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Abstract Revisiting the thirty years-old notions of resource-bounded immunity and sim-
plicity, we investigate the structural characteristics of various immunity notions:
strong immunity, almost immunity, and hyperimmunity as well as their corre-
sponding simplicity notions. We also studyk-immunity andk-simplicity and
their extensions: feasiblek-immunity and feasiblek-simplicity. Finally, we pro-
pose thek-immune hypothesis as a working hypothesis that ensures the exis-
tence of simple sets inNP.
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1. Foundations of Immunity and Simplicity
The original notions of immunity and simplicity date back to mid 1940s. Post

[17] first constructed a simple set for the class of recursively enumerable sets. The
new breed of resource-bounded immunity and simplicity waited to be introduced un-
til mid 1970s by an early work of Flajolet and Steyaert [5]. In their seminal paper,
Flajolet and Steyaert constructed various recursive sets that, for instance, have no infi-
nite DTIME(t(n))-subsets under the term “DTIME(t(n))-immune sets.” Later, Ko
and Moore [11] studied the polynomial-time bounded immunity, which is now prefer-
ably calledP-immune sets. Subsequently, Balcázar and Scḧoning [2] consideredP-
bi-immune sets, which areP-immune sets whose complements are alsoP-immune.
Homer and Maass [8] extensively discussed the cousin ofP-immune sets, known as
NP-simple sets. The importance of these notions was widely recognized in 1980s.
Since these notions can be easily expanded to any complexity classC, we begin with
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an introduction of the general notions ofC-immune sets,C-bi-immune sets, andC-
simple sets. These notions are further expanded in various manners in later sections.

Definition 1 LetC be any complexity class of languages over alphabetΣ.
1 A setS is C-immuneif S is infinite and there is no infinite subset ofS in C.
2 A setS is C-bi-immuneif S andS are bothC-immune.
3 A setS is C-simpleif S belongs toC andS is C-immune.

Note that the existence of aC-simple set immediately impliesC 6= co-C; however,
the separationC 6= co-C does not necessarily guarantee the existence ofC-simple sets.

Throughout this paper, we set our alphabetΣ to be{0, 1}. Let N (or ω) denote
the set of all nonnegative integers and setN+ = N − {0}. All logarithmsare taken
to base 2 and apolynomialmeans a multivariate polynomial with integer coefficients.
We assume a standard bijection fromΣ<ω to Σ∗ that is polynomial-time computable
and polynomial-time invertible, whereΣ<ω is the set of all finite sequences of strings
overΣ. This bijection enables us to identifyΣ<ω with Σ∗. We usemulti-tape off-line
Turing machines(TMs, in short) as a model of computation. Assumed is the reader’s
familiarity with basic complexity classes, such asP, NP, E (linear exponential time),
andEXP (polynomial exponential time). This paper focuses mostly on the complexity
classes lying in thepolynomial-time hierarchy1 {∆P

k ,ΣP
k ,ΠP

k | k ∈ N} [12].
We mainly use “partial” functions and all functions are presumed to be single-

valued. Since total functions are also partial functions, we will define function classes
as collections ofpartial functions and, whenever we need total functions, we will
explicitly indicate thetotality of functions. Now, fixk ∈ N+. The notationF∆P

k

denotes the collection of all single-valued partial functionsf such that there exist
a setB ∈ ΣP

k−1 and a polynomial-time deterministic oracle TMM satisfying the
following condition: for everyx, if x ∈ dom(f) thenMB(x) halts in an accepting
state and outputsf(x) and otherwise,MB(x) halts in a rejecting state (in this case,
f(x) is undefined). In particular, writeFP for F∆P

1 .
A setA is called∆P

k -m-reducibleto another setB via a reductionf if f is a total
F∆P

k -function fromΣ∗ to Σ∗ andA = {x | f(x) ∈ B}. If in additionf is honest2,
then we say thatA is h-∆P

k -m-reducibleto B. Moreover, a setA is ∆P
k -tt-reducibleto

B via a reduction triplet(ν, f, α) if (i) ν is a totalF∆P
k -function fromΣ∗ to{0}∗, (ii) f

is a totalF∆P
k -function fromΣ∗ to Σ∗ such that, for everyx, f(x) = 〈y1, y2, . . . , yk〉

for certain stringsy1, y2, . . . , yk, wherek = |ν(x)|, (iii) α is a totalF∆P
k -function

from Σ∗×Σ∗ to {0, 1} such thatA = {x | α(x,B(f(x))) = 1}, whereB(f(x)) is an
abbreviation of thek-bit stringB(y1)B(y2) · · ·B(yk) whenf(x) = 〈y1, . . . , yk〉. If
in additionf is componentwise honest3, thenA is h-∆P

k -tt-reducibleto B. The notion
of completenesscan be induced from its corresponding reducibility.

1The polynomial-time hierarchy consists of the classes defined in the following fashion:∆P
0 = ΣP

0 =

ΠP
0 = P, ΣP

k+1 = NPΣP
k , andΠP

k+1 = co-ΣP
k+1 for any numberk ∈ N.

