
Technische Universität München

Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen

Diploma Thesis in Informatics

Automata-based IP Packet Classification

Benjamin Hummel

Supervisor: Prof. Dr. Ernst W. Mayr

Advisor: Dr. Sven Kosub

Date of delivery: 15th July 2006

ACM CCS: F.1.1 Models of Computation – Automata
C.2.6 Internetworking – Routers
General Terms: Algorithms, Theory

AMS MSC: 68Q45 Formal languages and automata
68M12 Network protocols

Declaration: ”I hereby declare that this thesis is the result of my
own work and includes nothing which is the outcome
of work done in collaboration unless stated otherwise.”

Munich, Benjamin Hummel

2

Contents

Preface 8

1 Introduction 10
1.1 IP addressing and routing . 11
1.2 Longest prefix matching . 14
1.3 Existing solutions . 17

2 Preliminaries 19
2.1 Set partitions . 19
2.2 Formal languages . 20
2.3 Relations . 21
2.4 Complete and independent sets 22

3 Partition automata 25
3.1 The Myhill-Nerode theorem 26
3.2 Adapting a DFA minimization algorithm 28
3.3 Hopcroft’s algorithm . 32
3.4 Language partitions of finite order 37

4 Cover automata 44
4.1 Similarity relations . 45
4.2 Right invariant similarity partitions 47
4.3 Minimal DPkClAs . 48
4.4 A lower bound on DPkClA size 50
4.5 Towards a minimization algorithm 54
4.6 An O(n log n) minimization algorithm 62

5 Lookup automata 69
5.1 An example . 69
5.2 Equivalence testing . 73
5.3 Duality gap . 75
5.4 Negative results . 77
5.5 Heuristically reducing DPkLlA size 79

3

CONTENTS CONTENTS

6 Longest prefix matching using automata 83
6.1 Representing forwarding tables as automata 84
6.2 Automaton construction using tries 86
6.3 Level shifting . 88
6.4 Alphabet expansion . 90

7 Experimental results 91
7.1 Test data . 92
7.2 Results . 93
7.3 Conclusion . 97

Bibliography 99

A Detailed results 102

B Implementation 106

4

List of Figures

1.1 The Internet protocol stack 10
1.2 IP packet header . 11
1.3 Example scenario . 13
1.4 Number of known prefixes for route-views2.oregon-ix.net . . . 16

2.1 Example of a simple DFA . 21
2.2 A relation where the inequality from Corollary 2.7 is strict . . 23

3.1 An example of a DP3A . 26
3.2 A DPkA with a useless state 29
3.3 An acyclic DPkA accepting {aa, bb} 39

4.1 Two non-isomorphic minimal DP2C4As 50
4.2 A minimal DP2A and DP2C5A for Example 4.16 51
4.3 The minimal DP2A for Example 4.18 51
4.4 The DFA B used in Theorem 4.21 52
4.5 The minimal DP2C4A for the language M 53
4.6 The DP2ClA from Figure 4.5 after “unrolling” 53
4.7 The DP2A from Figure 4.6 after minimization 53
4.8 The automaton from Example 4.31 and its similarity table . . 58
4.9 The minimized automaton from Example 4.31 58
4.10 The gap (range) table from Example 4.36 61

5.1 The minimal DP2A recognizing 0n1n 70
5.2 The minimal DP2C2nA recognizing 0n1n 70
5.3 The minimal DP2L2A recognizing 01 70
5.4 Two DP2L4As for 0011 . 71
5.5 The minimal DP2L4A recognizing 0011 71
5.6 A DP2L2nA recognizing 0n1n 71
5.7 Two DP2L10As recognizing 0515 72
5.8 A DP2L28A recognizing 014114 72

6.1 Prefixes and next hops for the example 83
6.2 Expanded IP table for the example 84

5

LIST OF FIGURES LIST OF FIGURES

6.3 Expanded automaton for the example 84
6.4 Prefix automaton for the example 85
6.5 The trie for the example prefixes 86
6.6 The trie after level shifting modulo 2 89
6.7 The trie after level shifting modulo 4 89
6.8 The trie after level shifting and alphabet expansion 90

7.1 Characteristics of the real-world routing tables used 92
7.2 Number of prefixes of given length 93
7.3 Characteristics of the routing tables used in [NK98] 93
7.4 Number of memory lookups required 94
7.5 Results for a subset of the test-data (prefix automaton) . . . 94
7.6 Results for a subset of the test-data (expanded automaton) . 95
7.7 Comparison of results with [NK98] and [DBCP97] 96

A.1 Results for routing tables from [NK98] (prefix automaton) . . 102
A.2 Results for routing tables from [NK98] (expanded automaton) 102
A.3 Results for the test-data (prefix automaton) 103
A.4 Results for the test-data (expanded automaton, part 1) . . . 104
A.5 Results for the test-data (expanded automaton, part 2) . . . 105

6

List of Algorithms

3.1 A minimization algorithm for DPkAs 31
3.2 The mark inequal procedure used in Algorithm 3.1 31
3.3 The trivial splitting algorithm 33
3.4 The Hopcroft algorithm for DPkA minimization 36
3.5 The calc height function . 40
3.6 An algorithm for minimizing acyclic DPkAs 41
3.7 The bucket sort algorithm . 42
3.8 An algorithm for sorting states by f(q) 43
4.1 A generic minimization algorithm for DPkClAs 56
4.2 An algorithm for calculating the gap function 60
4.3 The Körner algorithm for DPkClA minimization 64
5.1 A heuristic approach for DPkLlA size reduction 81
6.1 Forwarding table lookup for a prefix automaton 85
6.2 Adding a word to a trie . 87

7

Preface

In this thesis we discuss algorithms and data structures used for classifying
IP packets. More specifically we will deal with the longest prefix matching
problem which is used in many Internet applications, such as routing, packet
filtering, content delivery networks, or deciding quality of service. Contrary
to advanced approaches proposed in the literature which are often based on
ad-hoc heuristics motivated by observations of practical instances, we base
our studies on the fundamentals of language theory, namely finite automata.
Therefore several classes of automata useful for representing forwarding ta-
bles are studied and minimization algorithms for these are presented.

In Chapter 1 we give a general overview on the IP protocol as well as
IP addressing and routing. Based on this we introduce the longest prefix
matching problem occurring with IP packet classification. After discussing
applications and constraints for this problem we browse the approaches rec-
ommended in the literature.

Chapter 2 initiates the theoretical part of the thesis by revisiting notation
and definitions used herein. Its purpose is to resolve cases where notation is
used differently in the literature and to refresh the details of the definitions
required later.

The next chapter introduces partition automata, a generalization of fi-
nite automata to decide partitions instead of languages. We rephrase and
reprove some of the major results and algorithms from automata theory
for these, including the Myhill-Nerode theorem and Hopcroft’s O(n log n)
minimization algorithm.

In Chapter 4 we repeat the same generalizations for cover automata
which have been introduced recently for the representation of finite lan-
guages. Our main contribution besides this generalization is presenting the
results of several papers in a larger context using a common notation which
allows the simplification of some proofs.

We revisit the idea of specializing automata in Chapter 5 by defining au-
tomata for languages and partitions containing only words of the same fixed
length, called lookup automata. Unfortunately we do not know an efficient
minimization algorithm for lookup automata. Moreover we give evidence
that the minimization problem for lookup automata might be computation-
ally hard, so we look into minimization heuristics instead.

8

Preface

After all these theoretical considerations Chapter 6 shows how to solve
the longest prefix matching problem using the results from the earlier chap-
ters. The key structure used is the trie in conjunction with suitable trans-
formations.

Finally Chapter 7 gives some practical results on real-world data. We
compare these to existing solutions and give an outlook on possible future
improvements.

9

Chapter 1

Introduction

Todays Internet and most of local networks rely on the Internet protocol
suite for data transport. The protocols involved are usually organized into
four layers as shown in Figure 1.1 (see, e.g., [KR02]). Protocols from higher
layers are implemented on top of the layers below in the stack.

The protocols in the link layer forward data within the local network
and are tightly coupled to the underlying hardware while the application
layer addresses specific user defined problems. Thus there is a large vari-
ety in protocols in both of these layers. On the other hand the number of
protocols in the transport and network layer building the core of the In-
ternet protocol suite is comparatively limited, as the tasks for these layers
are rather focussed. The network layer offers unreliable transport across
multiple networks while the transport layer adds reliable transport as well
as flow and congestion control. Together they act as the glue between the
link and application layer.

As a consequence all data transmitted in the Internet1 has to pass the
network layer and thus be enclosed in a packet of the IP protocol or its
designated successor IPv6 [DH98]. The remaining protocols at this layer are
not used for carrying explicit data, but are control protocols. This centrality
makes the classification of IP packets a central part of many services in
the Internet, the most prominent probably being routing but also packet

1When talking of the Internet herein, this usually includes other networks based on
the Internet protocol suite as well.

Example protocols
Application layer HTTP, SMTP, FTP, DNS, IMAP, NFS, SIP
Transport layer TCP, UDP, RTP
Network layer IP, IPv6, ARP, RARP, ICMP
Link layer Ethernet, IEEE 802.11 (wireless), FDDI, PPP

Figure 1.1: The Internet protocol stack

10

1.1. IP addressing and routing 1. Introduction

version
header type of

packet length
length service

identifier flags fragment offset

time-to-live
upper layer

header checksum
protocol

source IP address
destination IP address

Figure 1.2: IP packet header

filtering, quality of service, or content delivery networks can be based upon
it as discussed in Section 1.2.

IP packets are usually classified by their header. Although the payload
(the transported data) could be included in a classification scheme, this
would violate the encapsulation principle stating that the payload of a packet
should be opaque to applications working on the network layer. The basic
header of an IP packet is shown in Figure 1.2. Optional header fields are
not included and discussed here. Some of the fields in the basic header are
not suited for a classification, such as the checksum, others allow a simple
categorization by thresholds, like the packet length or time-to-live fields.
The entries we are most interested in and that are also present in the IPv6
header are the source and destination address. In order to give a useful
classification scheme we have to understand IP addressing in more detail
which is tackled in the following section.

1.1 IP addressing and routing

To aid our explanation of IP addressing we will give a short (and slightly
simplified) description of routing in IP based networks. Assume machine A
sends a packet to host B. If A and B are in the same local network this
can be handled by the link layer. Otherwise A forwards the packet to a
router. The router has the task to get the packet as close to B as possible
by forwarding the packet to a router that is less distant from B. Once the
packet reaches a router in the same network as B, the packet is delivered.
All forwarding steps are handled by the link layer, so only routers directly
connected (or contained in the same local network) can exchange packets.

One major problem for a router is how to decide where to send a packet
next. To support this decision there are two data structures involved. One
is the forwarding table that decides for a given destination IP address to
which router (called next hop) to forward the packet. Due to the size of
the Internet and frequent changes to the topology (links are added or break
down) manual management of this table is not possible. So there is a routing
table which keeps a restricted view on the topology of the entire network

11

1.1. IP addressing and routing 1. Introduction

and allows the forwarding table to be generated from this information. The
routing table in turn is built and updated by exchanging messages between
adjacent routers. We will not discuss the contents of a routing table or
the messages exchanged as this depends on the routing protocol used, e.g.,
OSPF or BGP (see [KR02]).

Of course the forwarding and routing table are not capable of storing
routing information for every possible destination host as there are just too
many machines connected to the Internet. But as we have seen above, it
is sufficient to get an IP packet to the destination network and the delivery
to the host is then handled by the link layer. So the forwarding and rout-
ing table only contain routing information for every (sub)network. This in
turn means that the forwarding table must determine the network from the
destination IP address as this is the only information available about the
target of the packet. To understand this process we will look at IP addresses
in more detail. Although the 32 bits of an IP address are written as four
octets which suggests a byte-wise interpretation, for the following discussion
IP addresses should be seen as a plain string of bits.

An IP address can be split into a network and a host part. In the initial
design of the IP protocol the first few bits of an address determined the
class of the address and thus the length of the network and host parts.
This scheme turned out to be problematic as the classes did not fit well
with the network sizes of organizations. So either classes that were to large
(i.e., supported too many hosts) for a network were assigned, speeding the
exhaustion of the IP address space, or multiple smaller classes were used to
cover a single network, leading to a faster increase of used network numbers
and thus forwarding table size. To solve this problem of this so called class-
full addressing a new scheme named classless inter-domain routing (CIDR)
was introduced in [FLYV93] and is still used today. With CIDR the network
part can have any size. As this size is no longer encoded in the IP address, it
has to be determined by checking every known network id in the forwarding
table to see whether it is a prefix of the given IP address.

In order to get an intuitive idea of IP address assignment and the con-
tents of the forwarding table, we give a simplified example including two
small networks. When writing down network numbers we will use the
common convention to denote them by the IP address and the number
of network bits separated by a slash. So 127.32.0.0/18 means that the
top 18 bits (here 011111110010000000) form the network id and the host
127.32.15.89 would be expected to be part of this network.

The scenario described here is depicted in Figure 1.3. There are two
providers P1 and P2 which were assigned the IP ranges 1.1.0.0/16 re-
spectively 7.5.0.0/16. The routers R1 and R2 are operated by these two
and they are connected by a third router R3 which might be located with
a large Tier-1 ISP. P1 has two customers C1 and C2, to each of whom P1
delegates a continuous range of its IP addresses (a subnetwork). So the

12

1.1. IP addressing and routing 1. Introduction

Router R3
1.1.0.0/16 −> R1
7.5.0.0/16 −> R2
1.1.1.0/24 −> R2

Customer C1
1.1.1.0/24

Customer C2
1.1.2.0/24

Customer C3
7.5.3.0/24

7.5.4.0/24
Customer C4

Router R1
1.1.0.0/16 −> local
1.1.1.0/24 −> C1
1.1.2.0/24 −> C2
7.5.0.0/16 −> R3

1.1.0.0/16
Provider P1

7.5.0.0/16
Provider P2

Router R2
7.5.0.0/16 −> local
7.5.3.0/24 −> C3
7.5.4.0/24 −> C4
1.1.0.0/16 −> R3
1.1.1.0/24 −> C1

Figure 1.3: Example scenario

forwarding table of R1 sends all packets with a destination address whose
prefix matches 1.1.1.0/24 to C1 and similarly all traffic for 1.1.2.0/24
to C2. The remaining packets for 1.1.0.0/16 are distributed locally and
all remaining packets (which in this example have to belong to 7.5.0.0/16)
are sent via R3. The setup for provider P2 with customers C3 and C4 is
analogous, only the last entry in R2’s forwarding table is something new
and should be ignored by now.

It is no mistake that R1 has no next hop for the network 7.5.4.0/24,
as routing will work correctly nonetheless. Assume C2 sends a packet to
C4’s web server which happens to own the address 7.5.4.33. As this ad-
dress is not part of the local network the packet is forwarded to the only
router reachable from C2. R1 in turn matches 7.5.4.33 with the network
7.5.0.0/16 and sends the packet to R3, which in turn delivers the packet
to R2. Now R2 has a refined view of the network 7.5.0.0/16 and because
7.5.4.33 has the prefix 7.5.4.0/24 the packet is correctly delivered to C4.
This controlled distribution of network prefixes is called aggregation and is
the main tool to slow the growth of the forwarding tables in the Internet
when using CIDR.

There is another special case included in our scenario. Customer C1 is
troubled that its connection to the Internet is not reliable enough, so it leases
another line from provider P2 to serve as a backup in case P1 has technical
problems. This makes C1 multi-homed and explains the last entry in R2’s
forwarding table which is a redirection to C1. So 1.1.1.0/24 has to occur
in global forwarding tables (R3) as not all routes to C1 lead through P1’s

13

1.2. Longest prefix matching 1. Introduction

network anymore. Which route is chosen by R3 depends on the routing
protocol. Here R2 sends packets to C1 via P2 as the (physical) path is
shorter.

What was to be demonstrated is that finding the network for an IP
address is done by testing for every network in the forwarding table if it is
a prefix of the address. Additionally we have seen how for a single address
multiple networks can match, the main reasons for such entries are multi-
homing and changing providers without renumbering [FLYV93]. From the
example it should have become clear that in case of multiple matches the
most specific network (i.e., longest prefix) should be used.

1.2 Longest prefix matching

The main problem we are dealing with in this thesis is longest prefix match-
ing which is used for mapping IP addresses to networks. Stated more for-
mally we are given a set of (possibly overlapping) strings P and a mapping
f : P → H where H is some arbitrary set. Now we are asked to construct
a data structure which for a given string s efficiently determines f(p) where
p is the longest string in P being a prefix of s.

As we are using longest prefix matching on source or destination ad-
dresses to classify IP packets, P is the set of IP prefixes (network ids) and s
is an IP address (interpreted as bit string). The meaning of H depends on
the kind of classification we are performing and the constructed data struc-
ture is the forwarding table. To flesh out the importance of this problem
we will present some applications of longest prefix matching for IP packet
classification next.

• routing
This has been thoroughly discussed in the previous section. We use
longest prefix matching to find the next hop for an IP packet. As this
is probably the most demanding application it will be our standard
example throughout this paper.

• packet filtering
Based on a black list of untrusted networks we want to discard all
packets originating from such a network at a firewall. The network is
found by longest prefix matching.

• quality of service
Packets from paying customers (identified by their source network)
receive improved service, for example more bandwidth, higher priority,
etc. Here H would be a set of service levels.

• content delivery networks
A content delivery network is a set of servers cooperating in delivering

14

1.2. Longest prefix matching 1. Introduction

some content (e.g., web pages) to the client host. The main idea is to
mirror the content on all participating servers and redirect a clients
host to the server nearest to it, reducing transportation cost and time.
Finding the nearest server can be based on the source IP address of
the client if we have a table mapping all known networks to a position
(either geographically or relative to the Internet topology) and thus
a best server. Then again we can use longest prefix matching on this
table.

To get an impression what efficient means in this context, we will pro-
vide some numbers from the context of routing in the Internet backbone.
According to [GH04] interface speeds of about 10 to 40 Gbps are common
in todays backbone. With an assumed average IP packet size of about 1000
bytes ([SV99] even assumes only 2000 bits) about 1.2 to 5 million packets
(or even 20 million) must be handled per second, each involving on for-
warding table lookup. Additionally the routing table receives up to some
hundred updates per second which have to be reflected in the forwarding
table. Thus the forwarding table often is organized in a way supporting
incremental modification. However [DBCP97] argues that it is sufficient to
synchronize the forwarding table with the routing table about once a second,
so incremental data structures are not mandatory if the construction of the
forwarding table can be performed reasonably fast.

Due to these tight constraints we are not so much interested in the
asymptotic complexity of a single lookup, which hides the constants in-
volved, but more in an exact measure of required time. As on todays hard-
ware for most computations the processing time is dominated by delays from
memory access, we are especially interested in minimizing two properties of
the calculated forwarding table:

1. the number of memory accesses required for one IP lookup,

2. the size of the resulting data structure, as a smaller forwarding table
can be kept in a higher and thus faster level of the memory hierarchy
(cache memory) reducing the cost of a single memory access.

The actual tradeoff between less memory lookups and reduced memory foot-
print depends on the exact hardware and router design used, so we also
should investigate ways to reduce one of them at the cost of the other one.

Despite the strict timing requirements there are algorithms and data
structures which are fast enough handling these, some of them are mentioned
in the next section. But the problem is getting more complicated over time
for several reasons.

