Technische Universität München Institut für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Peter Ullrich Dipl.Math. Dipl.-Ing. Thomas Bayer SS 2003 Übungsblatt 1 22. April 2003

Algorithmische Algebra II

Abgabe: 28. April, in der Übung, MI03.09.011B

Aufgabe 1

Seien $F = [f_1, \dots, f_s]$ ein s-Tupel von Polynomen in $k[X], X = (X_1, \dots, X_n)$ und $f \in k[X]$. Zeigen Sie:

(a) Ist
$$\overline{f}^F = h \neq 0$$
 und $F' = [f_1, \dots, f_s, h]$, so gilt $f \to_{F'} 0$.

(b) Ist
$$\overline{f}^F = 0$$
 und $F' = [f'_1, \dots, f'_t]$ mit $t \ge s$ und $f_i = f'_i$ für $i = 1, \dots, s$, so gilt $f \to_{F'} 0$.

Aufgabe 2

Zeigen oder widerlegen Sie folgende Aussage:

Seien $F = [f_1, ..., f_s]$ ein s-Tupel von paarweise verschiedenen Polynomen aus k[X], $X = (X_1, ..., X_n)$ und $f \in k[X]$. Genau dann ist $f \to_F 0$, wenn $\overline{f}^{\pi F} = 0$ für jede Permutation π (auf s Elementen) gilt, wobei πF das entsprechend permutierte s-Tupel ist.

Aufgabe 3

Implementieren Sie die Versionen 2 und 3 des Buchberger-Algorithmus aus der Vorlesung als Prozeduren myBuchberger2 und myBuchberger3 in Singular. Testen Sie anhand verschiedener Eingaben die Laufzeiten beider Algorithmen und dokumentieren Sie Ihre Resultate. (Bitte senden Sie die Source-Codes an bayert@in.tum.de)

Aufgabe 4

Zeigen Sie: Ein R-Modul M ist genau dann endlich erzeugt, wenn M isomorph zu einem Modul der Form R^n/N ist, wobei N ein Untermodul von M ist.