2A partial functionf from Σ∗ to Σ∗ is polynomially honest(honest, for short) if there exists a polynomial
p such that|x| ≤ p(|f(x)|) for all stringsx ∈ dom(f).
3A partial function fromΣ∗ to Σ<ω (which is identified withΣ∗) is componentwise honestif there exists
a polynomialp such that, for everyx ∈ dom(f), |x| ≤ p(|yi|) for all i ∈ {1, 2, . . . , k}, provided that
f(x) = 〈y1, y2, . . . , yk〉.
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It is well-known thatP-immune sets exist even in the classE. In particular, Ko
and Moore [11] constructed aP-immune set that is alsoP-tt-complete forE. Note
that no h-P-m-complete set forNP can beP-immune since the image of aP-immune
set by a polynomial-time computable reduction is either finite orP-immune. Using a
relativization technique, Bennett and Gill [3] showed that aP-immune set exists inNP
relative to a random oracle with probability 1. A recursive oracle relative to whichNP
containsP-immune sets was later constructed by Homer and Maass [8]. Torenvliet and
van Emde Boas [22] strengthened their results by demonstrating a relativized world
whereNP has aP-immune set which is alsoNP-simple.

The notion ofC-immunity is closely related to various other notions, which in-
clude complexity cores [13] and instance complexity [15]. We can naturally expand
these characterizations to more generalΣP

k -immune and∆P
k -immune sets. Balćazar

and Scḧoning [2] also built a bridge betweenP-bi-immune sets and finite-to-one re-
ductions. Expanding their argument, we give in Lemma 2 a characterization ofC-bi-
immunity as well asC-immunity.

For any partial functionf from Σ∗ to Σ∗, the setGraph(f) = {〈x, f(x)〉 | x ∈
dom(f)} is called thegraphof f . Let ΣP

0 SV = FP and letΣP
k SV denote the class

of all single-valued partial functionsf such thatf is polynomially bounded4 and
Graph(f) is in ΣP

k . For brevity, we writeNPSV for ΣP
1 SV. For anyk ∈ N and

any A,B ⊆ Σ∗, a single-valued partial functionf from Σ∗ to Σ∗ is called aΣP
k -

m-quasireduction(∆P
k -m-quasireduction, resp.) fromA to B if (i) f is in ΣP

k SV
(F∆P

k , resp.), (ii) dom(f) is infinite, and (iii) for any stringx ∈ dom(f), x ∈ A iff
f(x) ∈ B. For any stringu ∈ Σ∗, the inverse imagef−1(u) of f at u is the set
{x ∈ dom(f) | f(x) = u}. Notice thatf−1(u) = ∅ if u 6∈ ran(f).

Lemma 2 LetC ∈ {∆P
k ,ΣP

k | k ∈ N} andS ⊆ Σ∗.

1 S is C-immune if and only if (i)S is infinite and (ii) for every setB, every
C-m-quasireductionf fromS to B, and everyu in B, f−1(u) is finite.

2 S is C-bi-immune if and only if (i)S is infinite and (ii) for every setB, every
C-m-quasireductionf fromS to B, and everyu in Σ∗, f−1(u) is finite.

The characterization given in Lemma 2(2) led Balcázar and Scḧoning [2] to in-
troduce a stronger notion ofP-bi-immunity: strongP-bi-immunity. A more general
notion, called strongC-immunity, will be introduced in Section 2.

Whether anNP-simple set exists is one of the long-standing open problems because
such a set separatesNP from co-NP. Nonetheless,NP-simple sets are known to exist
in various relativized worlds. In early 1980s, Homer and Maass [8] and Balcázar [1]
constructed relativized worlds where anNP-simple set exists. Later, Vereshchagin
[24] proved that, relative to a random oracle, anNP-simple set exists with probability
1. From Theorem 9 in Section 2, for instance, it immediately follows that anNP-
simple set exists relative to a generic oracle. Torenvliet [21] built an oracle relative
to which aΣP

2 -simple set exists. For a much higher levelk of the polynomial-time

4A partial functionf from Σ∗ to Σ∗ is polynomially boundedif there exists a polynomialp such that
|f(x)| ≤ p(|x|) for any stringx ∈ dom(f).
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hierarchy, Bruschi [4] constructed an oracle relative to whichΣP
k -simple sets exist

using the size lower bounds of certain nonuniform constant-depth circuits.
In the rest of this section, we focus on closure properties of the class of allΣP

k -
immune sets because no such closure property has been systematically studied in the
literature. A complexity classC is said to beclosed downward under a reduction≤r

on infinite setsif, for any pair of infinite setsA andB, A ≤r B andB ∈ C imply
A ∈ C. Here, we study three reducibilities. Letk ∈ N. A setA is ∆P

k -d-reducible
to B via f if f is a totalF∆P

k -function fromΣ∗ to Σ<ω (which is identified withΣ∗)
andA = {x | B ∩ set(f(x)) 6= ∅}, whereset(〈y1, y2, . . . , ym〉) = {y1, y2, . . . , ym}.
By contrast,A is ∆P

k -c-reducible toB via f if A is ∆P
k -d-reducible toB via f . For

any fixedi ∈ N+, A is ∆P
k -itt-reducibleto B via (f, α) if A is ∆P

k -tt-reducible toB
via (ν, f, α), whereν(x) = 0i for anyx. For any reducibilityr using computationC,
we say thatA is h-C-r-reducibleto B if A is C-r-reducible toB via f (or (f, α)) such
thatf is componentwise honest.

Now, we claim that the class of allΣP
k -immune sets is closed downward under

h-∆P
k -c-reductions on infinite sets; however, we cannot replace this conjunctive re-

ducibility by disjunctive reducibility.