• Due to the growth of the Internet and technological advances in net-
work technology the overall IP traffic and thus the number of packets
to be handled by routers grows. Although exact numbers are hard

15

1.2. Longest prefix matching 1. Introduction

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

07/01/01

01/01/02

07/01/02

01/01/03

07/01/03

01/01/04

07/01/04

01/01/05

07/01/05

01/01/06

07/01/06

N
um

be
r o

f d
iff

er
en

t p
re

fix
es

 in
 ro

ut
in

g
ta

bl
e

Figure 1.4: Number of known prefixes for route-views2.oregon-ix.net

to come by, an exponential traffic growth is generally assumed. More
concrete [Odl03] concludes the Internet traffic to nearly double every
year.

• Another factor is the number of network prefixes globally announced
which also grows with the extension of the Internet. While exact num-
bers are router dependent due to issues like prefix aggregation, the gen-
eral trend should be similar for all backbone routers. Figure 1.4 shows
the evolution of the number of known prefixes for a single router2. The
increase seems to be linear despite an assumed exponential growth of
Internet size, showing that the goal of slowing down the growth of
routing table size has been achieved by using CIDR.

• The final aspect is the introduction of IPv6 with 128 bit addresses
which still requires longest prefix matching in the forwarding table.
According to [HD03] the interface (i.e., host) identifier is 64 bit in
most cases, leaving at most 64 bit for the network prefix, but still
doubling the maximum prefix length.

These observations clearly show the load for backbone routers increasing
dramatically over time. As some of these developments are hard to predict,
we cannot be sure to compensate the required efficiency gain by hardware

2Data extracted from the first routing table dump for each month of the BGP beacon
route-views2.oregon-ix.net available from http://www.routeviews.org/

16

1.3. Existing solutions 1. Introduction

development (Moore’s law) alone, but should also search for novel and im-
proved ways to tackle this problem from the algorithm side.

1.3 Existing solutions

Of course every new solution to a solved problem should be compared with
existing ones. To give an overview on the field of “competitors” we present
some of the existing solutions for the longest prefix matching problem pro-
posed in the literature. A very detailed overview is already given by [GH04]
and [RSBD01] (which also provides a table of worst case complexities), so
we will only cover the most important ones. Since the classical trie-based
solutions (see Section 6.2) there have been three influential proposals.

• compressed tries [DBCP97]
The version presented in [DBCP97] is also called Lule̊a-trie. An ex-
isting trie is transformed using leaf-pushing (see [SV99]) and alphabet
expansion (Section 6.4) to reduce the expected number of memory ac-
cesses required to search to a leaf of the trie. The resulting trie is then
compressed using a special scheme which does not complicate the trie
traversal too much, with the goal to make it fit into processor cache
memory. A slightly generalized but similar procedure is also proposed
by [NK98], called LC-trie.

• ranges [LSV99]
Another approach is to interpret IP prefixes as address ranges and
perform binary search on these intervals. Care must be taken to al-
ways find the longest prefix (i.e., the shortest range). To simplify this
process the ranges can be organized in a range tree.

• hashing [WVTP97]
As the length of the prefix for an IP address is not known in advance,
hashing is not easily adjusted to this problem. This is solved by having
a separate hash table for each possible prefix length and performing
a binary search on the prefix length. To make this work (as there
might be gaps in the lengths of the existing prefixes for an address)
additional dummy entries have to be inserted into these tables.

It seems that despite their age these are still the basic techniques used,
although all of them have been refined, especially towards simplifying up-
dates of the data structure (see [GH04] for details).

In spirit the solution we will be investigating in the following chapters
is similar to the trie based approaches from [DBCP97] and [NK98] in that
we start with a trie and attempt to reach a compressed representation.
But while these solutions use specialized data structures, heavily optimized

17

1.3. Existing solutions 1. Introduction

towards the expected distribution of IP prefixes and performing lots of “bit-
fiddling” to reach a decent level of compression, we are relying on min-
imization results from automata theory to eliminate redundancies in the
forwarding table.

18

Chapter 2

Preliminaries

This chapter introduces the definitions and notation we will build upon in
later chapters. Additionally we prove some technical lemmas needed but
not directly related to the topic of the chapter where it is applied.

2.1 Set partitions

Let I be an index set1, S a set. A tuple P = (Pi)i∈I is called a partition of
S iff

1. ∀i ∈ I : ∅ 6= Pi ⊆ S

2. ∀i, j ∈ I : i = j ∨ Pi ∩ Pj = ∅

3.
⋃
i∈I

Pi = S.

In the case |I| = k we call P a k-partition and usually assume I = {1, . . . , k}.
For every i ∈ I the set Pi is called a component of P. Denote by χP(s) the
index of the component in P containing s, i.e.,

∀s ∈ S : ∀i ∈ I : χP(s) = i ⇔ s ∈ Pi .

The function χP : S → I is called the characteristic function of P.
To simplify notation we identify the partition (Pi)i∈I with the corre-

sponding set {Pi | i ∈ I} and thus for example use Pi ∈ P for membership,
or |P| for the number of components. We will also call a set S = {Si}i∈I a
partition if the canonical tuple (Si)i∈I is a partition. Additionally we intro-
duce the operator ses (skip empty sets) which removes all empty sets from
a tuple, formally defined as

ses (P) := (Pi)i∈I∧Pi 6=∅ .

1In this context an index set is just an ordered set of labels used for indexing and is
not related to Rice’s theorem.

19

2.2. Formal languages 2. Preliminaries

This allows handling tuples that are “nearly” partitions.
If S is a set, T ⊆ S, and P = (Pi)i∈I is a partition of S, denote by P|T

the restriction of P to T defined by

P|T := ses
(

(Pi ∩ T)i∈I

)
,

which is a partition of T .
Let P and R be partitions of some set S. We call R a refinement of P,

iff
∀R ∈ R ∃P ∈ P : R ⊆ P .

Lemma 2.1. Let P and R be partitions of some set S, R a refinement of
P. Then |R| ≥ |P|.

Proof. Define the function ι : R→ P by ι(R) = P iff R ⊆ P . This is a valid
function, as for every R ∈ R there is at most one such P due to P being
a partition and at least one P because R is a refinement of P. We have
to show that ι is surjective, i.e., for every P ∈ P there is an R ∈ R with
ι(R) = P , but this is obvious, as R is a partition and P not empty and the
elements from P have to appear in some R ∈ R.

2.2 Formal languages

A non-empty set of symbols Σ is called alphabet if it is both finite and totally
ordered. For an alphabet Σ we write Σn for the set of all words over Σ of
length n and Σ∗ for the set of all words of finite length. The set of words of
length at most, at least, shorter than, and longer than n is written as Σ≤n,
Σ≥n, Σ<n, respectively Σ>n. The empty word is denoted by ε.

For two words v and w we write vw for the concatenated word. Expo-
nentiation is defined by the recursion w0 := ε, wi+1 := wiw. Furthermore
we identify the alphabet Σ and the set of one letter words Σ1 which often
simplifies notation.

For any word w and letter a we use #a(w) for the number of a’s in w.
So if w = w1w2 . . . wn with w1, w2, . . . , wn ∈ Σ, then

#a(w) := |{i | wi = a}| .

For any finite set Q, alphabet Σ, and function δ : Q × Σ → Q the
canonical expansion of δ to Σ∗ is the function δ̂ : Q × Σ∗ → Q inductively
defined by

∀q ∈ Q : δ̂(q, ε) := q

∀q ∈ Q∀w ∈ Σ∗ ∀a ∈ Σ : δ̂(q, wa) := δ(δ̂(q, w), a)

20

2.3. Relations 2. Preliminaries

x y
a,b
b

a

Figure 2.1: Example of a simple DFA

This also implies δ(q, a) = δ̂(q, a) for all q ∈ Q and a ∈ Σ, and a simple
induction shows δ̂(q, uv) = δ̂(δ̂(q, u), v) for all q ∈ Q and u, v ∈ Σ∗.

Let Σ be an alphabet. A set L ⊆ Σ∗ is called a language over Σ. A
k-partition L of Σ∗ is called a language k-partition over Σ, a k-partition of
Σ≤l is a language k-partition of order l over Σ.

A deterministic finite automaton (DFA) is defined as a quintuple A =
(Σ, Q, q0, F, δ), with

• alphabet Σ

• finite state set Q

• initial state q0 ∈ Q

• final states F ⊆ Q

• total transition function δ : (Q× Σ) → Q

The transition function is canonically expanded to Σ∗.
The accepted language L(A) for a DFA A = (Σ, Q, q0, F, δ) is defined as

L(A) := {w ∈ Σ∗ | δ̂(q0, w) ∈ F}.
When describing DFAs we often use a graphical notation as in Figure 2.1.

Each circle represents a state, the labeled edges (transitions) define δ, the
start state is marked by an incoming arrow without a source state, and
the final states are marked with double circles. So the figure displays the
automaton ({a, b}, {x, y}, x, {y}, δ) with δ(x, a) = y, δ(x, b) = y, δ(y, a) = y,
δ(y, b) = x.

2.3 Relations

Let Σ be an alphabet. A relation ∼⊆ Σ∗ × Σ∗ is called right invariant iff

x ∼ y ⇒ ∀a ∈ Σ : xa ∼ ya .

Obviously for any right invariant relation ∼⊆ Σ∗ × Σ∗ the following holds
by induction:

x ∼ y ⇒ ∀w ∈ Σ∗ : xw ∼ yw .

21

2.4. Complete and independent sets 2. Preliminaries

Every partition P of a set S induces an equivalence relation ≡P over S
as follows:

s ≡P t :⇔ χP(s) = χP(t) .

A partition P of Σ∗ is called right invariant if its induced equivalence relation
≡P is right invariant.

Lemma 2.2. Let Σ be an alphabet, P a partition of Σ∗. Then P is right
invariant iff

∀a ∈ Σ ∀P ∈ P ∃P ′ ∈ P : Pa ⊆ P ′ ,

where Pa := {wa | w ∈ P}.

Proof. We start with the only if case. Let P be right invariant and choose
a ∈ Σ, P ∈ P, and any two elements x, y ∈ P . Set P ′ := PχP (xa). We have
to show ya ∈ P ′. For the induced equivalence relation we have x ≡P y and
due to the right invariance also xa ≡P ya. But this means ya ∈ P ′ which
was to be shown.

Now for the if part. Let a ∈ Σ and x, y ∈ P , so x ≡P y. There is a
P ′ ∈ P such that xa, ya ∈ P ′ thus xa ≡P ya. So ≡P and thus P are right
invariant.

Let S be a set and ≡ an equivalence relation over S. For each s ∈ S the
set [s]≡ := {t ∈ S | t ≡ s} is called the equivalence class of s with respect
to ≡. As ≡ is an equivalence relation, for all s ∈ S and a, b ∈ [s]≡ we have
a ≡ b. Furthermore the set {[s]≡ | s ∈ S} is a partition of S, thus for s 6≡ t
and a ∈ [s]≡, b ∈ [t]≡ we can conclude a 6≡ b

Let S be a set and≡ an equivalence relation over S. The cardinal number
|{[s]≡ | s ∈ S}|, i.e., the number of equivalence classes, is called the index
of ≡.

Example 2.3. Define the following relations ≡1,≡2⊆ N× N:

x ≡1 y :⇔ xmod5 = y mod5

x ≡2 y :⇔
⌊x

5

⌋
=

⌊y

5

⌋

The first relation has finite index 5, the equivalence classes being [1]≡1, [2]≡1,
[3]≡1, [4]≡1, and [5]≡1, while the second one has infinite index with the classes
[1]≡2,[6]≡2,[11]≡2 , . . .

2.4 Complete and independent sets

For studying the partitions induced by relations we introduce some more
notation.

22

2.4. Complete and independent sets 2. Preliminaries

1

23

4

5

Figure 2.2: A relation where the inequality from Corollary 2.7 is strict

Definition 2.4. Let ≈ be a reflexive symmetric relation over some set S.

1. A set R ⊆ S is called ≈-complete if ∀x, y ∈ R : x ≈ y.

2. A set D ⊆ S is called ≈-independent if ∀x, y ∈ D : x 6≈ y.

3. A partition P of S is called ≈-complete partition if all P ∈ P are
≈-complete.

The following is consistent with the definition of the index for equivalence
relations.

Definition 2.5. Let ≈ be a reflexive symmetric relation over some set S.
The index of ≈ (written as index(≈)) is the cardinality number

min{|P| | P is a ≈-complete partition of S} .

There is an obvious dependency between the size of ≈-independent sets
and ≈-complete partitions.

Lemma 2.6. Let ≈ be a reflexive symmetric relation over some set S, the
set D ⊆ S ≈-independent, and P a finite ≈-complete partition of S. Then
|D| ≤ |P|.

Proof. As P is a partition of S each element d ∈ D must be contained in
some component Pd ∈ P. But as all elements in Pd are related with respect
to ≈ no other element from D can be in the same component. So from the
pigeon-hole principle we conclude |D| ≤ |P|.

Corollary 2.7. Let ≈ be a reflexive symmetric relation over some set S.
Then

max{|D| | D ⊆ S is ≈-independent} ≤ index(≈) .

The following example shows that the inequality in the previous corollary
can be strict.

23

2.4. Complete and independent sets 2. Preliminaries

Example 2.8. Let S := {1, 2, 3, 4, 5} and define the relation ≈ by

x ≈ y :⇔ |x− y| ≤ 1 ∨ {x, y} = {1, 5} ,

which is both reflexive and symmetric. A graphical representation of this
relation omitting self-loops is given in Figure 2.2 where bold lines indicate
relatedness while dashed lines are drawn between non-related elements. Ob-
viously we cannot find a ≈-independent set with more than two elements. On
the other hand there also is no ≈-complete set with more than two elements
and so every ≈-complete partition must have at least three components.

24

Chapter 3

Partition automata

Deciding languages, i.e., testing whether a given word is in a language,
is a problem studied exhaustively in formal language theory. A natural
generalization is the following: given a partition of all words, decide which
component of the partition contains the word in question. This chapter deals
with the adaption of techniques that have been thoroughly investigated in
the context of formal languages. We start by looking at finite automata for
this problem and giving a characterization of language partitions that can
be decided by them. Then we show how to extend known algorithms for
automaton minimization to this generalized case.

A partition automaton is the straight forward generalization of a finite
deterministic automaton. Instead of a set of final states that correspond
to the language accepted we partition the state set related to the language
partition to be decided.

Definition 3.1. A deterministic finite k-partition automaton (DPkA) is a
quintuple A = (Σ, Q, q0,P, δ), with

• alphabet Σ

• finite state set Q

• initial state q0 ∈ Q

• k-partition P of Q

• total transition function δ : (Q× Σ) → Q

The transition function defines δ̂ as its canonically expansion.

We sometimes call the components of P state classes. Usually the first
component of P collects all states that have no deeper meaning to us. This
corresponds to the non-final states with DFAs. Obviously every DFA A =
(Σ, Q, q0, F, δ) is equivalent to the DP2A (Σ, Q, q0, (Q \ F, F), δ). Before
analyzing the structure of DPkAs in more detail, we should fix some more

25

3.1. The Myhill-Nerode theorem 3. Partition automata

q0 q1a

q3

a

q2
a

q4/2
a

q5/3

a

a

Figure 3.1: An example of a DP3A

notation first. For the remainder of this section let A = (Σ, Q, q0,P, δ) be a
DPkA.

For R ⊆ Q the accepted language relative to R denoted by LR(A) is the
set {w ∈ Σ∗ | δ̂(q0, w) ∈ R}. If R = {q} consists of a single state we write
Lq(A) instead of L{q}(A). L{q}(A) is also called the state language of q.

Remark 3.2. The tuples ses (LP (A))P∈P and ses (Lq(A))q∈Q are language
partitions of Σ∗. The partition ses (Lq(A))q∈Q is right invariant.

Proof. As δ̂ is a total function, i.e., every word is mapped to some state, it
is obvious from the definition that those tuples are partitions of Σ∗. For the
right invariance let q ∈ Q and x, y ∈ Lq(A). Then for any a ∈ Σ we have
δ̂(q0, xa) = δ(δ̂(q0, x), a) = δ(q, a) = δ(δ̂(q0, y), a) = δ̂(q0, ya) and thus xa
and ya are mapped to the same state. Now apply Lemma 2.2.

The accepted language partition L(A) of A is defined as ses (LP (A))P∈P .
Given a language partition L and a DPkA A with L(A) = L, A is said to
accept or decide L. If L = (L1, . . . , Lk) is a partition of order l (that is of
Σ≤l) for some l ∈ N then A decides L if it decides (L1 ∪ Σ>l, L2, . . . , Lk),
i.e., all unspecified words are put to the first component of the partition.

For states p, q ∈ Q we say p is reachable from q iff there is a word
w ∈ Σ∗ \ {ε} with δ̂(q, w) = p. The state q is an acyclic state if q is not
reachable from q. A state q ∈ Q is called useful iff it is reachable from q0,
otherwise we call it useless. A state q with δ(q, a) = q for all a ∈ Σ (one
which can never be left) is called a sink state.

We use the same graphical notation as for DFAs. States in the first
component of P are shown in a single circle, all other states are displayed
using a double circle. If |P| > 2 we write χP(q) to each double circle state q
separated by a slash. So Figure 3.1 indicates P = ({q0, q1, q2, q3}, {q4}, {q5}).
The state q2 is useless, all other states are useful. The only acyclic states
are q0, q1, q2, the remaining ones are acyclic.

3.1 The Myhill-Nerode theorem

The Myhill-Nerode theorem (see [HU79]) gives a characterization of regular
languages and provides a criterion for the minimality of DFAs. The goal of

26

3.1. The Myhill-Nerode theorem 3. Partition automata

this section is to rephrase this theorem for DPkAs. A central part of the the-
orem is a right invariant equivalence relation connecting words “behaving”
the same when extended. So we too start by defining a suitable relation.

Definition 3.3. Let Σ be an alphabet, L a language partition of Σ∗. Define
the relation ≡L ⊆ Σ∗ × Σ∗ by

x ≡L y :⇔ ∀w ∈ Σ∗ : χL(xw) = χL(yw) .

Lemma 3.4. For every alphabet Σ and language partition L the relation
≡L is a right invariant equivalence relation.

Proof. Obviously ≡L is both reflexive and symmetric, so for being an equiv-
alence relation it remains to show transitivity. Let x, y, z ∈ Σ∗, x ≡L y
and y ≡L z. Then for any w ∈ Σ∗ we have χL(xw) = χL(yw) and
χL(yw) = χL(zw). Thus χL(xw) = χL(zw) and x ≡L z.

For the right invariance choose a ∈ Σ and x, y ∈ Σ∗ such that x ≡L y.
Then for every word w ∈ Σ∗ the words x(aw) = (xa)w and y(aw) = (ya)w
are in the same component of L and thus xa ≡L ya.

The relation ≡L was chosen such that all words in the same state lan-
guage Lq(A) are equivalent. Due to the finiteness of the state set this directly
limits the language partitions decidable by DPkAs.

Lemma 3.5. Let A = (Σ, Q, q0,P, δ). Then for all q ∈ Q and x, y ∈ Lq(A)
we have x ≡L(A) y.

Proof. Let q ∈ Q and choose any x, y ∈ Lq(A). We know δ̂(q0, x) = q =
δ̂(q0, y). For any w ∈ Σ∗ then δ̂(q0, xw) = δ̂(δ̂(q0, x), w) = δ̂(δ̂(q0, y), w) =
δ̂(q0, yw) and thus xw, yw ∈ Lq′(A) for some q′ ∈ Q. So there exists P ∈ P
with q′ ∈ P which implies xw, yw ∈ LP (A) and χL(A)(xw) = χL(A)(yw).
According to Definition 3.3 we thus have x ≡L(A) y.

