
be found in O(n5) time, where n is the number of probes.

5. Concluding Remarks

For the problem for fixing the probe order of a given PQ-tree, we showed
two polynomial time algorithms. One of them minimizes the number of addi-
tional fragments. The other minimizes the total length of additional fragments.
We solved not only the problems to fix probes as a given order, but also the
problems to find the best order of the probes. For treating the former costfunc-
tion, we introduced an idea of “edges”. We showed the minimum number of
additional fragments ared e

2
e or d e

2
e + 1, wheree is the number of edges.

For practical use, it may be difficult to make additional fragments which
we want. However, if fragments are concentrated to the part where edges
exist densely, the probability that fragments which our algorithm wants are
generated becomes high. In other words, the probability that edges disappear
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becomes high and fixing operations are accelerated. Some results of com-
puter experiments for this method are appeared on our web page addressed:
http://www.lab2.kuis.kyoto-u.ac.jp/∼tamura/tcs2004.html.
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