Theorem 3 Letk ∈ N+.
1 The class of allΣP

k -immune sets is closed downward under h-∆P
k -c-reductions

on infinite sets.
2 The class of allNP-immune sets is not closed under h-P-d-reductions or h-P-

2tt-reductions on infinite sets.

The first claim of Theorem 3 is easy and is shown as follows. Assume that an
infinite setA is h-∆P

k -c-reducible to aΣP
k -immune setB via a componentwise-honest

reductionf . If A contains an infiniteΣP
k -subsetC, then consider the setD = {y |

∃x ∈ C[|x| ≤ p(|y|) ∧ y ∈ set(f(x))]}, wherep is a polynomial such that|x| ≤
p(|y|) for all x and ally ∈ set(f(x)). Clearly,D is an infiniteΣP

k -subset ofB, a
contradiction. Therefore,A is ΣP

k -immune.
How complex areΣP

k -simple sets? Intuitively,C-simple sets are “thin” and thus
cannot be “complete” for the classC. As an immediate consequence of Theorem 3(1),
we obtain the following corollary.

Corollary 4 Letk ∈ N+. NoΣP
k -simple set is h-∆P

k -d-complete forΣP
k .

Recently, Agrawal (cited in [19]) showed, using theNP-levelability of SAT (as-
sumingSAT 6∈ P), that noNP-simple set is h-P-btt-complete forNP, where SAT
is the set of all satisfiable quantifier-free Boolean formulas. His argument will be
generalized in Section 4 in connection toC-hyperimmune sets.

2. Strong Immunity and Strong Simplicity
Following the introduction ofP-bi-immunity, Balćazar and Scḧoning [2] stepped

forward to introduce the notion of stronglyP-bi-immunity, which comes from the
quasireducibility-characterization ofP-bi-immunity given in Lemma 2(2). WhileP-
bi-immunity requires its quasireductions to be finite-to-one, strongP-bi-immunity re-
quires the quasireductions to be almost one-to-one, where a quasireductionf is called
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almost one-to-one ona setS if the collision set{(x, y) ∈ (dom(f) ∩ S)2 | x <
y ∧ f(x) = f(y)} is finite. Such stronglyP-bi-immune sets are known to exist even
in the classE [2].

Generalizing the notion ofP-bi-immunity, we can introduce strongC-bi-immunity
for any complexity classC lying in the polynomial-time hierarchy. Moreover, we
newly introduce the notions of strongC-immunity and strongC-simplicity. Recall that
ΣP

k -m-quasireductions are all single-valued functions inΣP
k SV for eachk ∈ N+.

Definition 5 LetC ∈ {∆P
k ,ΣP

k | k ∈ N}.

1 A setS is stronglyC-immuneif (i) S is infinite and (ii) for every setB and
everyC-m-quasireductionf fromS to B, f is almost one-to-one onS.

2 A setS is stronglyC-bi-immuneif S andS are both stronglyC-immune.

3 A setS is stronglyC-simpleif S is in C andS is stronglyC-immune.

In particular, whenC = P, Definition 5(2) coincides with the notion ofP-bi-
immunity originally given in [2].

Lemma 6 For any complexity classC ∈ {∆P
k ,ΣP

k | k ∈ N}, every stronglyC-
immune set isC-immune and every stronglyC-simple set isC-simple.

A major difference betweenC-immunity and strongC-immunity is shown in the
following example. For anyNP-immune setA, the disjoint union5 A⊕A is alsoNP-
immune; on the contrary, it is not stronglyNP-immune becauseA⊕A can be reduced
to A by the almost two-to-one functionf defined asf(λ) = λ andf(xb) = x for b ∈
{0, 1}, whereλ is the empty string. Therefore, the class of all stronglyNP-immune
sets is not closed under the disjoint-union operator. Historically, using the structural
difference between these two notions, Balcázar and Scḧoning [2] constructed a set in
E which isP-bi-immune but not stronglyP-bi-immune.

We show a closure property of the class of stronglyΣP
k -immune sets. IfA is∆P

k -m-
reducible toB via a one-to-one honest reductionf , we say thatA is h-∆P

k -1-reducible
to B via f .

Proposition 7 Letk ∈ N+.

1 The class of all stronglyΣP
k -immune sets is closed downward under h-∆P

k -1-
reductions on infinite sets.

2 The class of all stronglyNP-immune sets is not closed downward under h-P-
m-reductions on infinite sets.

Corollary 8 For each levelk ∈ N+, there is no stronglyΣP
k -simple set that is

h-∆P
k -1-complete forΣP

k .

Finally, we turn our interest to relativization. For eachk ∈ N+, it is easy to show
that a stronglyΣP

k -simple set exists relative to a recursive oracle (similar to Proposition

5Thedisjoint unionof A andB is the set{0x | x ∈ A} ∪ {1x | x ∈ B}.
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26). Even relative to a random oracle, there exists a stronglyNP-simple set with
probability1 (similar to Proposition 27). Employing weak forcing, we now prove the
following relativization result.

Theorem 9 A stronglyNPG-simple set exists relative to a generic oracleG.

3. Almost Immunity and Almost Simplicity
We have shown in the previous section that strongC-immunity and its simplicity

strengthen the ordinary notion ofC-immunity andC-simplicity. In contrast to these
notions, Orponen [14] and Orponen, Russo, and Schöning [16] expandedP-immunity
to the new notion of almostP-immunity. The complementary notion of almostP-
immunity under the termP-levelability (a more general term “levelable sets” was first
used by Ko [10] in a resource-bounded setting) was extensively discussed by Orponen
et al. [16]. Naturally, we can generalize these notions to almostC-immunity andC-
levelability for any complexity classC. Furthermore, we newly introduce the notion
of almostC-bi-immunity and almostC-simplicity.