Lemma 3.6. Let A be a DPkA. Then the relation ≡L(A) has finite index.

Proof. Let A = (Σ, Q, q0,P, δ). Due to Lemma 3.5 the language partition
ses (Lq(A))q∈Q is a refinement of the partition {[w]≡ | w ∈ Σ∗}, because all
words in Lq(A) are equivalent and thus are in the same equivalence class.
But Q and so also {Lq(A) | q ∈ Q} is finite and according to Lemma 2.1 the
index of ≡L(A) cannot be infinite.

Now we have everything to prove the main result for this section which is
a necessary and sufficient condition for a language partition to be decidable
by a DPkA. The uniqueness result obtained at the same time will be used
later in proving the correctness of a DPkA minimization algorithm.

27

3.2. Adapting a DFA minimization algorithm 3. Partition automata

Theorem 3.7. Let Σ be an alphabet, L a language partition of Σ∗. There
is a DPkA A accepting L iff ≡L has finite index N .

The minimal automaton accepting L is unique up to isomorphic renam-
ing of states and has N states.

Proof. The only if case was proven in Lemma 3.6.
For the remainder let L be a language partition and N the index of ≡L.

Set Q := {[w]≡L | w ∈ Σ∗}, q0 := [ε]≡L . Define δ : Q×Σ → Q, ([w]≡L , a) 7→
[wa]≡L . As Q is the induced partition of a right invariant equality relation, it
is right invariant and the mapping is unambiguous. The relation ≡L ensures
that all words in the elements of Q are in the same component of L and so we
can choose P := {P (L) | L ∈ L} where P (L) := {q ∈ Q | ∀w ∈ q : w ∈ L}.
Then A := (Σ, Q, q0,P, δ) is a DPkA and accepts L as can be seen by the
fact that δ̂(q0, w) = [w]≡L and the way P was defined. By definition of the
index the automaton A has N states.

It remains to show that there is neither a smaller automaton nor one
with N states that is not isomorphic to A. In both cases a simple counting
argument yields that then there had to be two words x, y ∈ Σ∗ with x 6≡L y
mapped to the same state in contradiction to Lemma 3.5.

3.2 Adapting a DFA minimization algorithm

We are often interested in a minimal DPkA for a given language partition.
The obvious reason is for saving memory with a more compact representa-
tion, but due to the uniqueness of the minimal DPkA is can also be used as
a normal form for DPkAs allowing for example equivalence testing.

For the problem of DFA minimization a variety of algorithms have been
proposed, an overview is given in [Wat94]. The algorithm we are adapting
in this section is described in [HU79] and was chosen as it is probably the
most well-known algorithm for this problem due to the wide spread of this
book.

The algorithm works by merging states that have been identified to be
equivalent (have the same behavior). From Theorem 3.7 is seems intuitive
to call two states equivalent if all words from their state languages are equiv-
alent.

Definition 3.8. For a given DPkA A = (Σ, Q, q0,P, δ) we define the relation
≡A⊆ Q×Q by

q ≡A r :⇔ ∀x ∈ Lq(A) ∀y ∈ Lr(A) : x ≡L(A) y .

Remark 3.9. The following formulation is easily seen to be equivalent to
the definition above for useful states q and r:

q ≡A r ⇔ ∀w ∈ Σ∗ : χP(δ̂(q, w)) = χP(δ̂(r, w))

28

3.2. Adapting a DFA minimization algorithm 3. Partition automata

q0 q1a

a

q2

a

Figure 3.2: A DPkA with a useless state

As ≡A was introduced to identify equivalent states we expect ≡A to be
an equivalence relation. For this to be true we have to restrict ourselves to
useful states.

Lemma 3.10. Let A = (Σ, Q, q0,P, δ) be a DPkA without useless states.
The relation ≡A is an equivalence relation.

Proof. The relation is obviously symmetric. Reflexivity can be seen from
Lemma 3.5. For transitivity let q, r, s ∈ Q and q ≡A r, r ≡A s. As A has
no useless states there are words wq ∈ Lq(A), wr ∈ Lr(A), and ws ∈ Ls(A).
Because of q ≡A r and r ≡A s we have wq ≡L(A) wr and wr ≡L(A) ws. As
≡L(A) is transitive together with Lemma 3.5 we get q ≡A s.

The exclusion of useless states is required, as shown by the next example.

Example 3.11. Let A = (Σ, Q, q0,P, δ) be a DPkA with Σ = {a}, Q =
{q0, q1, q2}, P = {{q0, q2}, {q1}} and δ as implied by Figure 3.2. Obviously
q2 is not useful and so Lq2(A) is empty. Following Definition 3.8 this would
intend q0 ≡A q2 and q2 ≡A q1, but as the words from Lq0 and Lq1 are in
different components of L(A) we have q0 6≡A q1, so we lost transitivity here.

Right invariance was defined for relations on finite words. The relation
≡A being based on a right invariant relation has a similar property, namely
carrying equivalence over state transitions.

Lemma 3.12. Let A = (Σ, Q, q0,P, δ) be a DPkA without useless states and
q, r ∈ Q with q ≡A r. Then for every a ∈ Σ we have δ(q, a) ≡A δ(r, a).

Proof. We know that all words in Lq(A)∪Lr(A) are equivalent with respect
to ≡L(A). But as ≡L(A) is right invariant for any a ∈ Σ the words from
W := {wa | w ∈ Lq(A) ∪ Lr(A)} are all equivalent, too. As q and r are
not useless we have W ∩Lδ(q,a)(A) 6= ∅ and W ∩Lδ(r,a)(A) 6= ∅ and so some
words in Lδ(q,a)(A) and Lδ(r,a)(A) are equivalent, thus δ(q, a) ≡ δ(r, a).

The actual minimization algorithm consists of two steps. The first phase
calculates the equivalence relation ≡A on all state pairs, while the second
merges all equivalent states into one. Before describing the algorithm in
more detail, we prove that the merging phase indeed produces the minimal
DPkA.

29

3.2. Adapting a DFA minimization algorithm 3. Partition automata

Lemma 3.13. Let A = (Σ, Q, q0,P, δ) be a DPkA without useless states.
Then the automaton we receive by merging all states in [q]≡A for every q ∈ Q
is a minimal DPkA accepting L(A).

Merging here means to replace the occurrence of every q ∈ Q in the
automaton description by [q]≡A.

Proof. At first we should check whether δ is still defined properly, that is
for any q ∈ Q and r, s ∈ [q]≡A we must ensure δ(r, a) ≡A δ(s, a) for any
a ∈ Σ, i.e., the possibly different mappings must point into the same state
equivalence class. But this is exactly what Lemma 3.12 proved.

The tuple P is also still a valid partition as two states that are in different
components cannot be equivalent.

Next we will show that for q ∈ Q the set Lq(A) ⊆ L[q]≡A
(A). Let w =

a1a2 . . . al ∈ Lq(A) with all ai ∈ Σ. Then there are states q0, q1, . . . , (ql = q)
such that δ(qi−1, ai) = qi (1 ≤ i ≤ l). Performing the substitution yields
[q0]≡A , [q1]≡A , . . . , ([ql]≡A = [q]≡A) with δ([qi−1]≡A , ai) = [qi]≡A (1 ≤ i ≤ l),
so w ∈ L[q]≡A

. This together with the fact that the new classes [q]≡A are in
the same component in P as q shows the automaton to still accept the same
language partition.

It remains to prove minimality. After merging there are no two states
that are equivalent, so for all x, y ∈ Σ∗ with x ≡L(A) y there is a state [q]≡A

such that x, y ∈ L[q]≡A
(A) as otherwise we had two distinct but equivalent

states. But this means our states are exactly the equivalence classes of ≡L(A)

and so the constructed automaton is isomorphic to the minimal one from
Theorem 3.7.

Now we are ready to describe the algorithm for DPkA minimization.
Pseudo code is given in Algorithm 3.1. The first step of checking for and
removing useless states is not detailed as it is a straight forward applica-
tion of depth first search (see, e.g., [CLRS01]). The variables E{q,r} denote
whether the states q and r are equivalent. Initially they are optimistically
initialized to true unless the states are in different components of P which
obviously prevents them from being equivalent. The next phase searches for
proofs that two states q and r are not equivalent which according to above
lemma is the case when the successor pair (δ(q, a), δ(r, a)) is inequivalent for
some a ∈ Σ. When checking the successor pair it might be the case that
this in turn has not yet been proven inequal but will be later. To avoid
having to recheck all state pairs again after some E values have changed, we
manage lists S{q,r} for each state pair containing those pairs of states that
are inequivalent if {q, r} is inequivalent. So when a state pair is found not to
be equivalent, the mark inequal function in Algorithm 3.2 is used to mark
all state pair in this list as inequivalent and recursively traverse the lists
of those pairs. Finally the equivalent states are merged which is a simple
process.

30

3.2. Adapting a DFA minimization algorithm 3. Partition automata

Algorithm 3.1 A minimization algorithm for DPkAs
Input: A DPkA A = (Σ, Q, q0,P, δ)
Output: A minimal DPkA accepting the same language partition as A

if A has useless states then
remove all useless states
rerun the algorithm on the resulting automaton

end if

for each (q, r) ∈ Q×Q do
if χP(q) = χP(r) then

E{q,r} := true
else

E{q,r} := false
end if
S{q,r} := ∅

end for

for each (q, r) ∈ Q×Q do
for each a ∈ Σ do

if ¬E{δ(q,a),δ(r,a)} then
mark inequal (q, r)

else
S{δ(q,a),δ(r,a)} := S{δ(q,a),δ(r,a)} ∪ {(q, r)}

end if
end for

end for

Create the output DPkA by merging all states q, r with E{q,r} = true as
described in Lemma 3.13.

Algorithm 3.2 The mark inequal procedure used in Algorithm 3.1
Input: States q, r

{We use the same global E{x,y} and S{x,y} as in Algorithm 3.1}
E{q,r} := false
for each (s, t) ∈ S{q,r} do

S{q,r} := S{q,r} \ {(s, t)}
mark inequal (s, t)

end for

31

3.3. Hopcroft’s algorithm 3. Partition automata

After having seen the meaning of the variables and the overall idea we
conclude with a formal proof of the correctness and the complexity of the
minimization algorithm.

Theorem 3.14. For a given DPkA A with alphabet Σ and n states Algo-
rithm 3.1 (using the subroutine in Algorithm 3.2) calculates a minimal DPkA
accepting the same language partition as A in O(|Σ|n2) time and space.

Proof. Due to the first if in the algorithm we may assume that A has only
useful states.

For the correctness we will show that when the algorithm terminates we
have E{q,r} ⇔ q ≡A r and then apply Lemma 3.13. From Lemma 3.12 we
know that two states q, r are inequivalent, if for some a ∈ Σ the states δ(q, a)
and δ(r, a) are not equivalent. The list S{q,r} holds all state pairs that have
been inspected so far and would be inequivalent if q and r are inequivalent.
Additionally we know that states that are in different components of P
cannot be equivalent. So every time we set an E{q,r} to false we have some
proof that q 6≡A r and consequently for E{q,r} = false the final answer of
the algorithm is always correct.

Now assume after execution E{q,r} = true, but q 6≡A r, that is there is
a word w ∈ Σ∗ such that χP(δ̂(q, w)) 6= χP(δ̂(r, w)). This implies that for
every prefix v of w also δ̂(q, v) 6≡A δ̂(r, v). We know that E{δ̂(q,w),δ̂(r,w)} =
false as states in different components of P are initialized this way. So there
has to be some prefix w0 of w and a ∈ Σ such that s := δ̂(q, w0), t := δ̂(r, w0),
s 6≡A t, δ(s, a) 6≡A δ(t, a) but E{s,t} = true and E{δ(s,a),δ(t,a)} = false. But
then either E{δ(s,a),δ(t,a)} was already false when we inspected the pair (s, t)
for a in which case E{s,t} would have been set to false, or E{δ(s,a),δ(t,a)}
was not yet false but then the pair (s, t) would have been added to the list
S{δ(s,a),δ(t,a)} and E{s,t} would have been set to false when E{δ(s,a),δ(t,a)} was
toggled to false. This contradiction concludes the correctness proof.

For the time and space complexity we know that checking the automaton
for unused states and fixing it if necessary can be handled by a breadth first
search in O(|Σ|n) time and space. The O(|Σ|n2) bound has its source in the
two nested for loops and the fact that every state pair is added to at most
|Σ| lists which are in turn cleared while they are traversed.

3.3 Hopcroft’s algorithm

While the algorithm from the previous section is simple, with its quadratic
running time it is too slow for minimizing large DPkAs. For the minimiza-
tion of DFAs the most efficient algorithm currently known is due to John
Hopcroft and described in [Hop71]. It can minimize a DFA with n states and
alphabet Σ in O(|Σ|n log n) steps using only O(|Σ|n) space. In this section
we give an adaption of this algorithm for DPkAs following the description

32

3.3. Hopcroft’s algorithm 3. Partition automata

of [Gri73], where a slightly simplified version of Hopcroft’s algorithm is pre-
sented. As the changes needed are only minor and a complete analysis
requires the description of many implementation details, we will only give
a general overview of the algorithm and the major results and refer to the
original paper for low level aspects.

The algorithms presented in the previous section worked by modifying a
relation until it reached the equivalence relation on states ≡A we were look-
ing for. A dual interpretation is to look at the equivalence classes induced
by the calculated relation. We start with the partition P of the automaton
and refine it until we reach a partition consisting of the equivalence classes
of ≡A. This is exactly what Hopcroft’s algorithm does.

A central operation in this algorithm is splitting a set of states with
respect to another set. Let A = (Σ, Q, q0,P, δ) be a DPkA, X, Y ⊆ Q state
sets, and a ∈ Σ. Splitting X w.r.t. (Y, a) produces two sets X1 := {q ∈
X | δ(q, a) ∈ Y } and X2 := {q ∈ X | δ(q, a) 6∈ Y }. From Lemma 3.12 we
know that for all states x1 ∈ X1, x2 ∈ X2 we have x1 6≡A x2. We call X
splittable w.r.t. (Y, a) if the X1 and X2 defined before are both non-empty.

Algorithm 3.3 The trivial splitting algorithm
Input: DPkA A = (Σ, Q, q0,P, δ)
Output: A partition of Q into equivalence classes for ≡A

B := P
while ∃Bi, Bj ∈ B, a ∈ Σ such that Bi is splittable w.r.t. (Bj , a) do

Replace Bi in B with the two sets from splitting Bi w.r.t. (Bj , a)
end while
return B

The notion of splitting directly leads to Algorithm 3.3 for calculat-
ing the equivalence classes of ≡A. Once the state equivalence classes are
known, the construction of the minimal DPkA is straightforward by apply-
ing Lemma 3.13. In the remainder of this section we will first prove the
correctness of this simple algorithm and then show how to transform it into
a more efficient one. We begin with a central invariant.

Lemma 3.15. For the while loop of Algorithm 3.3 the following invariant
holds:

all equivalent states q ≡A r are in the same component of B (3.1)

Proof. The invariant is obviously true in the beginning, as states being in
different components of P cannot be equivalent. Now assume we are splitting
Bi w.r.t. to (Bj , a) and let q, r ∈ Bi be equivalent states. Then we know
from Lemma 3.12 that δ(q, a) ≡A δ(r, a), so by the invariant both are in the
same component of B meaning either both δ(q, a) and δ(r, a) are in Bj or
none of them. Thus splitting does not separate q and r.

33

3.3. Hopcroft’s algorithm 3. Partition automata

Using this invariant all that remains to be shown is splitting to be suffi-
cient for separating all non-equivalent states.

Lemma 3.16. In Algorithm 3.3 let Bk ∈ B and q, r ∈ Bk with q 6≡A r.
Then there are sets Bi, Bj ∈ B and a ∈ Σ such that Bi is splittable w.r.t.
(Bj , a).

Proof. Assume there where no such Bi, Bj , and a. Then for every two states
s and t in the same component of B and c ∈ Σ we could conclude δ(s, c) and
δ(t, c) to be in the same component of B either, as otherwise the component
containing s, t would be splittable w.r.t. the component containing one of
δ(s, c) and δ(t, c) using c.

From q 6≡A r we know that there is a word w ∈ Σ∗ with χP(δ̂(q, w)) 6=
χP(δ̂(r, w)). From our assumption we inductively know that for each prefix v
of w both δ̂(q, v) and δ̂(r, v) are in the same component of B and thus by how
B was initialized we gain χP(δ̂(q, w)) = χP(δ̂(r, w)), a contradiction.

Invariant 3.1 together with this lemma shows that the algorithm pro-
duces the correct result if it terminates. Obviously the algorithm has to
terminate, as every iteration of the while loop increases the size of B by
one and B cannot have more components as there are states in A.

To transform the algorithm into a more efficient one there are two key
observations. One is that once a set Bi has been used together with a letter
a ∈ Σ to split all other components of B, during the remaining iterations of
the algorithm there will never again be a (new) component of B splittable
w.r.t. Bi and a. The second observation is captured in the next lemma.

Lemma 3.17 ([Gri73], Lemma 6). Let B be a state set split into B1

and B2, and a ∈ Σ. Then splitting all components of B w.r.t. all three of
B,B1, B2 and a has the same outcome as splitting w.r.t. only two of them
and a.

We will not give a formal proof for this here, but the general idea is
that from any two of B,B1, B2 we get the third either from a union or a set
difference. So from a membership test for two of those sets, we can decide
membership for the third set. As splitting only involves testing membership,
splitting w.r.t. to two of these sets is sufficient.

The improved algorithm now manages a list L of (state set, letter) pairs
that still have to be used for splitting all other components of B. Whenever
a state set B has been split into B1 and B2, we update L. If for a fixed
a ∈ Σ the set B still is in L we know from Lemma 3.17 that we can replace
(B, a) by (B1, a) and (B2, a) without losing information. If (B, a) 6∈ L then
splitting w.r.t. (B, a) must already have occurred, so it suffices to insert only
one of (B1, a) and (B2, a) into L.

Using all the modifications described so far results in Algorithm 3.4 which
is exactly the Hopcroft algorithm adapted for DPkAs. The only change to

34

3.3. Hopcroft’s algorithm 3. Partition automata

the original algorithm is that we now have k instead of two initial state sets
and accordingly we put all of them (for each a ∈ Σ) into L (first three lines).

After everything written so far, the algorithm contains little surprise.
The only additions not already discussed are the set D which keeps all
elements that might be moved when splitting w.r.t. (Bi, a), and the array t
used to link a component with its split off twin component during a single
iteration.

The correctness of Algorithm 3.4 directly results from the correctness
of Algorithm 3.3 together with the discussion so far. What remains to be
analyzed is the complexity of the algorithm. A not so complicated but sub-
stantial part of this analysis consists of checking that most of the operations
(even those looking more complicated, such as checking if there is a p ∈ Bj

with δ(p, a) 6∈ Bi) can be performed in constant time by managing some
additional information. As this is more of an implementation issue both
[Hop71] and [Gri73] provide source code (in Algol respectively PL/I) for the
exact data structures used. So we refer the reader to these papers when
looking for low level details. Instead we will reprove the only lemma from
[Gri73] that is influenced by the changes we made to the original algorithm.
For the remainder let n := |Q| and m := |Σ|.

Lemma 3.18 (corresponds to [Gri73], Lemma 8). The outer while
loop in Algorithm 3.4 has at most 2mn iterations for A.

Proof. Organize the state sets (we are talking about the sets and not about
indices here) occurring during the execution of the algorithm in k trees as
follows. The initial sets B1, . . . , Bk form the roots of these trees. Each time
a state set B is split into B̂ and B̃ append B̂ and B̃ as children of B. Each of
these trees is a binary tree with at most |Bi| leaf nodes, where Bi is the root
state set of the i-th tree. So each of these trees has no more than 2|Bi| − 1
nodes and as the |Bi| sum up to |Q| there will be less than 2|Q| different
state sets used in the algorithm. As each state set can be inserted into L at
most once for every letter from Σ, the number of iterations for the while
loop is bounded by 2mn.

The remaining lemmas and proofs from [Gri73] can be copied verbatim
as they are not influenced by the different initialization of L. We try to
provide an intuitive understanding for the O(n log n) time bound here, but
refer the reader to the original articles for the formalisms.

Besides bounding the number of iterations of the outer while loop as
in Lemma 3.18 we want to get an upper bound for the number of elements
placed into D over the complete execution time of the algorithm. Therefore
we look at fixed q ∈ Q and a ∈ Σ. How often will we retrieve a pair (i, a)
from L with q ∈ Bi? After such a pair (i, a) was removed from L, a suitable
pair (j, a) can only be added to L as a result of splitting. As after splitting
we always add the smaller of the created state sets to L, we know that such

35

3.3. Hopcroft’s algorithm 3. Partition automata

Algorithm 3.4 The Hopcroft algorithm for DPkA minimization
Input: DPkA A = (Σ, Q, q0,P, δ)
Output: A partition of Q into equivalence classes for ≡A

(B1, . . . , Bk) := P
L := {(i, a) | 1 ≤ i ≤ k ∧ a ∈ Σ}
r := k

while L 6= ∅ do
remove a pair (i, a) from L
D := {q ∈ Q | δ(q, a) ∈ Bi}

for each q ∈ D do
let Bj be the component containing q
if there is a p ∈ Bj with δ(p, a) 6∈ Bi then

if t[j] is not initialized then
r := r + 1
t[j] := r
Bt[j] := ∅

end if
move q from Bj to Bt[j]

end if
end for

for each j where t[j] is initialized do
for each a ∈ Σ do

if (j, a) ∈ L or |Bj | > |Bt[j]| then
insert (t[j], a) into L

else
insert (j, a) into L

end if
end for
uninitialize t[j]

end for
end while

return (B1, . . . , Br)

36

3.4. Language partitions of finite order 3. Partition automata

a pair (i, a) with q ∈ Bi can be drawn at most log n times from L. Define
δ−1(q, a) := {p | δ(p, a) = q}. Then we know that the state q contributes
|δ−1(q, a)| elements to D each time such a pair (i, a) is extracted from L. So
the number of elements placed into D during the runtime of the algorithm
is ∑

a∈Σ

∑
q∈Q

log n|δ−1(q, a)| .

For fixed a we know that
∑

q∈Q |δ−1(q, a)| = n as every state has exactly
one successor for the transition on a, simplifying the bound to∑

a∈Σ

n log n = mn log n .

Thus the complete running time of the first for each loop can be bounded
by O(mn log n). The second for each loop has a complete running time of
O(mn) by a similar argument as in Lemma 3.18. Taking all of this together
yields the intended result:

Theorem 3.19 ([Hop71], [Gri73]). For a DPkA with alphabet Σ and n
states Algorithm 3.4 calculates the partition of states in equivalence classes of
≡A and thus a minimal DPkA in O(|Σ|n log n) steps using O(|Σ|n) memory.

We concealed one problem in this analysis sketch. The set D is actually
constructed using D =

⋃
q∈Bi

δ−1(q, a) where the δ−1 lists have been calcu-
lated during initialization. Thus the time for this step depends not only on
the number of states placed into D, but also on the size of Bi, as some of
the δ−1(q, a) can be empty. Of course it can be done in O(mn log n) steps
as well and [Gri73] presents a somewhat lengthy but precise proof for this
missing part, so we will not repeat it here.

3.4 Language partitions of finite order

The Hopcroft algorithm for minimizing DFAs is known for 35 years now
and no faster algorithm for this problem was suggested so far. This indi-
cates that the algorithm might be optimal, however there is proof for this
assumption. For the special case of minimizing DFAs for finite languages
there are algorithms working in linear time. As every such algorithm has to
read the entire input these algorithms are in fact optimal. We will see later
that the language partitions we are considering for the problem of IP packet
classification are of finite order, so the goal for this section is deriving an
algorithm for minimizing DPkAs accepting these.

An overview and comparison of algorithms for constructing minimal
DFAs accepting finite languages is given in [Dac03]. Those algorithms can be
classified into incremental or semi-incremental algorithms where the words

37

3.4. Language partitions of finite order 3. Partition automata

are added one by one and after each addition the current automaton is trans-
formed to a minimal or near minimal one, and non-incremental algorithms
which first construct a trie (an automaton that can be constructed in a
straight forward fashion, see Section 6.2) from all words and then minimize
this trie in one step. As the trie is often notably larger than the resulting
and all intermediate minimal automata, the overall memory consumption
for the non-incremental methods is higher (by a constant, asymptotically all
algorithms require a linear amount of memory). However there is a certain
overhead involved in managing the (nearly) minimal automaton during con-
struction and also the algorithms are slightly more complex, so the conclu-
sion of [Dac03] is to stick to a non-incremental algorithm as long as memory
is not an issue.

While being large, the language partitions we will construct later will
easily fit into the main memory of todays computers. So our algorithm
is based on the non-incremental algorithm presented by Dominique Revuz
in [Rev91]. The fact exploited by this algorithm (as by most of the min-
imization algorithms for finite languages) is that the transition graph of a
DFA accepting only a finite language is (nearly) a DAG. Before stating this
formally for DPkAs we need some additional concepts.

For a state q ∈ Q we denote by W (q) the set of all words leading to a
state in a component other than the first one, i.e.,

W (q) := {w ∈ Σ∗ | χP(δ̂(q, w)) 6= 1} .

Define the height function as the longest word in W (q):

height(q) := sup {|w| | w ∈ W (q)}

We use the supremum instead of the maximum here as the set is not nec-
essarily compact and height(q) can well be ∞ (actually height(q) = ∞ ⇔
|W (q)| = ∞). The supremum of the empty set is defined as −∞ here.

Lemma 3.20. Let A = (Σ, Q, q0,P, δ) be a DPkA, and p, q ∈ Q with p
reachable from q. Then the following holds

1. height(p) = ∞ ⇒ height(q) = ∞

2. height(p) = −∞ ⇐ height(q) = −∞

3. −∞ < height(p) < ∞ ⇒ height(p) < height(q)

Proof. Let w ∈ Σ∗ \ {ε} such that δ̂(q, w) = p. Every word u ∈ W (p) can
be prepended with w to produce a word wu ∈ W (q). So if height(p) = ∞
this indicates that W (p) has infinitely many words. Prepending these words
with w gives infinitely many words in W (q), so height(q) = ∞ and the
first case is shown. Similarly if height(q) = −∞ then W (q) = ∅ and thus
W (p) = ∅ and height(p) = −∞ as otherwise each word from W (p) would

38

3.4. Language partitions of finite order 3. Partition automata

q0

q1

a

q2b
q3

a

q4

b

b
q5

a

a

b

b a

a

b

Figure 3.3: An acyclic DPkA accepting {aa, bb}

yield at least one in W (q). For the last case assume height(p) = h and let
u be a word of length h with u ∈ W (p). Then wu ∈ W (q) and as w 6= ε we
have height(q) ≥ |wu| > |u| = h = height(p).

Earlier we stated that a DPkA A decides a language partition L of finite
order iff all words that are longer than those in L are decided into the first
component. Accordingly we call A acyclic if L(A) = {L1, . . . , Lk} and there
is an l ∈ N with Li ∩ Σ>l = ∅ for all i ≥ 2. This is obviously equivalent
to height(q0) < ∞. The term acyclic is the analogon to “accepts a finite
language” for DFAs, and the reason for this name will become clear from
the next lemma. An example of an acyclic DPkA is given in Figure 3.3. The
height values for q0 to q5 are 2, 1, 1, 0,−∞,−∞.

Lemma 3.21. Let A = (Σ, Q, q0,P = (P1, . . . , Pk), δ) be a DPkA without
useless states. Then A is acyclic iff every q ∈ Q that is not acyclic has
height(q) = −∞.

Proof. For the first direction let A be acyclic. Assume q is a state that is
not acyclic and has height(q) > −∞. Then there are words v, w ∈ Σ∗ with
v 6= ε such that δ̂(q, v) = q and χP(δ̂(q, w)) 6= 1. But then for every i ≥ 0 we
have δ̂(q, viw) = δ̂(q, w) and thus height(q) = ∞. As no state is useless, q is
reachable from q0 and Lemma 3.20 gives height(q0) = ∞, a contradiction.

To prove the reverse direction let A be not acyclic. Then W (q0) has
infinitely many words and as A has only a finite number of states we know
there has to be a state p 6∈ P1 such that the set {w ∈ Σ∗ | δ̂(q0, w) = p}
is infinite. Especially there must be some word w with |w| > |Q| and
δ̂(q0, w) = p. As every prefix v of w yields a state by δ̂(q0, v) from the
pigeonhole principle we know that there are prefixes x and xy of w with
|y| > 0 and δ̂(q0, x) = δ̂(q0, xy). This implies δ̂(δ̂(q0, x), y) = δ̂(q0, x) and
furthermore p must be reachable from δ̂(q0, x). So δ̂(q0, x) is both cyclic and
has height > −∞ completing the proof.

The next two lemmas give an idea in what way the height function can
be useful for minimizing DPkAs. Both are obvious by looking at the set
W (q) respectively its size for the states involved, so a proof is omitted.

39

3.4. Language partitions of finite order 3. Partition automata

Lemma 3.22. Let A be an acyclic DPkA. Then all states with height = −∞
are equivalent for ≡A.

Lemma 3.23. Let A be an acyclic DPkA, p, q states of A with height(p) 6=
height(q). Then p 6≡A q.

So far we have not talked about how to calculate the height function
for a given DPkA, which can actually be done by a modified depth first
search. The function calc height shown in Algorithm 3.5 is initially called
with parameters (A, q0) and puts the height values into the array h. The
correctness is proven next.

Algorithm 3.5 The calc height function
Input: acyclic DPkA A = (Σ, Q, q0,P = (P1, . . . , Pk), δ), a state q ∈ Q
Global: array visited initially false, array h

visited[q] := true
if q ∈ P1 then

h[q] := −∞
else

h[q] := 0
end if

for each a ∈ Σ do
if visited[δ(q, a)] = false then

calc height(A, δ(q, a))
end if
h[q] := max {h[q], h[δ(q, a)] + 1}

end for

Lemma 3.24. Let A = (Σ, Q, q0,P = (P1, . . . , Pk), δ) be an acyclic DPkA
without useless states. Then calling calc height(Q, q0) correctly calculates
the value of the height function in h[q] for each state q in linear time.

Proof. Let q be a state with height(q) = −∞. Then we know that every
state p reachable from q is in P1 and also has height(p) = −∞. In the
algorithm h will be initialized to −∞ for q and will never be increased, as
this would require a state not in P1 reachable from q, thus h[q] = −∞.

Now assume the algorithm did not work, so there is a state q such that
h[q] 6= height(q). From the previous paragraph we know that height(q) >
−∞ and thus q is acyclic. Without loss of generality we may assume that
q is the deepest erroneous state, i.e., every successor of q has the correct
height in h, as otherwise we could pick this successor (this picking process
terminates, as q is acyclic). So for each a ∈ Σ we know that h[δ(q, a)] is

40

3.4. Language partitions of finite order 3. Partition automata

correct. The set W (q) contains ε iff q 6∈ P1 and additionally for each a ∈ Σ
all words from {aw | w ∈ W (δ(q, a))}, nothing more and nothing less. Thus
height(q) = max{height(δ(q, a)) + 1 | a ∈ Σ} ∪ E where E is ∅ if q ∈ P1

and E = {0} otherwise. But this is exactly how h[q] is calculated and so
h[q] = height(q).

The linear running time is obvious as no state is visited twice due to the
way the visited array is managed.

The actual minimization algorithm works by walking the states of a
DPkA in layers defined by the height function and performing merging
of states only within these layers. The pseudo code is provided in Algo-
rithm 3.6.

Algorithm 3.6 An algorithm for minimizing acyclic DPkAs
Input: acyclic DPkA A = (Σ, Q, q0,P, δ) without useless states

and Σ = {a1, . . . , as}

merge all states in {q ∈ Q | height(q) = −∞}
for h := 0 to height(q0) do

H(h) := {q ∈ Q | height(q) = h}
for each q ∈ H(h) do

f(q) := (χP(q), δ(q, a1), . . . , δ(q, as))
end for
merge all p, q ∈ H(h) with f(p) = f(q)

end for

Theorem 3.25. Let A = (Σ, Q, q0,P, δ) be an acyclic DPkA without useless
states. Then Algorithm 3.6 constructs the minimal equivalent DPkA for A.

Proof. The first step of the algorithm is correct according to Lemma 3.22.
In the outer for loop the following invariant holds:

height(q) < h ⇒ ∀p ∈ Q \ {q} : p 6≡A q

Obviously this holds in the beginning. To show that it remains true after
every iteration we have to see that merging states of the same height does
not change the height of the resulting state (which is obvious) and that for
finding equivalent states it is sufficient to compare the tuples f(q). For the
latter we know from Lemma 3.23 that it is in fact sufficient to search for
equivalent states within H(h). Additionally f(p) 6= f(q) implies p 6≡A q as
either χP(p) 6= χP(q) or for some a ∈ Σ it is δ(p, a) 6= δ(q, a) which results
in δ(p, a) 6≡A δ(q, a) as both height(δ(p, a)) < h and height(δ(q, a)) < h
(Lemma 3.20) and due to the invariant. On the other hand f(p) = f(q)
obviously yields p ≡A q. From Lemma 3.20 we know that q0 is the state

41

3.4. Language partitions of finite order 3. Partition automata

with maximal height and thus in the end the invariant holds for all q ∈ Q
proving minimality.

For the running time of the algorithm it is crucial how to find states
p, q with f(p) = f(q). Let n := |Q|, m := |Σ|, and assume we could find
all these pairs in time O(|Σ||H(h)| then the overall running time of the
algorithm would be

k1mn +
height(q0)∑

h=0

k2m|H(h)| = k1mn + k2mn = O(mn) ,

with k1, k2 being constants. This is what we initially promised, so we have
to discuss how to find these pairs fast enough. The method proposed by
Revuz is to sort the states q ∈ H(h) by f(q), then finding all states to be
merged can be trivially achieved in linear time. Obviously any comparison
based sorting algorithm would be too slow, needing at least O(n log n) steps.
In [Rev91] a lexicographic sorting algorithm using bucket sort and the so
called left-right paradigm is implemented. We will slightly deviate from this
and use a relabeling technique instead of the left-right paradigm as it yields
the same result and is easier to comprehend.

Pseudo code for bucket sort is given in Algorithm 3.7. It slightly differs
from the one presented in [CLRS01] in that we use integer buckets (instead
of intervals dividing [0, 1]) and the buckets are small enough that the sorting
can be accomplished in one step. It should be obvious that the algorithm
correctly sorts the elements q1, . . . , qn according to their keys in O(m + n)
steps. Furthermore the sorting is stable, i.e., identical elements do not
change their relative order. Detailed proofs can be found in [CLRS01].

Algorithm 3.7 The bucket sort algorithm
Input: integer m, items q1, . . . , qn

keys k1, . . . , kn ∈ {1, . . . ,m}
Output: the qi in order of increasing ki

initialize FIFO queues Q1, . . . , Qm

for i := 1 to n do
push qi into Qki

end for
return the concatenation of Q1, . . . , Qm

The problem we are facing when using bucket sort, is that the number
of keys is O(n) (i.e., all states) which slows down the sorting process too
much. One solution is to relabel the relevant states before bucket sorting as
shown in Algorithm 3.8.

42

3.4. Language partitions of finite order 3. Partition automata

Algorithm 3.8 An algorithm for sorting states by f(q)
Input: acyclic DPkA A = (Σ, Q, q0,P, δ)

and set H(h) as in Algorithm 3.6

use bucket sort to sort H(h) with keys χP(q)
for each a ∈ Σ do

i := 1
for each q ∈ H(h) do

label[δ(q, a)] := i
i := i + 1

end for
use bucket sort to sort H(h) with keys label[δ(q, a)]

end for

Lemma 3.26. Algorithm 3.8 correctly sorts the state set H(h) such that
states with the same f(q) are consecutive in O(|Σ| |H(h)|) steps.

Proof. Assume the algorithm does not work, so we have states p, q, r with
f(p) = f(q) 6= f(r) and in the output sequence p < r < q. Assume f(q)
and f(r) are different in the i-th component. Then after sorting for this
component (either for P or some a ∈ Σ) we must have either the order
p, q, r or r, p, q. The state r cannot be moved between p and q by a later
sorting step, as the sorting is stable and thus either the relative order is not
influenced (if the tuples are equal for this component) or again r is sorted
outside of p and q. Of course this is only true, if the labels are managed
correctly, i.e., all “relevant” states {δ(q, a) | q ∈ H(h)} have different labels.
But this is obviously true from how the labels were assigned, so the algorithm
is correct.

For the running time we note that every iteration of the outer for each
loop requires O(|H(h)|) steps, as the labels used for bucket sorting are be-
tween 1 and |H(h)|. Thus the entire loop can be evaluated in O(|Σ| |H(h)|).
The only problem is the first line, which requires time O(k + |H(h)|. By us-
ing a similar labeling procedure we can ensure that also this step is bounded
by O(|H(h)|), completing this proof.

Corollary 3.27. Algorithm 3.6 can be implemented to minimize an acyclic
DPkA with n states having an alphabet of size m in time O(mn).

A slightly different solution for differentiating the states in H(h) is given
in [Dac03]. There all states from H(h) are put into a hash table (called
register) using the keys f(q). States with the same key are hashed into the
same position and finding equivalent states is then performed within states
put into the same hash table position. Using a suitable hash function or a
hash table big enough also yields an expected overall running time of O(mn).

43

Chapter 4

Cover automata

Cover automata provide a representation for finite languages that is usually
much more compact than that of a finite automaton. The idea is to split the
task of deciding a finite language L into two separate steps. One is checking
membership with a cover language of L that possibly contains additional
words longer than maxw∈L |w|. The other is a length check that can usually
be performed easier than with an automaton or is even implicitly given by
the application.

While concepts similar to cover automata have been studied before, they
were explicitly introduced by [CSY01].

Definition 4.1 ([CSY01]). Let Σ be an alphabet and L ⊆ Σ∗ a finite
language. Set l := maxw∈L |w|. A DFA A is called a deterministic finite
cover automaton (DFCA) for L iff L(A) ∩ Σ≤l = L.

As with DFAs we will look at a generalization that can be used to decide
partitions of Σ≤l.

Definition 4.2. Let Σ be an alphabet, l ∈ N, and L a partition of Σ≤l. A
DPkA A is called a deterministic k-partition l-cover automaton (DPkClA)
for L iff L(A)|Σ≤l = L. The automaton A is said to cover L.