Definition 10 LetC be any complexity class.

1 A setS is almostC-immuneif S is the union of aC-immune set and a set inC.

2 An infinite set isC-levelableif it is not almostC-immune.

3 A setS is almostC-bi-immuneif S andS are both almostC-immune.

4 A setS is almostC-simpleif S is an infinite set inC andS is the union of a set
A in C and aC-immune setB, where the differenceB \A is infinite.

It follows from Definition 10(1) that every almostC-immune set is infinite since
so is everyC-immune set. The definition of almostC-simplicity in Definition 10(4) is
slightly different from other simplicity definitions because the infinity condition of the
differenceB \A is necessary to guaranteeC 6= co-C, provided that an almostC-simple
set exists.

Lemma 11 LetC be any complexity class closed under finite variations, finite union
and finite intersection. If an almostC-simple set exists, thenC 6= co-C.

Lemma 11 is shown as follows. Take any setS such thatS = A ∪ B for a set
A ∈ C and aC-immune setB. SupposeC = co-C. Note thatB \ A ⊆ B and
B \A = S \A ∈ C. SinceB is C-immune,B \A must be finite.

The following lemma is immediate from Definition 10.

Lemma 12 For any complexity classC, everyC-immune set is almostC-immune
and everyC-simple set is almostC-simple.

Several characterizations of almostP-immunity andP-levelability are shown in
[16] in terms of maximalP-subsets andP-to-finite reductions. We can naturally ex-
pand these characterizations to almost∆P

k -immunity and∆P
k -levelability (but not to

theΣ-level classes of the polynomial-time hierarchy).
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To understand the characteristics of almostC-immunity, we begin with a simple
observation. It is known in [16] that any honestly paddable6 set not inP is P-levelable.
As observed in [18], the essence of this assertion is that ifA 6∈ P andA is length-
increasingP-m-selfreducible thenA is P-levelable, whereA is length-increasingC-
m-selfreducibleif A is C-m-reducible toA via a certain length-increasing reduction.
This observation can be generalized to∆P

k -levelable sets in the following lemma.

Lemma 13 Let k ∈ N+ and A ⊆ Σ∗. Assuming thatA 6∈ ∆P
k , if A is length-

increasing∆P
k -m-selfreducible, thenA andA are both∆P

k -levelable. Thus, if∆P
k 6=

ΣP
k thenΣP

k as well asΠP
k has a∆P

k -levelable set.

Most knownNP-m-complete sets are known to be honestly paddable and thus, by
Lemma 13, the complements of these sets areP-levelable sets, which are alsoNP-
levelable. Therefore, most knownNP-m-complete sets cannot be almostNP-simple.
This result can be compared to Proposition 16.

Now, we assume a standard effective enumeration{ϕs}s∈Σ∗ of all nondeterministic
TMs ϕs. For each indexs, define the setWs = {x | ϕs(x)↓= 1}, where “ϕs(x)↓”
means thatϕs eventually halts on inputx. Fix k ∈ N. LetNP(k) denote the collection
of all setsWs such that, for any stringx ∈ Ws, the running time ofϕs on inputx is at
most|s| · |x|k + |s|. Moreover, we setINDEX(k) = {s | Ws ∈ NP(k)}. Note that
NP =

⋃
k∈N NP(k).

Earlier, Ko and Moore [11] considered the resource-bounded notion of “productive
sets.” Another formulation based onNP(k) was later given by Joseph and Young [9],
who used the terminology ofk-creative7 sets, wherek is any number inN+. They
showed that everyk-creative set isP-m-complete forNP. Orponen et al. [16] showed
that, unlessP = NP, every honestlyk-creative set isP-levelable by demonstrating
that any honestlyk-creative set is length-increasingP-m-selfreducible. From Lemma
13, it follows that any honestlyk-creative set and its complement are bothP-levelable.
Consequently, we obtain the following result.

Corollary 14 For anyk ∈ N+, no honestlyk-creative set is almostNP-simple.

Our notion of almostC-simplicity is similar to what Uspenskii [23] discussed under
the term “pseudosimplicity.” Here, we give a resource-bounded version of his pseu-
dosimplicity. A setS is calledC-pseudosimpleif there is an infiniteC-subsetA of S
such thatS ∪ A is C-simple. AlthoughC-simple sets cannot beC-pseudosimple by
our definition, any infiniteC-pseudosimple set is almostC-simple. The latter claim is
shown as follows. Suppose thatS is an infiniteC-pseudosimple set andA is aC-subset
of S for whichS ∪ A is C-simple. This means thatS \ A is C-immune. Therefore,S
is almostC-simple.

6A set S is polynomially paddable(paddable, in short) if there is an one-to-one totalFP-function pad
(called thepadding function) from Σ∗ to Σ∗ such that, for all pairs(x, y) ∈ Σ∗ × Σ∗, x ∈ S iff
pad(〈x, y〉) ∈ S. A setS is honestly paddableif it is paddable with a padding function that is component-
wise honest.
7A setS is calledk-creativeif there exists a functionf ∈ FP such that, for any indexi ∈ INDEX(k),
f(i) ∈ S iff f(i) ∈ Wi. This functionf is called theproductive functionfor S. If in additionf is honest,
S is calledhonestlyk-creative.
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The following theorem shows a close connection among simplicity, almost simplic-
ity, and pseudosimplicity.

Theorem 15 For eachk ∈ N+, the following three statements are equivalent.
1 There exists aΣP

k -simple set.

2 There exists an infiniteΣP
k -pseudosimple set inP.

3 There exists an almostΣP
k -simple set inP.

The most essential part of Theorem 15 is the implication from 1 to 2. Assume that
S is an almostΣP

k -simple set. LetA1 = 1S andB1 = 1S. Clearly,B1 is infinite.
Note thatA1 is a ΣP

k -subset of1Σ∗. SinceS is ΣP
k -immune andB1 ⊆ 1S, B1 is

ΣP
k -immune. SinceB1 = 1Σ∗ ∩ A1, the set0Σ∗ ∪ A1 is ΣP

k -simple. Hence,0Σ∗ is
ΣP

k -pseudosimple, as required. Similarly,1Σ∗ is ΣP
k -pseudosimple.

Theorem 15 indicates the importance of the structure ofP in the course of the
study ofΣP

k -simplicity. In a relativized world where aΣP
k -simple set exists [4], since

Theorem 15 relativizes, there exists an almostΣP
k -simple set withinP.

Finally, we briefly discuss a closure property of the class of all almostΣP
k -immune

sets under polynomial-time reductions. For each numberk ∈ N+, the class of all
almostΣP

k -immune sets is closed under h-∆P
k -m-reductions on infinite sets. This im-

mediately implies the following consequence.

Proposition 16 For each numberk ∈ N+, there is no almostΣP
k -simple set that

is h-∆P
k -m-complete forΣP

k .

4. Hyperimmunity and Hypersimplicity
Since Post [17] constructed a so-calledhypersimpleset, the notions of hyperim-

munity and hypersimplicity have played a significant role in the progress of classical
recursion theory. A resource-bounded version of these notions was first considered by
Yamakami [26] and studied extensively by Schaefer and Fenner [19]. The definition
of Schaefer and Fenner is based on the notion of “honestNP-arrays”, which differs
from the notion of “strong arrays” in recursion theory, where a strong array is a series
of pairwise disjoint finite sets. For our formalization, we demand only “eventually
disjointness” for sets in an array rather than “pairwise disjointness.”

A binary stringx is said torepresenta finite set{a1, a2, . . . , ak} if and only if
x = 〈a1, a2, . . . , ak〉 anda1 < a2 < · · · < ak in the lexicographic order onΣ∗. For
convenience, we say that a setA surpassesanother setB if there exists a stringz ∈ A
satisfyingz > x (lexicographically) for all stringsx in B.

Definition 17 Letk ∈ N+, A ⊆ Σ∗, andC ∈ {ΣP
k ,∆P

k }.
1 An infinite sequenceD = {Ds}s∈Σ∗ of finite sets is called aΣP

k -array (∆P
k -

array, resp.) if there exists a single-valued partial functionf in ΣP
k SV (F∆P

k ,
resp.) such that (i) dom(f) is infinite, (ii) Ds 6= ∅ andf(s) representsDs for
any strings ∈ dom(f), and (iii) Ds = ∅ for any strings 6∈ dom(f). Thisf
is called thesupporting functionof D and the set

⋃
s∈dom(f) Ds is called the

supportof D. Thewidth of D is the supremum of the cardinality|Ds| over all
s ∈ dom(f).
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2 AC-arrayD has aninfinite supportif the support ofD is infinite.

3 A C-array {Ds}s∈Σ∗ via f is polynomially honest(honest, in short) if f is
componentwise honest; namely, there exists a polynomialp satisfying that|s| ≤
p(|x|) for anys ∈ dom(f) and anyx ∈ Ds.

4 AC-array{Ds}s∈Σ∗ viaf is eventually disjointif, for every stringx in dom(f),
there exists a stringy in dom(f) such thaty ≥ x (lexicographically),Dy sur-
passesDx, andDx ∩Dy = ∅.

5 AC-array {Ds}s∈Σ∗ via f intersectsA if Ds ∩A 6= ∅ for all s ∈ dom(f).

The honesty condition of anC-array guarantees that the array is eventually disjoint.
In addition, any eventually-disjointC-array has an infinite support because, for any
elementD in the array, we can always find another disjoint elementD′.

A simple relationship betweenΣP
k -simplicity and a honestΣP

k -array is given in the
following lemma, which was implicitly proven by Yamakami [26] and later explicitly
stated in [19] for the case wherek = 1.

Lemma 18 Letk ∈ N+ and letA be anyΣP
k -simple set. For every number` ∈ N+,

there is no honestΣP
k -array D such that (i) the width ofD is at most` and (ii) D

intersectsA.

We introduce below the notions ofC-hyperimmunity and honestC-hyperimmunity.

Definition 19 LetC ∈ {∆P
k ,ΣP

k | k ∈ N}.

1 A setS is (honestly)C-hyperimmuneif S is infinite and there is no (honest)
C-arrayD such thatD is eventually disjoint andD intersectsA.

2 A setS is (honestly)C-bi-hyperimmuneif S and S are both (honestly)C-
hyperimmune.

3 A setS is (honestly)C-hypersimpleif S ∈ C andS is (honestly)C-hyperimmune.

Note that “NP-hyperimmunity” defined by Schaefer and Fenner [19] coincides
with our honestNP-hyperimmunity. The following relationship between immunity
and hyperimmunity can be obtained immediately from Definition 19.