The goal for the following sections will again be to find a minimal DPkClA
for a given partition L of order l. But before heading to the algorithms we
develop some theory on the structure of cover automata. The presentation
in the next few sections roughly follows [CGH05]. We start by discussing
similarity relations which replace the equivalence relations used for DPkAs.
Especially we deal with minimal similarity partitions. Then we extend the
results to right invariant similarity partitions which are in turn used to
carry minimality results to DPkClAs. After this we leave the trails of above
paper and have a deeper look at the size of minimal DPkClAs. Finally we
use these results to adapt the minimization algorithms from [CPY02] and
[Kör03] towards the context of DPkClAs.

44

4.1. Similarity relations 4. Cover automata

4.1 Similarity relations

With DPkAs it turns out that studying an equivalence relation on states is
the key for characterizing minimal DPkAs. For DPkClAs so called similarity
relations will take this role.

Let Σ be an alphabet. A relation ∼ over Σ∗ is called semi-transitive iff
for all x, y, z ∈ Σ∗ with |x| ≤ |y| ≤ |z| the following holds:

1. x ∼ y ∧ y ∼ z ⇒ x ∼ z

2. x ∼ y ∧ x ∼ z ⇒ y ∼ z

A relation that is reflexive, symmetric, and semi-transitive is a similarity
relation. An example of a similarity relation that is not transitive will be
given later (Example 4.11).

For a similarity relation ∼ we call a ∼-complete set similarity set, a
∼-independent set dissimilarity set, and a ∼-complete partition is called a
similarity partition.

As shown in the following lemma, shortest words are important when
dealing with similarity relations and similarity sets.

Lemma 4.3 ([CGH05], Lemma 1). Let ∼ be a similarity relation over
Σ∗, furthermore S, T non-empty similarity sets, and s0 and t0 any shortest
word in S respectively T . Then S ∪ T is a similarity set iff s0 ∼ t0.

Proof. If S ∪ T is a similarity set, then by definition s0 ∼ t0.
For the reverse case choose any two s′ ∈ S and t′ ∈ T . We may assume

that |s0| ≤ |t0| and from the choice of s0 and t0 we have |s0| ≤ |s′| and
|t0| ≤ |t′|. This gives |s0| ≤ |t0| ≤ |t′| and with s0 ∼ t0 and t0 ∼ t′ semi-
transitivity implies s0 ∼ t′. So we have s0 ∼ t′ and s0 ∼ s′ and either
|s0| ≤ |s′| ≤ |t′| or |s0| ≤ |t′| ≤ |s′| which in any case yields s′ ∼ t′. As s′

and t′ were chosen arbitrarily, S ∪ T is a similarity set.

Motivated by this lemma, we need a notion for shortest words in a sim-
ilarity partition. Let ∼ be a similarity relation over Σ∗, P = (P1, . . . , Pk)
a finite similarity k-partition of Σ∗. The set C := {c1, . . . , ck} is called a
minimality cross-section of P iff

∀1 ≤ i ≤ k : ci ∈ Pi ∧ |ci| = min
w∈Pi

|w| .

Obviously for every minimality cross-section C we have ε ∈ C. Using the
minimality cross-section we can formulate a simple criterion for checking the
minimality of a similarity partition.

Lemma 4.4. Let ∼ be a similarity relation over Σ∗, P = (P1, . . . , Pk) a
finite similarity k-partition of Σ∗.

45

4.1. Similarity relations 4. Cover automata

If there exists a minimality cross-section of P that is a dissimilarity set,
then P is minimal, i.e., there is no similarity (k − 1)-partition.

If P is minimal, then every minimality cross-section is a dissimilarity
set.

Proof. If any minimality cross-section of P is a dissimilarity set, we have
found a dissimilarity set of size k and according to Corollary 2.7 there can
be no similarity (k − 1)-partition.

For the reverse case let C = {c1, . . . , ck} be a minimality cross-section
of P. For the sake of contradiction assume that C is no dissimilarity set,
so there are indices 1 ≤ i1, i2 ≤ k with i1 6= i2 and ci1 ∼ ci2 . But then by
Lemma 4.3 the set Pi1 ∪ Pi2 is a similarity set and merging the components
i1 and i2 in P yields a similarity (k − 1)-partition violating the minimality
of P.

The following corollary improves upon the results from Corollary 2.7.

Corollary 4.5. Let Σ be an alphabet, ∼ a similarity relation over Σ∗ with
finite index. Define D the family of all dissimilarity sets, P the family of
all similarity partitions of Σ∗. Then

max
D∈D

|D| = min
P∈P

|P| .

Proof. From Corollary 2.7 we already know that maxD∈D |D| ≤ minP∈P |P|,
so it suffices to show that from a minimal similarity partition one can con-
struct a dissimilarity set of the same size. But this is what Lemma 4.4
showed, namely the minimality cross-section.

An interesting property of a minimality cross-section of a minimal sim-
ilarity partition we will be using later, is that the words in the minimal-
ity cross-section are not only the shortest within their component but also
shorter that any other word similar to them.

Lemma 4.6. Let ∼ be a similarity relation over Σ∗, P = (P1, . . . , Pk) a
minimal finite similarity k-partition of Σ∗, C = (c1, . . . , ck) a minimality
cross-section of P, and ci0 ∈ C. Then |w| ≥ |ci0 | for every word w ∼ ci0.

Proof. Let w ∈ Σ∗ with w ∼ ci0 and set iw := χP(w). If iw = i0 the claim
is true due to the minimality of |ci0 | within Pi0 . So let iw 6= i0 and assume
|w| < |ci0 |. Then |ciw | ≤ |w| < |ci0 | and ciw ∼ w and w ∼ ci0 . But this
implies ciw ∼ ci0 by semi-transitivity, which is by Lemma 4.4 a contradiction
to the minimality of P.

46

4.2. Right invariant similarity partitions 4. Cover automata

4.2 Right invariant similarity partitions

We have seen that there is no gap between the size of a maximal dissimilarity
set and a minimal similarity partition. The next step will be to show that
between minimal similarity partitions and minimal right invariant similarity
partitions there is no size gap neither. For this we need a rather technical
lemma.

Lemma 4.7. Let ∼ be a right invariant similarity relation over Σ∗, P =
(P1, . . . , Pk) a minimal finite similarity partition of Σ∗, C = {c1, . . . , ck} a
minimality cross-section of P. Define a function δ : C×Σ → C by choosing
δ(ci, a) ∈ C such that

∀ci ∈ C ∀a ∈ Σ : δ(ci, a) ∼ cia .

Then for every word w ∈ Σ∗ the following holds for the canonical expansion
of δ:

δ̂(ε, w) ∼ w

Proof. First we should verify that δ can indeed be defined this way, i.e., for
every word w ∈ Σ∗ there is a ci ∈ C with ci ∼ w. But as P is a similarity
partition we know cχP (w) ∼ w.

We will prove this by induction on the length of the word w. The base
case is trivial as δ̂(ε, ε) = ε ∼ ε. Now let a ∈ Σ, w ∈ Σ∗, set ĉ := δ̂(ε, w), and
assume the induction hypothesis ĉ ∼ w holds. We will show δ̂(ε, wa) ∼ wa.
From above definition δ̂(ε, wa) = δ(δ̂(ε, w), a) = δ(ĉ, a) ∼ ĉa. As ∼ is
right invariant from ĉ ∼ w we receive ĉa ∼ wa. From Lemma 4.6 we
know that since δ̂(ε, wa) ∈ C it is |δ̂(ε, wa)| ≤ |ĉa| and also |ĉ| ≤ |w|, thus
|ĉa| ≤ |wa|. But these are the prerequisites for semi-transitivity and we
conclude δ̂(ε, wa) ∼ wa completing this induction proof.

Using this lemma we can construct a minimal right invariant similarity
partition from any minimal similarity partition as show next.

Theorem 4.8. Let ∼ be a right invariant similarity relation over Σ∗, P =
(P1, . . . , Pk) a minimal finite similarity partition of Σ∗. Then there is a
similarity k-partition Q that is right invariant.

Proof. Let C = {c1, . . . , ck} be a minimality cross-section of P and δ the
function from Lemma 4.7. For each 1 ≤ i ≤ k define

Qi := {w ∈ Σ∗ | δ̂(ε, w) = ci}

and Q := (Q1, . . . , Qk). We claim that Q is both a similarity k-partition
and right invariant.

For every c ∈ C we know that δ̂(ε, c) = c as otherwise (from the men-
tioned lemma we have δ̂(ε, c) ∼ c) the set C was no dissimilarity set. So all

47

4.3. Minimal DPkClAs 4. Cover automata

Qi are non-empty and as δ̂ is a function, i.e., every pair (ε, w) is mapped to
exactly one element from C, the sequence Q is a k-partition. Additionally
for two words x, y ∈ Qi we know that ci ∼ x and ci ∼ y and from Lemma 4.6
either |ci| ≤ |x| ≤ |y| or |ci| ≤ |y| ≤ |x| and so from semi-transitivity x ∼ y.
Thus each Qi is a similarity set and Q is a similarity partition.

It remains to prove the right invariance of Q. We will apply Lemma 2.2
here, so let a ∈ Σ, 1 ≤ i0 ≤ k. We have to show that there is i′ such that
Qi0a ⊆ Qi′ . From the definition of δ we know there is i′ such that δ(ci0 , a) =
ci′ . To show that this is the i′ we were looking for, choose any w ∈ Qi0 .
Then we know that δ̂(ε, w) = ci0 and δ̂(ε, wa) = δ(δ̂(ε, w), a) = δ(ci0 , a) = ci′

thus wa ∈ Qi′ and we are done.

4.3 Minimal DPkClAs

The tool for stating the Myhill-Nerode theorem for DFAs was the introduc-
tion of a suitable equivalence relation. Similarly to close the gap from right
invariant similarly partitions to DPkClAs we just have to define a suitable
similarly relation.

Definition 4.9. Let Σ be an alphabet, l ∈ N, and L a partition of Σ≤l.
Define the relation ∼L⊆ Σ∗ × Σ∗ by

x ∼L y :⇔ ∀w ∈ Σ∗ :
(

(|xw| ≤ l ∧ |yw| ≤ l) ⇒ (χL(xw) = χL(yw))
)

.

Lemma 4.10. Let Σ be an alphabet, l ∈ N, and L a partition of Σ≤l. The
relation ∼L is a right invariant similarity relation.

Proof. Reflexivity and symmetry are obvious from the definition. For semi-
transitivity let x, y, z ∈ Σ∗ with |x| ≤ |y| ≤ |z|. We rephrase the definition
of ∼L as

x ∼L y ⇔ ∀w ∈ Σ≤l−max{|x|,|y|} : χL(xw) = χL(yw) ,

where we define for negative l the set Σ≤l := ∅. This is equivalent as exactly
the words in Σ≤l−max{|x|,|y|} pass the condition (|xw| ≤ l ∧ |yw| ≤ l) in the
definition.

For the first part of semi-transitivity we have x ∼L y and y ∼L z, so
∀w ∈ Σl−|y| : χL(xw) = χL(yw) and ∀w ∈ Σl−|z| : χL(yw) = χL(zw).
As |z| ≥ |y| we have Σ≤l−|z| ⊆ Σ≤l−|y| and thus for all w ∈ Σ≤l−|z| both
χL(xw) = χL(yw) and χL(yw) = χL(zw) hold. Thus by transitivity of =
we get ∀w ∈ Σl−|z| : χL(xw) = χL(yw) = χL(zw) which is what we wanted
to show: x ∼L z. The second condition for semi-transitivity is proven
analogously.

48

4.3. Minimal DPkClAs 4. Cover automata

Last is right invariance, so let x ∼L y and a ∈ Σ. Then

∀w ∈ Σ∗ :
(

(|xw| ≤ l ∧ |yw| ≤ l) ⇒ (χL(xw) = χL(yw))
)

and as w may be any word we may substitute it with aw:

∀w ∈ Σ∗ :
(

(|xaw| ≤ l ∧ |yaw| ≤ l) ⇒ (χL(xaw) = χL(yaw))
)

.

But this means xa ∼L ya by definition.

The following example shows that ∼L is not necessarily transitive.

Example 4.11. Let Σ := {a}, l := 4, and L := (L1, L2) with L1 := {ε, a3},
L2 := {a, a2, a4}. Then L is a partition of Σ≤l and both a ∼L a4 and
a4 ∼L a2, which can be seen as the only word in Σl−|a4| is ε and all of a, a2,
a4 are in the second component of L. On the other hand a 6∼L a2, as both
aa and a2a are no longer than l but in different components.

In the next lemma we see that the relation ∼L was chosen “right” for
our purposes.

Lemma 4.12. Let Σ be an alphabet, l ∈ N, and L a partition of Σ≤l. Let
A = (Σ, Q, q0,P, δ) be a DPkClA without useless states covering L. Then A
induces a right invariant similarity partition in terms of ∼L by (Lq(A))q∈Q.

Proof. We know from Remark 3.2 that (Lq(A))q∈Q is a right invariant par-
tition. Let q ∈ Q and x, y ∈ Lq(A). We have to show that x ∼L y. As words
longer than l are similar to all other words we may assume |x| ≤ |y| ≤ l.
But as for all words w both δ̂(q0, xw) and δ̂(q0, yw) are the same, similarity
is obvious.

After all these preparations we can now state the main theorem of this
section. For language partitions of finite order we know that there is always
a DPkA accepting them (although this was not formally proven it follows
from the trie construction in Section 6.2). This also is a DPkClA covering the
finite language, so there is no need for a characterization of coverable lan-
guage partitions. However the follow theorem resembles the Myhill-Nerode
theorem in that it provides a different measure for the number of states in
a minimal DPkClA.

Theorem 4.13. Let Σ be an alphabet, l ∈ N, L a k-partition of Σ≤l. Every
DPkClA covering L has at least index(∼L) states and there is a DPkClA
covering L with exactly index(∼L) states.

49

4.4. A lower bound on DPkClA size 4. Cover automata

q0 q1a
q2

q3

b

a

b

b

aa,b

q0 q1a
q2

a

q3

b

a

b

b

a,b

Figure 4.1: Two non-isomorphic minimal DP2C4As

Proof. As a DPkClA induces a similarity relation by its state languages
(Lemma 4.12) it cannot have less than index(∼L) states (Lemma 2.6).

Now for the existence of a suitable DPkClA. Theorem 4.8 guarantees the
existence of a right invariant similarity partition of size index(∼L), which
we call Q. The DPkClA A := (Σ,Q, χQ(ε),P, δ) then has the same size and,
as we will see, decides L. We have to say first how to choose P and δ. As Q
is right invariant we may define δ(χQ(w), a) := χQ(wa) without violating δ
being a function. This choice enforces LQ(A) = Q for all Q ∈ Q. It remains
to show that Q|Σ≤l is a refinement of L so we can choose P accordingly. So
let Q ∈ Q and x, y ∈ LQ(A) = Q, |x| ≤ |y| ≤ l. But as x and y are similar
(both are in Q) and not longer than l they are by definition in the same
component of L.

This theorem directly yields an easy verifiable condition for checking the
minimality of a DPkClA.

Corollary 4.14. A DPkClA A = (Σ, Q, q0,P, δ) covering L is minimal iff
a minimality cross-section of (Lq(A))q∈Q is a dissimilarity set for ∼L.

Minimal DPkClAs (other than with DPkAs) do not have to be isomorphic,
as shown by the next example.

Example 4.15. Let Σ := {a, b}, l := 4, L := {aa, aab, aabb}, and L :=
(Σ≤l \ L,L). The set S := {ε, b, a, aa} is a dissimilarity set for ∼L as
is easily checked, thus no DP2C4A deciding L can have less than 4 states.
Figure 4.1 shows two minimal DP2C4As that are not isomorphic (which can
be verified by counting the number of in-going transitions for each state) but
both deciding L.

4.4 A lower bound on DPkClA size

As cover automata were introduced to reduce the size of an automaton
representation of a partition, it is legitimate to question the savings achieved.
We will give a lower bound on the size of a DPkClA relative to the size of
a minimal DPkA. But before working out the details, we give an example

50

4.4. A lower bound on DPkClA size 4. Cover automata

q0

q1
a q2

b

q6

a

q3

a

q4

b

q5
a

a,b

b
b

a

b

a,b

q0

q1a

q2b
b

a

a,b

Figure 4.2: A minimal DP2A and DP2C5A for Example 4.16

a

b

a

b

a

b
a

b

a

b a,ba,b

Figure 4.3: The minimal DP2A for Example 4.18

from [Kör03] showing that the DPkClA can be slightly smaller than the
corresponding DPkA.

Example 4.16. Let Σ := {a, b}, l := 5, L := {a, aba, ababa}, and L :=
(Σ≤l \L,L). Figure 4.2 shows both a minimal DP2A and a minimal DP2C5A
having 7 respectively 3 states.

Before looking at the lower bound we mark down the trivial upper bound.
There are actually cases where this bound is reached, i.e., the minimal
DPkClA has as many states as the minimal DPkA. A family of language par-
titions for which this bound is tight is presented in the example thereafter.

Remark 4.17. Let L be a partition of Σ≤l. Every DPkA deciding L is also
a DPkClA covering L. Thus a minimal DPkClA never has more states than
a minimal DPkA for the same language partition.

Example 4.18. Let Σ := {a, b}, n ∈ N arbitrarily chosen, l := n + 2, L :=
{anb, anaa}, and L := (Σ≤l \L,L). The minimal DP2A deciding L is shown
in Figure 4.3 and has n + 4 states. The set {ε, b, a, a2, . . . , an, an+1, an+2}
is a dissimilarity set for ∼L of size n + 4. Thus the presented automaton
is also a minimal DPkClA. For the proof of dissimilarity first note that b is
dissimilar to all ai (0 ≤ i ≤ n + 2) as those can be completed to a word in
L, contrary to b. For 0 ≤ i < j ≤ n+2 we have ai 6∼L aj because appending
the word an+2−j results in words in different components of L.

The tool for our lower bound proof is the automaton product known
from DFAs. For DPAs it has to be slightly adjusted to handle the state
partition P correctly.

51

4.4. A lower bound on DPkClA size 4. Cover automata

0 1a,b,c,... 2a,b,c,... l-1a,b,c,... la,b,c,... l+1a,b,c,...

a,b,c,...

Figure 4.4: The DFA B used in Theorem 4.21

Definition 4.19. Let A := (Σ, QA, qA, (P1, . . . , Pk), δA) be a DPkA and B :=
(Σ, QB, qB, F, δB) a DFA on the same alphabet. The product automaton
A × B is defined as the DPkA (Σ, QA × QB, (qA, qB), (P̂ ′

1, P
′
2, . . . , P

′
k), δ

′)
with

• δ′ ((q1, q2), a) := (δA(q1, a), δB(q2, a)) (a ∈ Σ, q1 ∈ QA, q2 ∈ QB)

• P ′
i := {(q1, q2) | q1 ∈ Pi ∧ q2 ∈ F} (1 ≤ i ≤ k)

• P̂ ′
1 := P ′

1 ∪ {(q1, q2) | q1 ∈ QA ∧ q2 ∈ (QB \ F)}

Lemma 4.20. Let A := (Σ, QA, qA, (P1, . . . , Pk), δA) be a DPkA and B :=
(Σ, QB, qB, F, δB) a DFA on the same alphabet. Then the language partition
L(A×B) = ses (L̂1, L2, . . . , Lk) where

• Li := LPi(A) ∩ L(B) (1 ≤ i ≤ k)

• L̂1 := L1 ∪ (Σ∗ \ L(B))

Proof. Let δ′ be the transition function of A×B. By induction we know that
a word w is mapped by δ̂′ to (δ̂A(ε, w), δ̂B(ε, w)), so for q1 ∈ QA, q2 ∈ QB

we have L(q1,q2)(A × B) = Lq1(A) ∩ Lq2(B). This together with the state
partition for A × B from Definition 4.19 gives exactly the L(A × B) from
above.