Lemma 20 For any complexity classC ∈ {ΣP
k ,∆P

k | k ∈ N}, every honestlyC-
hyperimmune set isC-immune and every honestlyC-hypersimple set isC-simple.

In late 1970s, Selman [20] introduced the notion ofP-selective sets, which are
analogues of semi-recursive sets in recursion theory. These sets connectsP-immunity
to P-hyperimmunity. In general, for any classF of total functions, we say that a set
S is F-selectiveif there exists a function (called theselector) f in F such that, for
all pairs (x, y) ∈ Σ∗ × Σ∗, (i) f(x, y) ∈ {x, y} and (ii) {x, y} ∩ S 6= ∅ implies
f(x, y) ∈ S. Recall the partial function classΣP

k SV. We use the notationΣP
k SVt to

denote the collection of alltotal functions inΣP
k SV.

Lemma 21 Let k ∈ N+. EveryΣP
k -immuneΣP

k SVt-selective set is honestlyΣP
k -

hyperimmune.
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We give the proof of Lemma 21. Assume thatS is ΣP
k SVt-selective via a selectorf

and has a honestΣP
k -arrayD = {Ds}s∈Σ∗ intersectingS via a supporting functiong.

For eachy ∈ dom(g), assumingDy = {x1, x2, . . . , xm} with x1 < x2 < · · · < xm,
let y1 = x1 andyi+1 = f(yi, xi+1) for everyi ∈ {1, 2, . . . ,m − 1} and then define
h(y) = ym. Thish is honest and inΣP

k SV. The setB = {x | ∃y[y ∈ dom(h)∧h(y) =
x]} is therefore infinite and inΣP

k since dom(f) is infinite andh is honest. Because
B ⊆ S, B cannot beΣP

k -immune. Note that our proof relativizes.
Observe that the complement of aΣP

k SVt-selective setS is alsoΣP
k SVt-selective

because the exchange of the output string of any selector forS gives rise to a selector
for S. It also follows from Lemma 21 that everyNP-simpleP-selective set is honestly
NP-hypersimple since the complement of anyP-selective set is alsoP-selective.

Next, we show that strongP-immunity does not imply honestP-hyperimmunity
within the classE. Earlier, Balćazar and Scḧoning [2] created a stronglyP-bi-immune
setS in E with the density|S∩Σ≤n| = 2n+1−n−1 for all n ∈ N. For eachx, letDx

consist of the first|x|+1 elements ofΣ|x|. Clearly,Dx intersectsS. This implies that
S is not honestlyP-hyperimmune. Therefore, we obtain the following proposition.

Proposition 22 There exists a stronglyP-bi-immune set inE that is not honestly
P-hyperimmune.

As a main theorem, we show theP-T-incompleteness ofΣP
k -hypersimple sets. Gen-

erally, we say thatA is ∆P
k -T-reducibleto B if there exists an oracle∆P

k -machineM
which recognizesA with access toB as an oracle. If in additionM on inputx makes
only queriesy to B that satisfy|x| ≤ p(|y|), wherep is a fixed polynomial, then we
say thatA is h-∆P

k -T-reducibleto B via M . This reduction machineM is simply
calledhonest.

Theorem 23 Letk ∈ N+.

1 NoΣP
k -hypersimple set is P-T-complete forΣP

k .

2 No honestlyΣP
k -hypersimple set is h-P-T-complete forΣP

k .

Note that it is not clear if we can replace theP-T-completeness in Theorem 23
by the∆P

k -T-completeness. Theorem 23 follows from Lemma 24 in the following
fashion. We prove only the first claim. Assume thatB is aΣP

k -hypersimple set that
is P-T-complete forΣP

k . Thus,∆P
k 6= ΣP

k . Clearly, B is in EXP and everyΣP
k -

set isP-T-reducible toB. By Lemma 24, everyΣP
k -set is almost∆P

k -immune. This
contradicts Lemma 13. Therefore,B cannot beΣP

k -hypersimple.

Lemma 24 Letk ∈ N+ and letA be any infinite set inΣP
k .

1 If A is P-T-reducible to aΣP
k -hyperimmune set inEXP, thenA is almost∆P

k -
immune.

2 If A is h-P-T-reducible to a honestlyΣP
k -hyperimmune set, thenA is almost

∆P
k -immune.

Lemma 24 needs a key idea of Agrawal (mentioned earlier), who showed that no
NP-simple set is h-P-btt-complete forNP. We extend his core argument to Lemma

90

(c) 2004 IFIP



25. For convenience, a complexity classC is said to beclosed under intersection with
∆P

k -setsif, for any setA in C and any setB in ∆P
k , the intersectionA ∩B is in C.

Lemma 25 LetC be any complexity class containing∆P
k such thatC is closed under

intersection with∆P
k -sets. LetA be any∆P

k -levelable set inC. If A is ∆P
k -T-reducible

to B via a reduction machineM , then there exists an infinite setC in C such that
Q(M,B, x) ∩B 6= ∅ for all x ∈ C.

Bruschi [4] demonstrated how to construct a recursive oracle relative to which a
ΣP

k -simple set exists. We can easily modify his proof to obtain aP-selective set that is
ΣP

k -simple in a relativized world. Since Lemma 21 relativizes, we obtain the following
proposition.

Proposition 26 For eachk ∈ N+, there exists a recursive oracleA such that a
ΣP

k (A)-hypersimple set exists.

As Schaefer and Fenner [19] demonstrated, it is relatively easy to prove the exis-
tence of an honestNPG-hypersimple set relative to a generic oracleG. By contrast,
Vereshchagin [24] proved the existence of anNP-simple set relative to a random oracle
with probability 1. Again, we modify his proof to construct a relativizedP-selective
NP-simple set. From Lemma 21, the next proposition follows.

Proposition 27 With probability 1, an honestlyNPX -hypersimple set exists rel-
ative to a random oracleX.

An important open problem is to prove that, at each levelk of the polynomial-
time hierarchy, honestΣP

k -hypersimple sets exist relative to a random oracle with
probability 1.

5. Completeness Under Non-Honest Reductions
Immunity has a deep connection to various completeness notions. For example,

there is a simple, tt-complete set; however, no simple set is btt-complete. In the pre-
vious sections, we have shown that various types of resource-bounded simple sets
cannot be complete under certain polynomial-time honest reductions. This section
instead focuses on the incompleteness of simple sets under non-honest reductions.

To remove the honesty condition from reductions, we often need to make extra
assumptions for similar incompleteness results. In mid 1980s, Hartmanis, Li, and
Yesha [6] proved that (i) noNP-immune set inEXP is P-m-hard forNP if NP *
SUBEXP and (ii) noNP-simple set isP-m-complete ifNP ∩ co-NP * SUBEXP.
These results can be expanded to any∆-level of the polynomial-time hierarchy and of
the subexponential-time hierarchy8. We also improve the latter claim.

8The ∆-level of the subexponential-time hierarchy is defined as:SUB∆EXP
0 = SUBEXP and

SUB∆EXP
k+1 = SUBEXPΣP

k for everyk ∈ N, whereSUBEXPA denotes
⋂

ε>0 DTIMEA(2nε
) for

any oracleA. WhenA = ∅, we simply writeSUBEXP for SUBEXPA.
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To describe our expansion, we need the unambiguous complexity classU(ΣP
k∩ΠP

k )
introduced by Yamakami [25]. For any complexity classC, a setA is inU(C) (orUC) if
there exists a single-valued partial functionf such that (i)f is polynomially bounded,
(ii) Graph(f) ∈ C, and (iii) A = dom(f) [25].

Proposition 28 Let j andk be any nonnegative integers.
1 NoΣP

k -immune set in∆EXP
j is ∆P

k -m-hard forΣP
k if ΣP

k * SUB∆EXP
max{j,k}.

2 NoΣP
k -simple set is∆P

k -m-complete forΣP
k if U(ΣP

k ∩ΠP
k ) * SUB∆EXP

k .

Note that Proposition 28(2) directly follows from Theorem 29(2).
The original result of Hartmanis et al. refers to theP-m-incompleteness ofNP-

simple sets. Recently, Schaefer and Fenner [19] showed a similar result for theP-
1tt-completeness. They proved that noNP-simple set isP-1tt-complete forNP if
UP * SUBEXP. A key to their proof is the fact9 thatSep(SUBEXP,NP) implies
UP ⊆ SUBEXP, whereSep(C,D) means the separation property in [25] that, for any
two disjoint setsA,B ∈ D, there exists a setS ∈ C∩co-C satisfying thatA ⊆ S ⊆ B.

The following theorem shows that the assumptionUP * SUBEXP in [19] can be
replaced byU(NP ∩ co-NP) * SUBEXP.

Theorem 29 Let j, k ∈ N+.
1 NoΣP

k -immune set in∆EXP
j is ∆P

k -1tt-hard forU(ΣP
k ∩ΠP

k ) if U(ΣP
k ∩ΠP

k ) *
SUB∆EXP

max{j,k}.

2 NoΣP
k -simple set is∆P

k -1tt-complete forΣP
k if U(ΣP

k ∩ΠP
k ) * SUB∆EXP

k .

Theorem 29 follows from the technical lemmas: Lemmas 30 and 31. The proof
for its second claim proceeds as follows. Assume thatB is ∆P

k -1tt-complete forΣP
k .

Choose an infinite setA ∈ U(ΣP
k ∩ ΠP

k ) − SUB∆EXP
k , which is of the form{x |

∃y[〈x, y〉 ∈ Graph(f)]} for a certain polynomially-bounded partial functionf whose
graph is inΣP

k ∩ ΠP
k . Similar to [25], setA1 = {〈x, z〉 | ∃y[z ≤ y ∧ 〈x, y〉 ∈

Graph(f)]} andA2 = {〈x, z〉 | ∃y[z < y ∧ 〈x, y〉 ∈ Graph(f)]}. Clearly,A1 and
A2 are inU(ΣP

k ∩ΠP
k )− SUB∆EXP

k . SinceA1 is ∆P
k -1tt-reducible toB, by Lemma

30, there exists a setC ∈ ∆P
k such thatA1 ∩C is infinite and coinfinite andA1 ∩C is

h-∆P
k -1tt-reducible toB. Applying Lemma 31(1), we obtain a setD ∈ ∆P

k and a total
F∆P

k -functionf such thatA1 ∩ C ∩D is finite,f ∆P
k -m-reducesA1 ∩C to B, andf

is honest on the domainD. SinceA2 ⊆ A1 ∩ C, f(A2) ⊆ B. Moreover,A2 ∩ D is
infinite. The honesty off onD implies thatB has an infiniteΣP

k -subsetf(A2 ∩D).
The key idea of Hartmanis et al. [6] is to find a set that can be honestly reducible.