Now we are ready to prove the main theorem of this section, showing
that a DPkClA covering a partition of Σ≤l can be up to about l times smaller
than a minimal DPkA deciding the same partition.

Theorem 4.21. Let A = (Σ, Q, q0,P = (P1, . . . , Pk), δ) be a DPlCkA with-
out useless states covering the partition L of Σ≤l. Then there is a DPkA
with at most l|Q| − |P1|+ 2 states deciding L(A).

Proof. Let B := (Σ, {0, . . . , l +1}, 0, {0, . . . , l}, δB) with δB(i, a) := max{i+
1, l + 1} (a ∈ Σ, 1 ≤ i ≤ l + 1) be a DFA (see Figure 4.4). Obviously B
has l + 2 states and L(B) = Σ≤l. Let C := A × B. From Lemma 4.20 we
know that L(C) = ((LP1(A)∩Σ≤l)∪Σ>l, LP2(A)∩Σ≤l, . . . , LPk

(A)∩Σ≤l),
so C decides L. According to Definition 4.19 the automaton C has (l+2)|Q|
states. Due to the structure of B (no backward transitions) the states (q, 0)
with q ∈ Q \ {q0} are not reachable and the states (q, l + 1) with q ∈ Q
are all in the first component of C’s state partition and will not reach any

52

4.4. A lower bound on DPkClA size 4. Cover automata

x

c ya

b

c

z

a

b
a
b

c

Figure 4.5: The minimal DP2C4A for the language M

z0 z1

x1

y1

z2

x2

y2

z3

x3

y3

z4

x4

y4

z5

x5

y5

x0

y0

Figure 4.6: The DP2ClA from Figure 4.5 after “unrolling”

z1 z2

x2

y2

z3

x3

y3

x4 sx0 x1

y1

Figure 4.7: The DP2A from Figure 4.6 after minimization

state (q, i) with i ≤ l. Additionally all “uninteresting” states in level l ((q, l)
with q ∈ P1) can only have forward transitions to (q, l + 1) and so also are
in the first component of C’s state partition. Thus removing the |Q| − 1
unreachable states (q, 0) and merging the |Q| + |P1| states (q, l + 1) and
(q ∈ P1, l) into one state results in a DPkA that decides L and has only
(l + 2)|Q| − (|Q| − 1)− (|Q|+ |P1| − 1) = l|Q| − |P1|+ 2 states.

We conclude this section with an example showing this lower bound to
be tight.

Example 4.22. Let Σ = {a, b, c}, l ∈ N, M := {w ∈ Σ≤l | #a(w) ≡
#b(w) (mod 3)}, and L := (Σ≤l \M,M). Thus M contains words such as
aaccbcaa, cabab, or aaa.

The following steps are visualized for the case l = 4. As the association
of labels with edges is complicated in dense graphs, some of them represent
a, b, and c transitions by bold gray, dashed, respectively plain solid lines.

53

4.5. Towards a minimization algorithm 4. Cover automata

The minimal DP2ClA for L consists of 3 states (it is easy to check, that
{ai | 0 ≤ i < 3} is a dissimilarity set for ∼L), the automaton is shown in
Figure 4.5. Building the product as in Theorem 4.21 produces the DP2A from
Figure 4.6 which has obviously 3(l + 2) states. Removing the unreachable
states (in the figure these are y0 and z0) and merging the “right outer”
states (in the figure these are y4, z4, x5, y5, z5) into a new one (s) yields
an automaton with 3(l + 2) − (3 − 1) − (3 + 3 − 1) + 1 = 3l states shown
in Figure 4.7. This is exactly the value we wanted to accomplish. All that
remains is to prove the minimality of the created graph, as otherwise the
bound was not necessarily tight. For this for any two states q1, q2 we have to
find a word w such that δ̂(q1, w) and δ̂(q2, w) are in different classes. While
it is possible to check this for all possible combinations, this is a tedious
task with many different cases giving little insight and so is not performed
here. The reader is invited to verify the claim at least for some state pairs
in Figure 4.7.

4.5 Towards a minimization algorithm

After having seen some theory on cover automata including a characteri-
zation of minimal ones and bounds that imply their usefulness, we would
like to be able to construct minimal cover automata for a given partition
of order l. Following we are working towards an adaption of the algorithm
presented in [CPY02] for constructing minimal cover automata which has
some parallels to the algorithm presented in Section 3.2. The input partition
for this algorithm will be given as a DPkA deciding this partition, i.e., all
words from Σ>l are classified into the first component of the state partition.

As we have seen before, shortest words take a central position with cover
automata. To simplify working with them, we first introduce some notation.
Let A = (Σ, Q, q0,P, δ) be a DPkA. For a useful state q ∈ Q we denote by
level(q) the length of a shortest word in Lq(A):

level(q) := min{|w| | w ∈ Lq(A)} .

If Lq(A) = ∅ define level(q) := ∞.

Remark 4.23. For a given DPkA A the level function for all its states can
be computed in linear time using breadth first search.

Let A = (Σ, Q, q0,P, δ) be a DPkClA. For states p, q ∈ Q define the
range function as

range(p, q) := l −max{level(p), level(q)} .

Intuitively two states p, q can be merged as with DPkA minimization if they
“behave the same” for all words that are not longer than range(p, q), which
is covered by the following definition.

54

4.5. Towards a minimization algorithm 4. Cover automata

Definition 4.24. Let A = (Σ, Q, q0,P, δ) be a DPkClA without useless
states. We define the relation ∼A⊆ Q×Q by

q ∼A p :⇔ ∀w ∈ Σ≤range(p,q) : χP(δ̂(p, w)) = χP(δ̂(q, w)) .

Actually this definition is deeply linked to the similarity relation ∼L(A)

as shown below.

Lemma 4.25. Let A = (Σ, Q, q0,P, δ) be a DPkClA without useless states
covering the partition L of Σ≤l, p, q ∈ Q, and xp ∈ Lp(A), xq ∈ Lq(A) such
that |xp| = level(p) and |xq| = level(q). Then p ∼A q iff xp ∼L xq.

Proof. Let m := l − max{|xp|, |xq|}. In the proof of Lemma 4.10 we have
seen that condition xp ∼L xq is equivalent to

∀w ∈ Σm : χL(xpw) = χL(xqw)

which because of χL(w) = χP(δ̂(q0, w)) for |w| ≤ l is the same as

∀w ∈ Σm : χP(δ̂(q0, xpw)) = χP(δ̂(q0, xqw)) .

But as δ̂(q0, xpw) = δ̂(δ̂(q0, xp), w) = δ̂(p, w) and analogous for xq and q
this means p ∼A q. All steps were equivalence transformations, so both
directions of the claim are valid.

Corollary 4.26. Having the preconditions from Lemma 4.25, p ∼A q iff
Lp(A) ∪ Lq(A) is a similarity set for ∼L.

Proof. If Lp(A) ∪ Lq(A) is a similarity set, then xp ∼L xq and Lemma 4.25
gives p ∼A q. On the other hand if p ∼A q and thus xp ∼L xq then according
to Lemma 4.12 and Lemma 4.3 Lp(A) ∪ Lq(A) is a similarity set.

Based on this relation on states we can formulate a minimization algo-
rithm. We will not provide information on how to calculate the relation,
as this will be detailed later. The pseudo-code for DPkClA minimization is
provided in Algorithm 4.1.

The algorithm operates in two steps. The first phase up to the end of
the while loop calculates a minimal ∼A-complete partition of Q, the second
phase then merges all states that are in the same partition into one. We will
prove the correctness of both steps separately.

Lemma 4.27. Let A := (Σ, Q, q0,P, δ) be a DPkClA. Then (Nr)r∈Q′ as cal-
culated in the first part of Algorithm 4.1 is a minimal ∼A-complete partition
of Q.

55

4.5. Towards a minimization algorithm 4. Cover automata

Algorithm 4.1 A generic minimization algorithm for DPkClAs
Input: A DPkClA A = (Σ, Q, q0,P = (P1, . . . , Pk), δ),

the relation ∼A from Definition 4.24
Output: A minimal DPkClA covering the same language partition as A

R := Q
Q′ := ∅
while R 6= ∅ do

choose r ∈ R such that level(r) = minq∈R level(q)
Q′ := Q′ ∪ {r}
Nr := {q ∈ R | q ∼A r}
R := R \Nr

end while

for i := 1 to k do
P ′

i := Pi ∩Q′

end for
for each q′ ∈ Q′, a ∈ Σ do
{replace every state with its representative in δ}
δ′(q′, a) := χ(Nr)r∈Q′

(δ(q′, a))
end for
return A′ := (Σ, Q′, q0, (P ′

1, . . . , P
′
k), δ

′)

Proof. Due to the way the Nr have been chosen it is obvious that (Nr)r∈Q′

is a ∼A-complete partition of Q. It remains to prove minimality. Assume
there is a ∼A-complete partition B of Q with less than |Q′| components.
Then there must be p′, q′ ∈ Q′ that are in the same component of B and
thus p′ ∼A q′. But then one of p′ and q′ has been drawn of R before the
other and we either have p′ ∈ Nq′ or q′ ∈ Np′ , a contradiction.

For the proof of the second phase we need a technical lemma showing
that the way we merge states is “correct”. This is where we need the repre-
sentatives of each component to have minimal level within the states of the
component.

Lemma 4.28. Let A := (Σ, Q, q0,P, δ) be a DPkClA covering some language
partition L, Q′ ⊆ Q a set of representative states, N := (Nr)r∈Q′ a (not nec-
essarily minimal) ∼A-complete partition of Q such that for each q′ ∈ Q′ the
level of q′ is minimal within all states of Nq′, and A′ = (Σ, Q′, q0,P ′ =
(P ′

1, . . . , P
′
k), δ

′) the automaton calculated from the second phase of Algo-
rithm 4.1.

Then A′ is defined properly and for every q′ ∈ Q′ and any word w ∈

56

4.5. Towards a minimization algorithm 4. Cover automata

Σ≤l−levelA(q′) we have

χP ′(δ̂′(q′, w)) = χP(δ̂(q′, w)) .

Proof. States from different components of P having level ≤ l cannot be in
the same component of N . Additionally for each Pi ∈ P there has to be a
state q ∈ Pi with level ≤ l as otherwise the i-th component of L would be
empty (and thus L not a proper partition). This implies that all the P ′

i are
non-empty and together partition Q′. The starting state q0 is the only state
with level = 0, so it has to be in Q′. Consequently the definition of A′ is
consistent.

For the second part assume that there is some shortest word w such
that there is a state q′ ∈ Q′ with w ∈ Σ≤l−levelA(q′) and χP ′(δ̂′(q′, w)) 6=
χP(δ̂(q′, w)). As q′ is in the same state class in both A and A′ we know
w 6= ε. So let a ∈ Σ and x ∈ Σ∗ with ax = w. Set p := δ(q′, a), p′ := δ′(q′, a).
From the initialization of δ′ we know that p ∈ Np′ and by the choice of
the representative states levelA(p′) ≤ levelA(p). Furthermore levelA(p) ≤
levelA(q′) + 1, thus

l − levelA(q′)− 1 ≤ l − levelA(p′) = l −min{levelA(p), levelA(p′)}

and so x ∈ Σ≤range(p,p′). From p ∈ Np′ we know p ∼A p′ and Defini-
tion 4.24 gives χP(δ̂(p, x)) = χP(δ̂(p′, x)). As w was chosen minimal within
the “failing” words the claim of this lemma must be true for x and so
χP ′(δ̂′(p′, x)) = χP(δ̂(p′, x)). But now we have δ̂(q′, w) = δ̂(δ(q′, a), x) =
δ̂(p, x) and δ̂′(q′, w) = δ̂′(p′, x) which we have shown to be in the same state
class. A contradiction to our initial assumption.

Applying this lemma we can prove the second phase to be correct, i.e.,
the automaton produced is both minimal and covers L. This is a major
result, as all known minimization algorithms for DPkClAs are relying on
this phase.

Theorem 4.29. Let A := (Σ, Q, q0,P, δ) be a DPkClA with n states covering
some language L, Q′ ⊆ Q a set of representative states, N := (Nr)r∈Q′ a
minimal ∼A complete partition of Q such that for each q′ ∈ Q′ the level of
q′ is minimal within all states of Nq′.

Then the automaton calculated in the second phase of Algorithm 4.1 is
a minimal DPkClA covering L and the process requires O(|Σ|n) time and
space.

Proof. From Lemma 4.28 we know that A′ is a valid DPkClA and, as q0 is
the only state with level = 0, for every w ∈ Σ≤l we have χP ′(δ̂′(q0, w)) =
χP(δ̂(q0, w)). So A′ covers the same language as A.

For the minimality first note that for all q′ ∈ Q′ the set Lq′(A) 6= ∅, as
otherwise levelA(q′) = ∞ and thus every state in Nq′ would be similar to

57

4.5. Towards a minimization algorithm 4. Cover automata

0

1
a

3

b

2b

6

a

5

b
a

4

b

a

b a

a,b

a,b

0 1 2 3 4 5 6
0 ∼ 6∼ 6∼ 6∼ 6∼ ∼ 6∼
1 6∼ ∼ 6∼ 6∼ ∼ 6∼ 6∼
2 6∼ 6∼ ∼ 6∼ 6∼ ∼ 6∼
3 6∼ 6∼ 6∼ ∼ 6∼ 6∼ ∼
4 6∼ ∼ 6∼ 6∼ ∼ 6∼ 6∼
5 ∼ 6∼ ∼ 6∼ 6∼ ∼ 6∼
6 6∼ 6∼ 6∼ ∼ 6∼ 6∼ ∼

Figure 4.8: The automaton from Example 4.31 and its similarity table

0,5

1,4

a 3,6

b

2

b

a

b
a

b

a

Figure 4.9: The minimized automaton from Example 4.31

every other state in Q. Thus merging Nq′ with Nq0 would yield a smaller ∼A

complete partition. Denote by xq′ a shortest word in Lq′(A) for each q′ ∈ Q′.
We know that two states p′, q′ ∈ Q′ with p′ 6= q′ are not similar, as otherwise
Np′ ∪Nq′ would be ∼A-complete (seen from Lemma 4.3 and Corollary 4.26
as xq′ is a shortest word in

⋃
r∈Nq′

Lr(A)) contradicting the minimality of
N . Lemma 4.25 yields that {xq′ | q′ ∈ Q′} is a dissimilarity set for ∼L of
size |Q′|. As A′ has exactly |Q′| states we know from Corollary 4.14 that A′

is minimal.
The time and space requirements are obvious.

To show the correctness of our generic minimization algorithm we just
have to stick the proofs of both phases together.

Corollary 4.30. Let A := (Σ, Q, q0,P, δ) be a DPkClA with n states cov-
ering some language L. We assume the relation ∼A can be evaluated in
constant time, for example has been pre-calculated. Then Algorithm 4.1 re-
turns a minimal DPkClA covering L, and requires only O(n2 + |Σ|n) time
and O(|Σ|n) space.

Proof. The correctness is just the combination of Lemma 4.27 and Theo-
rem 4.29. Time and space consumption are those from Theorem 4.29 with
O(n2) from the first while loop combined.

58

4.5. Towards a minimization algorithm 4. Cover automata

The following example shows how Algorithm 4.1 clusters the states of
an input automaton.

Example 4.31. Let Σ := {a, b}, L := {ε, ab, abb, bbb}, and L := (Σ≤3\L,L).
A DP2ClA covering L is shown in Figure 4.8 (actually it is the minimal
DP2A accepting L). Next to it is the tabulated state similarity relation.
Applying Algorithm 4.1 on this automaton produces the set Q′ = {0, 1, 3, 2}
with N0 = {0, 5}, N1 = {1, 4}, N3 = {3, 6}, and N2 = {2}. The resulting
DP2C3A can be seen in Figure 4.9.

So far we did not talk about how to decide whether a pair of states is in
the relation ∼A. Applying Lemma 4.25 and Definition 4.9 to the problem
yields a straight forward method to compute the relation for two states p
and q, but the running time could be up to O(|Σ|range(p,q)). The method
presented in [CPY02] is based on the gap function we will introduce next.
Our definition differs slightly from the one in [CPY02] simplifying the proofs
and algorithms somewhat.

Definition 4.32. Let A = (Σ, Q, q0,P, δ) be a DPkClA. For two states
p, q ∈ Q the gap function is defined as the shortest word that can prove
p 6∼A q:

gap(p, q) := min
{
|w| | w ∈ Σ∗ ∧ χP(δ̂(p, w)) 6= χP(δ̂(q, w))

}
.

The minimum of the empty set is assumed to be +∞ as usual.

Remark 4.33. Obviously p 6∼A q iff gap(p, q) ≤ range(p, q).

The following lemma gives a hint on how to calculate the gap function.

Lemma 4.34. Let A = (Σ, Q, q0,P, δ) be a DPkClA. For two states p, q ∈ Q
with χP(p) = χP(q)

gap(p, q) = 1 + min
a∈Σ

gap(δ(p, a), δ(q, a)) .

Proof. We start with proving gap(p, q) ≤ 1 + gap(δ(p, a), δ(q, a)) for all
a ∈ Σ. Let a ∈ Σ, r := δ(p, a), t := δ(q, a). If gap(r, t) = ∞ the inequality is
correct, so let gap(r, t) = m and w a word with |w| = m and χP(δ̂(r, w)) 6=
χP(δ̂(t, w)) which has to exist due to the definition of the gap function.
But then aw is a word of length m + 1 and χP(δ̂(p, aw)) 6= χP(δ̂(q, aw)) so
gap(p, q) ≤ m + 1 = 1 + gap(r, t).

It remains to show that there always is an a ∈ Σ such that gap(p, q) ≥
1 + gap(δ(p, a), δ(q, a)). For gap(p, q) = ∞ the inequality is again true. So
let gap(p, q) = m and w ∈ Σm with χP(δ̂(p, w)) 6= χP(δ̂(q, w)). As χP(p) =
χP(q) we know that m > 0 and so there are a ∈ Σ and x ∈ Σm−1 such that
w = ax. Let again r := δ(p, a), t := δ(q, a). Then χP(δ̂(r, x)) 6= χP(δ̂(t, x))
and thus gap(r, t) ≤ m− 1 which is exactly what we had to prove.

59

4.5. Towards a minimization algorithm 4. Cover automata

We will present an algorithm for calculating the gap function for DPkAs
next. The algorithm exploits the fact that every DAG can be topologically
sorted (see [CLRS01]). To simplify the presentation we assume the input
DPkA to be minimal. The details are shown in Algorithm 4.2, the now easy
correctness proof follows.

Algorithm 4.2 An algorithm for calculating the gap function
Input: A minimal DPkA A = (Σ, Q, q0,P, δ) with n states,
Output: the gap function for all state pairs

rename the states as {q0, q1, . . . , qn−1} such that height(qn−1) = −∞ and
for every transition δ(qi, a) = qj either i = n− 1 or i < j.

for each 0 ≤ i, j < n do
if χP(qi) = χP(qj) then

gap(qi, qj) := ∞
else

gap(qi, qj) := 0
end if

end for

for i := n− 1 down to 0 do
for j := n− 1 down to 0 do

for each a ∈ Σ do
{Invariant: gap(δ(qi, a), δ(qj , a)) has already been calculated}
gap(qi, qj) := min{gap(qi, qj), 1 + gap(δ(qi, a), δ(qj , a))}

end for
end for

end for

Theorem 4.35. Let A = (Σ, Q, q0,P, δ) be a minimal DPkA for a lan-
guage partition of finite order. Then Algorithm 4.2 correctly calculates the
gap function for each state pair of A using only O(|Σ|n2) time and O(n2)
memory.