Lemma 30 is a “1tt” version of a technical part of [6].

Lemma 30 Let j, k ∈ N+. Assume thatA 6∈ SUB∆EXP
max{j,k} andB ∈ ∆EXP

j . If

A is ∆P
k -1tt-reducible toB, then there exists a setC in ∆P

k such that (i)A ∩ C is
h-∆P

k -1tt-reducible toB and (ii) A ∩ C andA ∩ C are infinite and coinfinite.

9Actually, the result of Schaefer and Fenner can be strengthened in the following way:
Sep(SUBEXP, U(NP ∩ co-NP)) if and only if U(NP ∩ co-NP) ⊆ SUBEXP. This is obtained by
analyzing a similar result in [25].
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Lemma 31 Let k ∈ N+ andA,B ⊆ Σ∗. Assume thatB is ΣP
k -immune andA is

h-∆P
k -1tt-reducible toB.

1 If A ∈ ΣP
k , then there exist a setD ∈ ∆P

k and a total functionf ∈ F∆P
k such

thatA∩D is finite,f ∆P
k -m-reducesA to B, andf is honest on the domainD.

2 A belongs toΣP
k ∩ΠP

k if and only ifA belongs to∆P
k .

6. Limited Immunity and Simplicity
Within our current knowledge, we cannot prove or disprove the existence of anNP-

simple set. The difficulty comes from the fact that anNP-immune set requiresevery
NP-subset to be finite. If we restrict our attention to certain types ofNP-subsets,
then we may overcome the difficulty. Under the name ofk-immune sets, Homer [7]
required onlyNP(k)-subsets, for a fixed numberk, to be finite. He then demonstrated
how to construct ak-simple set withinNP using Ladner’s delayed diagonalization
technique.

In this section, we investigate the notions obtained by restricting the requirements
for immunity and simplicity. We first review Homer’s notions ofk-immunity and
k-simplicity.

Definition 32 Letk be any number inN+.

1 A setS is k-immuneif S is infinite and there is no indexi in INDEX(k) such
thatWi is infinite andWi ⊆ S.

2 A setS is k-simpleif S belongs toNP andS is k-immune.

An “effective” version of immune and simple sets, called effectively immune and
effectively simple sets, has been studied in recursion theory. Effectively simple sets
are known to be T-complete and there also exists an effectively simple tt-complete
set. If A is strongly effectively immune, thenA cannot be immune. Analogously,
we consider a resource-bounded version of such effectively immune and simple sets.
Here, we freely identify binary strings with natural numbers using the lexicographic
order onΣ∗.

Definition 33 Letk ∈ N+.

1 A setS is feasiblyk-immuneif (i) S is infinite and (ii) there exists a polynomial
p such that, for every indexi in INDEX(k), Wi ⊆ S implies|Wi| ≤ 2p(i).

2 A setS is feasiblyk-simpleif S is in NP andS is feasiblyk-immune.

We can easily prove the existence of a feasiblyk-immune set in∆P
2 for each

k ∈ N+. From Definition 33, every feasiblyk-simple set isk-simple. The converse,
however, does not hold since there exists ak-simple set which is not feasiblyk-simple
for each numberk in N+. The theorem below is slightly stronger than this claim since
any feasiblyk-simple set is also feasibly1-simple.

Theorem 34 For eachk ∈ N+, there exists ak-simple set which is not feasibly
1-simple.
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We return to the old question of whetherNP-simple sets exist. There seems no
strong evidence that suggests the existence of such a set. Only relativization provides
a world whereNP-simple sets exist. At the same time, we can also construct another
world where these sets do not exist. These relativization results clearly indicate that
the question of whetherNP-simple sets exist needs unrelativizable proof techniques.

In the past few decades, the Berman-Hartmanis isomorphism conjecture has served
as a working hypothesis in connection toNP-complete problems. By contrast, there
has been no “natural” working hypothesis that yields the existence ofNP-simple sets.
For example, the hypothesisP 6= NP does not suffice since Homer and Maass [8]
showed a relativized world where the assumptionP 6= NP does not imply the exis-
tence of anNP-simple set. Motivated by Homer’sk-simplicity result, we propose the
following working hypothesis:

The k-immune hypothesis: There exists a positive integerk such that every
infinite NP set has an infiniteNP(k)-subset.

Under this hypothesis, we can derive the desired consequence: the existence ofNP-
simple sets.

Lemma 35 If thek-immune hypothesis holds, then there exists anNP-simple set.

Assume that thek-immune hypothesis is true; that is, there exists a positive integer
k such that every infiniteNP-set has an infiniteNP(k)-subset. Consider anyk-simple
setA. We claim thatA is NP-simple. If A is notNP-simple, thenA has an infinite
NP-subsetB. By our assumption,B contains an infiniteNP(k)-subset. Hence,A
cannot bek-simple, a contradiction. Therefore,A is NP-simple.

To close this section, we claim the following result concerning thek-immune hy-
pothesis. The proof uses weak forcing.

Proposition 36 Thek-immune hypothesis fails relative to a generic oracle.

Final Note. All the proofs that are omitted from this extended abstract will appear
in its forthcoming complete version.
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