Proof. The first observation for the algorithm is that renaming the states
appropriately is possible. Due to Lemma 3.22 for a minimal DPkA there
is at most one state with height = −∞ and Lemma 3.21 yields that every
other state is acyclic. As every state has outgoing transitions we know from
graph theory, that the induced transition graph must have a cycle, so there
is at least one state with height = −∞. Removing this states makes the
transition graph a DAG and the desired order is achieved in linear time by
topological sorting.

60

4.5. Towards a minimization algorithm 4. Cover automata

0 (0) 1 (1) 2 (2) 3 (1) 4 (2) 5 (3) 6 (2)
0 (0) ∞ (3) 0 (2) 1 (1) 0 (2) 0 (1) 2 (0) 0 (1)
1 (1) 0 (2) ∞ (2) 0 (1) 1 (2) 2 (1) 0 (0) 1 (1)
2 (2) 1 (1) 0 (1) ∞ (1) 0 (1) 0 (1) 1 (0) 0 (1)
3 (1) 0 (2) 1 (2) 0 (1) ∞ (2) 1 (1) 0 (0) 2 (1)
4 (2) 0 (1) 2 (1) 0 (1) 1 (1) ∞ (1) 0 (0) 1 (1)
5 (3) 2 (0) 0 (0) 1 (0) 0 (0) 0 (0) ∞ (0) 0 (0)
6 (2) 0 (1) 1 (1) 0 (1) 2 (1) 1 (1) 0 (0) ∞ (1)

Figure 4.10: The gap (range) table from Example 4.36

In the algorithm the first for each loop sets an upper bound on the gap
value while the second one refines this bound. The invariant required for
seeing the correctness is given as a comment in the algorithm. For the case
i = j = n − 1 the gap value calculated is correct, as qn−1 is the sink state.
So let either i < n− 1 or j < n− 1, a ∈ Σ and qi′ := δ(qi, a), qj′ := δ(qj , a).
The states have been renamed such that i′ ≥ i and j′ ≥ j and as one of qi, qj

is not the sink state one of both inequalities is strict. But due to the order
used for iterating on i and j and the invariant we know that gap(qi′ , qj′) has
already been calculated. The correctness of the value retrieved for gap(qi, qj)
is then provided by Lemma 4.34 if qi and qj are in the same component of
P, or by the initialization in the first for loop if they are not.

Looking at the algorithm the time and space complexity is easily ob-
served from the nested loops.

Before having a look at an example we should denote two implementation
issues. By exploiting the symmetry of the gap function about half of the
steps in Algorithm 4.2 can be omitted. The other useful observation is that
the maximal range for two different states is l− 1 due to the fact that there
is exactly one state with level 0, all other states having level ≤ 1. As we
only need the gap value for comparison to the range we can use the value l
instead of ∞ for practical purposes.

Example 4.36. We revisit Example 4.31 here. The minimal DP2A was
given in Figure 4.8. Figure 4.10 provides a table giving for each state pair
the values for gap and in parentheses for range. The parenthesized values
next to each state name is the level of the state. The reader is encouraged to
check those values and verify that they match with the similarity table shown
in Figure 4.8 according to Remark 4.33.

Finally we have collected all the building blocks allowing us the construc-
tion of a minimal DPkClA for a given language k-partition of finite order.
Although they are probably obvious by now they are composed into the last
result of this section.

61

4.6. An O(n log n) minimization algorithm 4. Cover automata

Corollary 4.37. Let Σ be an alphabet, l ∈ N, L a k-partition of Σ≤l, and
A a DPkA with n states accepting L. Then A can be transformed into a
minimal DPkClA within O(|Σ|n2) time and O(n2 + |Σ|n) space.

Proof. We construct a minimal DPkA B from A with any algorithm from
Chapter 3. The algorithm from Theorem 4.35 calculates the gap function
for all state pairs of B. The levelB can be calculated in linear time, so
the similarity relation ∼B for all state pairs p, q of B can be retrieved in
O(n2) steps by comparing gapB(p, q) to rangeB(p, q) (Remark 4.33). With
this information Algorithm 4.1 gives the minimal DPkClA for L. The time
and space complexity is easily derived by summing up the complexity of the
individual steps.

The algorithm we constructed so far only works for minimal DPkAs.
There a two ways to extend it to DPkClAs. One is to use the transforma-
tion from Section 4.4 to make a DPkA first, the other is to modify Algo-
rithm 4.2 for DPkClAs, which would involve using multiple “rounds” similar
to the Bellman-Ford algorithm (for the Bellman-Ford algorithm see, e.g.,
[CLRS01]). Both approaches will obviously increase the worst-case running
time of the algorithm. The algorithm presented in the next section uses a
different approach and has a better running time for constructing minimal
DPkClAs from both DPkAs and DPkClAs, so we will not go into detailing
those proposed extensions here.

4.6 An O(n log n) minimization algorithm

For minimizing large DPkClAs the quadratic running time of the presented
algorithm is too slow. The asymptotically best minimization algorithm for
cover automata having a time bound of O(n log n) was proposed by Heiko
Körner in [Kör03]. It has a similar structure as Hopcroft’s algorithm for
minimizing DFAs and the adaption towards DPkClAs is similarly simple
as the adaption of Hopcroft’s algorithm in Section 3.3. Like there we will
only present the modified algorithm and discuss the high level results, but
not delve into the implementation details that are needed for a thorough
complexity analysis, as these are even more complex than for the Hopcroft
algorithm and are not influenced by our modifications. For these the reader
should consult [Kör03] where also a reference implementation in C++ is
provided.

Körner’s algorithm calculates a minimal ∼A-complete partition of the
states for a DPkClA A. From this we can construct the minimal DPkClA in
O(|Σ|n) time and space using the method from Theorem 4.29. The general
idea is again to start with the state partition P provided by the automaton
A and refine it until a ∼A-complete partition is reached. Refinement is again
achieved by splitting. The splitting step is however a bit more involved as

62

4.6. An O(n log n) minimization algorithm 4. Cover automata

with the Hopcroft algorithm, so we present the algorithm first and later
prove some invariants showing the validity of these splittings.

The pseudo code is provided as Algorithm 4.3. When compared to
Körner’s original algorithm the only difference besides adjusting some nota-
tion is in the initialization (first three lines), where the states are partitioned
according to P instead of by being final or not as with plain cover automata.
Additionally we introduced the variables γi which have no use in the algo-
rithm but our proofs will benefit from them.

Before giving any proofs we want to point out the similarities and dif-
ferences to Hopcroft’s algorithm. In both algorithms a queue of sets still to
be used for splitting is managed. These sets are used to split the existing
components of the partition and after successfully splitting a component in
two, the smaller part of these is again appended to the list. The difference
is in how splitting is performed and what is managed in the list. While
for the Hopcroft algorithm we had pairs of component indices and letters,
we now put the component itself into the list (the index would not suffice
as the component could be modified by further splits) together with some
parameter t which indicates how the states in the component in question
can be differentiated from all others.

In the remainder of this section let A = (Σ, Q, q0,P, δ) be a fixed DPkClA
and L the partition of Σ≤l covered by A. Denote by (Si, ti) the i-th pair
added to the queue T . Obviously every Si was inserted either from one com-
ponent of the initial partition or as the new component created by splitting.
Thus Si captures the state of Bi when it was introduced for the first time
and there is exactly one pair (Si, ti) for every Bi in the algorithm. We will
see that the Bi and (Si, ti) are somehow linked and the ti follow a certain
pattern.

Lemma 4.38 ([Kör03], Lemma 4). The sequence t1, . . . , tr produced by
Algorithm 4.3 is non-decreasing.

Proof. We prove this by induction on m, the length of a prefix of above
sequence. The statement is trivially true in the beginning (m = k), as all
ti are initialized to 0. It also holds for the first appended t (m = k + 1), as
it will have value 1. Now assume the sequence t1, . . . , tm is non-decreasing
(r > m ≥ k + 1). For the sequence t1, . . . , tm, tm+1 let ij be the index of
the pair (S, t) which lead to the addition of tj . As m ≥ k + 1 both im and
im+1 are defined. From the way the pairs (S, t) are managed (FIFO queue)
we know that im ≤ im+1 ≤ m, and so tim ≤ tim+1 . But as tm = tim + 1 and
tm+1 = tim+1 + 1 this yields tm ≤ tm+1 concluding the proof.

To better understand the splitting process we introduce three invariants
which we will prove next.

Lemma 4.39. The following invariants hold for the outer while loop in

63

4.6. An O(n log n) minimization algorithm 4. Cover automata

Algorithm 4.3 The Körner algorithm for DPkClA minimization
Input: A DPkClA A = (Σ, Q, q0,P, δ)
Output: A minimal ∼A-complete partition of Q

(B1, . . . , Bk) := P
r := k
push all pairs (Bi, 0) with (1 ≤ i ≤ k) into FIFO queue T
γi := l for each 1 ≤ i ≤ k

while T 6= ∅ do
remove first pair (S, t) from T
for each a ∈ Σ do

X := {q ∈ Q | δ(q, a) ∈ S ∧ level(q) < l − t}
Y := {q ∈ Q | δ(q, a) 6∈ S ∧ level(q) < l − t}
for i := r down to 1 do

if Bi ∩X 6= ∅ and Bi ∩ Y 6= ∅ then
Z := Bi ∩X
r := r + 1
if |Z| ≤ |Bi \ Z| then

Br := Z
Bi := Bi \ Z

else
Br := Bi \ Z
Bi := Z

end if
γi := l − (t + 1)
γr := l − (t + 1)
push (Br, t + 1) into T

end if
end for

end for
end while

return (B1, . . . , Br)

64

4.6. An O(n log n) minimization algorithm 4. Cover automata

Algorithm 4.3 for every 1 ≤ i < j ≤ r:

∃q ∈ Bi : level(q) ≤ γi (4.1)
∀p ∈ Bi, q ∈ Bj : level(p) ≤ γi ∧ level(q) ≤ γj

⇒ gap(p, q) ≤ l −max{γi, γj} (4.2)
∀p ∈ Si, q ∈ Q \ Si : range(p, q) ≥ ti ⇒ gap(p, q) ≤ ti (4.3)

Proof. We prove all of them at once. As the language partition L must
have at least one word of length ≤ l in each component, there also has to
be a state q with level(q) ≤ l in each component of P. As the first Bi are
chosen as components of P and the matching γi are l, Invariant 4.1 holds
in the beginning. Similarly Invariants 4.2 and 4.3 obviously hold due to the
initialization by P.

It remains to show that splitting (the inner for loop) does not invalidate
the invariants. So assume all three invariants hold before execution of the
loop and let (Sp, tp) be the pair drawn from the queue T , and a ∈ Σ the
letter in the for each loop. As in the algorithm let X := {q ∈ Q | δ(q, a) ∈
Sp ∧ level(q) < l − tp} and Y := {q ∈ Q | δ(q, a) 6∈ Sp ∧ level(q) < l − tp},
and let Bi be the component we are splitting, so Bi∩X 6= ∅ and Bi∩Y 6= ∅.
Set Z := Bi ∩X and assume |Z| ≤ |Bi \ Z| (the opposite case is symmetric
and will not be shown). We prime a variable to indicate its value after the
splitting has occurred, so x′ is the value of x after splitting Bi w.r.t. (Sp, tp)
and a. Variables that do not change once initialized (like ti) are not primed.
The situation now is as follows:

• r′ = r + 1

• tr′ = tp + 1

• Bj = B′
j for every j ≤ r and j 6= i

• Bi = B′
i ∪B′

r′

• γj = γ′j for every j ≤ r and j 6= i

• γ′i = γ′r′ = l − (tp + 1)

Invariant 4.1 holds for all j ≤ r and j 6= i as then B′
j = Bj and γ′j = γj .

Due to the definition of X and Y both B′
i and B′

r′ will include states with
level ≤ l − tp − 1 = γ′i = γ′r′ completing the first invariant.

For Invariant 4.2 choose arbitrary j1 6= j2 and let p ∈ B′
j1

, q ∈ B′
j2

with
level(p) ≤ γ′j1 and level(q) ≤ γ′j2 . We have to show

gap(p, q) ≤ l −max{γ′j1 , γ
′
j2} .

As our setup is symmetric for j1 and j2 (i.e., exchanging both does not
invalidate it) is suffices to check the next three cases:

65

4.6. An O(n log n) minimization algorithm 4. Cover automata

• {j1, j2} ∩ {i, r′} = ∅
This case directly follows from Invariant 4.2 as B′

j1
= Bj1 , B′

j2
= Bj2 ,

γ′j1 = γj1 , and γ′j2 = γj2 .

• j1 ∈ {i, r′} and j2 6∈ {i, r′}
We know that either γi = l from the initialization or γi = l− (tm + 1)
for some m ≤ p as this is the only way γi is changed. But as for m ≤ p
we know tp ≥ tm and also tp ≥ 0, so obviously l − (tp + 1) = γ′j1 ≤ γi.

Every element from B′
j1

has been in Bi before, and as level(p) ≤ γ′j1 ≤
γi we can apply Invariant 4.2 yielding gap(p, q) ≤ l − max{γi, γ

′
j2
}.

Additionally from γ′j1 ≤ γi we know max{γ′j1 , γ
′
j2
} ≤ max{γi, γ

′
j2
} and

so gap(p, q) ≤ l −max{γ′j1 , γ
′
j2
}.

• j1 = i and j2 = r′

This is the interesting case, as it highlights the relationship between
the components just split. It is easily seen that if X and Y are “useful”
(i.e., non-empty), (X, Y) is a partition of the set {q ∈ Q | level(q) ≤
l − (tp + 1)}. So every p ∈ B′

i with level(p) ≤ γ′i = l − (tp + 1) has to
be in Y and every q ∈ B′

r′ with level(q) ≤ γ′r′ has to be in X. This
yields δ(p, a) 6∈ Sp and δ(q, a) ∈ Sp by definition of X and Y . From
level(δ(p, a)) ≤ 1 + level(p) ≤ l − tp and level(δ(q, a)) ≤ l − tp we
receive range(δ(p, a), δ(q, a)) ≥ l − (l − tp) = tp, so Invariant 4.3 gives
gap(δ(p, a), δ(q, a)) ≤ tp and thus gap(p, q) ≤ 1+tp = l−(l−(tp+1)) =
l −max{γ′i, γ′r′} which was to be shown.

For Invariant 4.3 we only have to look at the new pair (Sr′ , tr′) as all other
Sj and tj are not modified. Now let p ∈ Sr′ = B′

r′ and q ∈ Q\Sr′ , so there is a
j < r′ with q ∈ B′

j . From the way the γ are managed we know that γ′r′ ≤ γ′j .
Additionally let range(p, q) ≥ tr′ , then we have to show gap(p, q) ≤ tr′ .
We know that max{level(p), level(q)} ≤ l − range(p, q) ≤ l − tr′ = γ′r′ , so
level(p) ≤ γ′r′ and level(p) ≤ γ′r′ ≤ γ′j and we can apply the results from
Invariant 4.2 just shown. Thus gap(p, q) ≤ l−max{γ′r′ , γ′j} = l−γ′j ≤ l−γ′r′
completing also the correctness of the third invariant.

Basically those invariants show that no superfluous splits are performed.
On the other hand we have to see all dissimilar states separated by splitting.

Lemma 4.40 ([Kör03], Lemma 5). Let p, q ∈ Q with p 6∼A q, i.e., there
is 0 ≤ m ≤ l with gap(p, q) ≤ m ≤ range(p, q). Then there is a pair (S, t)
in T separating p and q and a pair (S′, t′) with |{p, q} ∩ S′| = 1 and t′ ≤ m
is added to T when splitting the set containing p and q (or p, q are initially
separated and such a pair (S′, t′) exists from initialization).

Proof. We prove this by induction on m. The case m = 0 is obviously
true from the initialization phase of the algorithm, as then gap(p, q) = 0, so

66

4.6. An O(n log n) minimization algorithm 4. Cover automata

χP(δ̂(p, ε)) 6= χP(δ̂(q, ε)), that is p and q are already in different components
of P. The pair (S′, t′) exists from the way T is initialized.

Assume the statement holds for all m ≤ m′ and let m = m′ + 1. As
gap(p, q) ≤ m there is a word w ∈ Σ≤m with χP(δ̂(p, w)) 6= χP(δ̂(q, w)).
The case w = ε is trivial (the same as m = 0), so let w = av with a ∈ Σ,
v ∈ Σ≤m′

, and p′ := δ(p, a), q′ := δ(q, a). Then we know range(p′, q′) ≥
range(p, q) − 1 ≥ m′ and as χP(δ̂(p′, v)) 6= χP(δ̂(q′, v)) also gap(p′, q′) ≤
|v| ≤ m′. So by induction after p′ and q′ have been separated, there was a
pair (S, t) in T with t ≤ m′ and |{p′, q′} ∩ S| = 1. From range(p, q) ≥ m we
know that max{level(p), level(q)} ≤ l −m = l − (m′ + 1) < l − t but only
one of δ(p, a) and δ(q, a) is in S, so when splitting w.r.t. (S, t) and a either
p ∈ X and q ∈ Y or the other way round. But this means if p and q are
in the same component when (S, t) is drawn from T they will be separated
and the pair (S′, t′) generated has either p ∈ S′ or q ∈ S′ but not both and
t′ = t + 1 ≤ m′ + 1 = m.

For the correctness proof we now only have to collect the results seen so
far.

Theorem 4.41 ([Kör03], Theorem 2). On input of a DPkClA A =
(Σ, Q, q0,P, δ) Algorithm 4.3 computes a minimal ∼A-complete partition of
Q.

Proof. From the way the Bi are managed it should be obvious that B :=
(B1, . . . , Br) is a partition of Q. From Lemma 4.40 we know that dissimilar
states are always separated (every pair (S, t) in T is used for splitting) and
as the components Bi are only further fragmented but never merged, B has
to be ∼A-complete.

For minimality denote by bi a state of minimal level in Bi, that is bi ∈ Bi

and level(bi) = minq∈Bi level(q). From Invariant 4.1 we know level(bi) ≤ γi

for every 1 ≤ i ≤ r. But then for any 1 ≤ i < j ≤ r Invariant 4.2 gives
gap(bi, bj) ≤ l − max{γi, γj} ≤ l − max{level(bi), level(bj)} = range(bi, bj)
and thus bi 6∼A bj . So D := {bi | 1 ≤ i ≤ r} is ∼A-independent and
Lemma 2.6 yields the minimality of B as |B| = |D|.

After having seen the correctness of the algorithm we will continue by
discussing the complexity of a suitable implementation. Let n be the number
of states and m the size of the alphabet for the input automaton. The
initialization part can obviously be implemented in linear time, so we will
only talk about the main while loop. As every Bi always contains at least
one state, r cannot exceed n. For fixed i the set Bi never grows, so always
|Bi| ≤ |Si|. Assume the set Bi is just split resulting in the new set Bj . As
always the smaller part is used for the new set, 2|Sj | ≤ |Si|. Consequently
a fixed state q can be moved to a new component at most log n times and
the overall number of state moves is bounded by n log n.

67

4.6. An O(n log n) minimization algorithm 4. Cover automata

The part that turns out to be the most expensive is the calculation of the
set X (although in the implementation it is never represented explicitly).
As with the Hopcroft algorithm we use the (pre-calculated) lists δ−1(q, a) :=
{p ∈ Q | δ(p, a) = q}, i.e., for each q ∈ S and every p ∈ δ−1(q, a) we add
p to X if it satisfies the level constraint. So the overall number of steps for
the construction of X summed over all loop iterations is

k1

r∑
i=1

∑
a∈Σ

∑
q∈Si

|δ−1(q, a)| ,

where k1 is a constant. As explained before, no state q appears in more than
log n of the Si, so above expression is bounded by

k1 log n
∑
q∈Q

∑
a∈Σ

|δ−1(q, a)| ,

which again simplifies to O(mn log n) due to
∑

q∈Q

∑
a∈Σ |δ−1(q, a)| = mn

as illustrated in Section 3.3.
While this demonstrates where the n log n have their origin in, there are

still many more details needing illumination. One of these is that storing
all of the Si in the queue T would require Ω(n log n) memory, which can
be avoided by maintaining for each Bi a history of components having been
split off. Another aspect is that the test if Bi ∩X 6= ∅ and Bi ∩ Y 6= ∅ can
be performed in constant time, if a bunch of arrays indicating the number
of elements in certain sets is managed.

For a complete complexity analysis all these details would have to be
outlined and again shown to be possible in time. However none of these
is really influenced by our minor modifications and so the reader is kindly
asked to consult [Kör03] for implementation details (down to the source
code level) and a thorough analysis of the running time. The analogon to
our final result is also found there.

Theorem 4.42 ([Kör03], Theorem 3). For a DPkClA A = (Σ, Q, q0,P, δ)
with |Σ| = m and |Q| = n Algorithm 4.3 determines a minimal ∼A-complete
partition of Q in time O(mn log n) and space O(mn).

Corollary 4.43. For a DPkClA A = (Σ, Q, q0,P, δ) with |Σ| = m and
|Q| = n the minimal DPkClA can be constructed in time O(mn log n) and
space O(mn).

68

Chapter 5

Lookup automata

In the previous chapter we have seen how limiting the class of words to be
decided can lead to a more compact automaton. The words in the context
of our application will be IP addresses, which are not only finite but are
guaranteed to be of the same size. Thus it seems natural to tighten the
constraint of deciding only words of size at most l even more to requiring
input words to be of length exactly l. We will call automata for this restricted
class of words lookup automata.

Definition 5.1. Let Σ be an alphabet, l ∈ N, L a k-partition of Σl. A DPkA
A is called a deterministic k-partition l-lookup automaton (DPkLlA) for L
iff L(A)|Σl = L.

We will start the chapter by visiting some examples of DPkLlAs. Then
we look at how to decide the equivalence of two DPkLlAs and the duality
between independent sets and right invariant equivalence partitions for a
relation on words induced by lookup automata. Following the pattern of
the previous chapters we would study minimization algorithms next, but
as it turns out not to be easily solved, we give evidence for its potential
hardness instead and provide heuristics which at least produce small (instead
of minimal) DPkLlAs.

5.1 An example

To introduce lookup automata and to highlight some interesting properties
of DPkLlAs, we will look at the family of DP2LlAs which recognize the word
0n1n. More formally for a given n we are interested in DP2As on alphabet
{0, 1} accepting a language partition (L1, L2) with L2 ∩ {0, 1}2n = {0n1n}.

To start with something well known, we should construct the minimal
DP2As recognizing 0n1n. The construction is fairly simple and shown in
Figure 5.1. Obviously the minimal DP2A accepting only 0n1n has exactly
2n + 2 states. We can do somewhat better by using a cover automaton.

69

5.1. An example 5. Lookup automata

0

1

0

1

0

1

1

1

1

0

0

0

0,1

0,1

Figure 5.1: The minimal DP2A recognizing 0n1n

1

0

1 0

1 0

0
1

0
1

0 1

0,1

Figure 5.2: The minimal DP2C2nA recognizing 0n1n

0

1
0,1

Figure 5.3: The minimal DP2L2A recognizing 01

Following the ideas from the previous chapter we see the sink state and the
initial state to be similar, but all other state pairs are dissimilar. So the
minimal DP2C2nA for our example (Figure 5.2) is found by merging the
initial and the sink state in the minimal DP2A and thus has 2n + 1 states.

We introduced DPkLlAs hoping for reduced automaton size and therefore
expect to construct a suitable automaton using less than 2n + 1 states.
Indeed we can, but as the automata are not easily described we start with
small fixed values of n.

The first case is n = 1. Obviously there is no solution with only one state,
as the words 01 and 00 have to go into separate states. But for two states
with some trial-and-error we easily find the automaton shown in Figure 5.3
which has to be the minimal DP2L2A for the partition ({00, 10, 11}, {01}).

Now for the case n = 2. After some thinking on how DPkLlAs work and
how to exploit this, one might find one of the DP2L4As shown in Figure 5.4

70

5.1. An example 5. Lookup automata

0
1

0

1

1

0 0,1

0

1
1

0

0,1
0,1

Figure 5.4: Two DP2L4As for 0011

q0

q1
0

q2

1

1

0

0,1

Figure 5.5: The minimal DP2L4A recognizing 0011

0

1

1
0

0,1

1
0
1

0

Figure 5.6: A DP2L2nA recognizing 0n1n

having 4 states. However these are not minimal, as by using a brute-force
program which enumerates all automata with less than 4 states we find the
unique minimal DP2L4A from Figure 5.5. To see, why from all words of
length 4 only 0011 is accepted by this automaton, we observe that for all
words w of even length we would have δ̂(q0, w) = q0 if the 0-loop at state
q1 would not exist. So to reach the accepting state q2 in 4 steps we have to
use this transition. The shortest possible word including this transition is
00 and the shortest word to get from q1 to q2 is 11 which happen to give the
required 0011.

This construction principle can be generalized by “prolonging” the path
to the 0-loop and back as in Figure 5.6. Our first case of 0111 also fits into
this pattern. This automaton uses only n+1 states opposed to the 2n+1 of
the minimal DP2C2nA. Using our brute-force code we can show that these
automata are minimal for n ∈ {1, 2, 3, 4} and even unique (up to isomorphic
state renaming).

For n ∈ {5, 6} above automaton is still minimal, but we can find non-

71

5.1. An example 5. Lookup automata

0
0

1
1 1

1

0 0

0
1 1

1

Figure 5.7: Two DP2L10As recognizing 0515 (without sink state)

0 0

0
1

1
1 1

1

1

Figure 5.8: A DP2L28A recognizing 014114 (without sink state)

isomorphic DP2L2nAs with the same number of states (n + 1). The two
additional automata for n = 5 are displayed in Figure 5.7 but omitting the
sink state (so every missing transition is towards some state ⊥).

Unfortunately our brute-force approach is not efficient enough to con-
tinue enumerating minimal DPkLlA for larger n within reasonable time.
However from the last example we find another construction principle. While
our first attempts of finding minimal DPkLlAs in Figure 5.4 had a single cy-
cle on the path from the initial to the accepting state, the automata in
Figure 5.7 contain two cycles.

We will give a final example for this two-cycle approach. Let n = 14,
then the automaton from Figure 5.8 is a DP2L28A accepting only 014114.
To see why this holds, we observe that each word reaching the accepting
state has to traverse the first cycle x times and the second cycle y times.
Additionally as this is a DP2L28A only words of length 28 are acceptable, so
for x and y we get the formula 2 + 3x + 4 + 5y = 28. The integral solutions
of this equation are given by (x, y) ∈ {(4− 5u, 2 + 3u) | u ∈ Z}. As both x
and y have to be non-negative, the only valid solution is x = 4, y = 2 and
thus the only accepted word is 02+3·414+5·2 = 014114. We do not know, if
this DP2L28A is minimal, but with only 9 states (remember the sink state)
we are far better than the n + 1 = 15 state construction from above.

To complete this example we summarize our observations so far.

Observation 5.2. 1. The minimal DPkLlA for a given partition of Σl is
not necessarily unique.

2. The minimal DPkLlA for a given partition of Σl is often smaller than
a minimal DPkA or DPkClA for that language partition.

72

5.2. Equivalence testing 5. Lookup automata

3. Given a family of language partitions for which the minimal DPkAs
and minimal DPkClAs follow a simple pattern, the minimal DPkLlAs
do not seem to follow a single pattern at all.

For the size of a minimal DPkLlA (second item) we have the trivial upper
bound of the size of a minimal DPkClA (and thus DPkA).

5.2 Equivalence testing

Before handling DPkLlA minimization we will investigate the related prob-
lem of automaton equivalence. Two automata are equivalent, if they rec-
ognize the same language, so given DPkLlAs A = (Σ, Q, q0,PQ, δ) and B =
(Σ, R, r0,PR, γ) we want to know whether L(A)|Σl = L(B)|Σl . Following let
nA := |Q|, nB := |R|, and m := |Σ|, so the size of the input to the problem
is bounded by O(m(nA + nB) + log l).

There is a rather simple algorithm for this problem running in pseudo-
polynomial time. Let C be the minimal DFA accepting the language Σl.
C is easily seen to have l + 2 states. Then the DPkAs A × C and B × C
accept the languages L(A)|Σl respectively L(B)|Σl . Both of these automata
are acyclic, so we can use the algorithm from Section 3.4 to minimize them.
Then testing equivalence can be performed by a simple depth first search as
the minimal DPkA is unique. Multiplying a DPkA with C increases its size
at most by a factor l + 2 and this process can be performed in time linear
in the size of the resulting automaton. These ideas show the correctness of
the following lemma.

Lemma 5.3. Let A and B be two DPkLlAs with nA respectively nB states
on an alphabet of size m. The equivalence of A and B can be decided in
time O(lm(nA + nB)).

The problem with this approach is the linear dependence on l, while l
accounts only logarithmically to the input size of the equivalence problem.
As long as l is bounded by a polynomial in the size of the two input DPkLlAs
(as it is for example in the context of routing tables) this is not a problem.
However in general we could have log l = Ω(m(nA + nB)) for which above
algorithm degenerates to an exponential one, so we will work towards a
refined algorithm working in polynomial time.

For every pair (q, r) ∈ Q×R and i ∈ N0 denote by

Si(q, r) :=
⋃

w∈Σi

{
(δ̂(q, w), γ̂(r, w))

}
the set of state pairs from Q × R which are reachable from (q, r) with the
same word of length i. The usefulness of this definition for the equivalence
problem is shown next.

73

5.2. Equivalence testing 5. Lookup automata

Lemma 5.4. Let A = (Σ, Q, q0,PQ, δ) and B = (Σ, R, r0,PR, γ) be two
DPkLlAs. A and B are equivalent, iff for all (q, r) ∈ Sl(q0, r0) we have
χPQ

(q) = χPR
(r).

Proof. A and B are equivalent iff L(A)|Σl = L(B)|Σl . This can be rephrased
as ∀w ∈ Σl : χL(A)(w) = χL(B)(w), which in turn is the same as ∀w ∈ Σl :
χPQ

(δ̂(q0, w)) = χPR
(γ̂(r0, w)). Substituting q for δ̂(q0, w) and r for γ̂(r0, w)

yields ∀(q, r) ∈
{(

δ̂(q0, w), γ̂(r0, w)
)
| w ∈ Σl

}
: χPQ

(q) = χPR
(r) which

reduces to ∀(q, r) ∈ Sl(q0, r0) : χPQ
(q) = χPR

(r).

So if we are given Sl(q0, r0) we can check the equivalence of A and B in
time O(nAnB) as Sl(q0, r0) contains at most that many state pairs. Now we
only have to find an efficient method for calculating Sl(q0, r0). For small i
we can use above definition of Si(q, r), but as there are mi words of length
i this does not scale well. However there is a simple formula to calculate
Si+j(q, r) if we already know Si and Sj :

Si+j(q, r) =
⋃

w∈Σi+j

{
(δ̂(q, w), γ̂(r, w))

}
=

⋃
u∈Σi

⋃
v∈Σj

{
(δ̂(q, uv), γ̂(r, uv))

}
=

⋃
u∈Σi

Sj(δ̂(q, u), γ̂(r, u))

=
⋃

(s,t)∈Si(q,r)

Sj(s, t)

In conjunction with a trick often referred to as repeated squaring which is
used for efficient exponentiation, this results in a polynomial time algorithm
for the DPkLlA equivalence problem.

Theorem 5.5. Let A and B be two DPkLlAs with nA respectively nB states
with an alphabet of size m. The equivalence of A and B can be decided in
time O(mn2

An2
B + n3

An3
B log l).

Proof. We assume l to be given in binary, i.e., l =
∑r

i=0 li2i with each
li ∈ {0, 1} and r = dlog2(l + 1)e − 1. Furthermore let Q = {q0, . . . , qnA−1},
R = {r0, . . . , rnB−1}, so we can represent each Si(q, r) as a matrix from
{0, 1}nA×nB where a 1 in row x and column y indicates (qx, ry) ∈ Si(q, r).
We write Si for the set {Si(q, r) | (q, r) ∈ Q×R}. Clearly we can initialize
S0 and S1 in time O(mn2

An2
B).

Given Si and Sj we can calculate Si+j using the formula derived before
in O(n3

An3
B) steps. Thus determining S2i for all 1 ≤ i ≤ r takes O(n3

An3
Br)

steps using S2i = S2i−1+2i−1 . Now Sl can be written as Sl020+···+lr2r and as

74

5.3. Duality gap 5. Lookup automata

all required S2i are known this can be done in O(n3
An3

Br) as well. To test
equivalence we use Lemma 5.4, and the overall complexity follows as the
sum of these individual steps.

5.3 Duality gap

When developing an algorithm for minimizing DPkLlA we would like to prove
its correctness. Therefore we need some criterion for the minimality of an
DPkLlA. What was used for DPkClAs (and also for DPkAs, but as it was less
explicit there, we will take DPkClAs for reference here), were sets of words
from which no two can be in the same state language (dissimilarity sets).
Obviously a minimal DPkClA must have at least as many states as the size
of the largest of these sets, so the problem of finding a maximal dissimilarity
set is dual to the DPkClA minimization problem. We put quite some effort
in proving that the size of a maximal dissimilarity set and the the size of a
minimal DPkClA are the same (Corollary 4.5, Theorems 4.8 and 4.13), as
then we can prove a DPkClA minimal by finding a dissimilarity set of the
same size. Unfortunately we cannot use the same approach for DPkLlAs as
there is a gap between the size of a minimal DPkLlA and a maximal set of
words not allowed in the same state language, which will be shown in this
section.

An essential step in the previous chapters has been the definition of
a suitable relation indicating if two words are “compatible”, i.e., given a
language partition L, these words could be placed into the same state of
an automaton, without making L impossible to be recognized by it. The
canonical definition in the DPkLlA context is the following, which should be
compared to Definition 4.9.

Definition 5.6. Let Σ be an alphabet, l ∈ N, and L a partition of Σl. Define
the relation 'L⊆ Σ∗ × Σ∗ by

x 'L y :⇔ ∀w ∈ Σ∗ :
(

(|xw| = l ∧ |yw| = l) ⇒ (χL(xw) = χL(yw))
)

.

Above definition is better understood when split into two cases. If |x| 6=
|y| or |x| > l or |y| > l, then always x 'L y, as the condition |xw| = l∧|yw| =
l will never hold for the same w. For the remaining case (|x| = |y| ≤ l) we
get

x 'L y ⇔ ∀w ∈ Σl−|x| : χL(xw) = χL(yw) .

From this it is easily seen, that for any r ≥ 0 the relation 'L ∩ (Σr × Σr)
is an equivalence relation. So the following lemma follows without further
proof.

Lemma 5.7. Let Σ be an alphabet, l > 0, L a k-partition of Σl, and D ⊆ Σ∗

an 'L-independent set. Then all words in D are of the same length.

75

5.3. Duality gap 5. Lookup automata

This lemma helps us in finding maximal 'L-independent sets as shown
next.

Lemma 5.8. Let Σ be an alphabet with |Σ| ≥ 2, l ≥ 1, and L = (L1, L2) a
2-partition of Σl separating a single word, i.e., |L2| = 1. Then a maximal
'L-independent set has size 2.

Proof. Let u ∈ L1, and v the only word from L2, then obviously {u, v} is a
'L-independent set of size 2. Now assume there is a bigger 'L-independent
set D = {d1, . . . , dr} ⊆ Σ∗ with r > 2 and all di pairwise distinct. From
Lemma 5.7 we know |d1| = . . . = |dr| and |d1| ≤ l, as otherwise some
di 'L dj (i 6= j), contradicting D’s 'L-independence. Thus at most one
element in D can be a prefix of v (the only word from L2) and there must
be two elements d̂ 6= d̄ in D not being a prefix of v. But then for every word
w ∈ Σl−|d1| both d̂w 6= v and d̄w 6= v. As v was the only word in L2 we get
∀w ∈ Σl−|d1| : χL(d̂w) = 1 = χL(d̄w) and thus d̂ 'L d̄, a contradiction.

Now we are ready to give a counter example, showing the gap we initially
mentioned.

Theorem 5.9. For each alphabet Σ with |Σ| ≥ 2 and each l > 6 there is a
2-partition L of Σl such that the size of a maximal 'L-independent set is
strictly smaller than the size of a minimal DP2LlA deciding L.

Proof. We will assume |Σ| = 2 and generalize to larger alphabets in the end.
For this alphabet there are at most n2n2n DP2LlAs with exactly n states,
as each of the 2n transitions can be chosen from n target states, the 2n

results from partitioning n states into final and non-final states. Thus there
are at most n2n2n different 2-partitions of Σl recognizable by an n-state
DP2LlA, more specific no more than 22·222 = 64 different 2-partitions can
be recognizes by all DPkLlAs with 2 states. On the other hand we know
that for each 2-partition L with only a single word in the second component
the maximal 'L-independent set has size 2 and there are 2l > 26 = 64 such
partitions. Thus there has to be at least one 2-partition fulfilling the claim
of this theorem.

If we add a new letter to Σ the claim obviously stays valid, as now matter
how we “wire” the transitions for this new letter, the recognized partition
restricted to the old alphabet does not change. Thus by induction we can
make the alphabet arbitrarily large.

We only proved the existence of a gap, but said nothing about its size.
Using larger l we can clearly “beat” even larger automata, while the maximal
'L-independent set still has size 2. Thus the same idea can be used to prove
an arbitrarily large gap. On the other hand this gap also appears for smaller
l as shown by the example in Section 5.1 (L2 = {0212}).

76

5.4. Negative results 5. Lookup automata

5.4 Negative results

In analogy to the previous two chapters we would like to present an efficient
algorithm for minimizing a given DPkLlA. Unfortunately the methodology
used for partition and cover automata fails for lookup automata, which
makes us wonder whether the problem is computationally intractable. In
this section we will formalize the problem of DPkLlA minimization and col-
lect evidence for its computational hardness.

Problem: Minimum Equivalent DPkLlA

Instance: Positive integers l and S, DPkLlA A.

Question: Is there a DPkLlA B with at most S states equivalent to A,
i.e., with L(A)|Σl = L(B)|Σl ?

The problem discussed in the literature most similar to ours above is
probably the Minimum Consistent DFA problem (also called Minimum
Inferred Finite State Automaton in [GJ79]):

Problem: Minimum Consistent DFA

Instance: Finite alphabet Σ, finite sets S, T ⊆ Σ∗, positive integer K.

Question: Is there a DFA A with at most K states and both S ⊆ L(A)
and T ∩ L(A) = ∅ ?

This problem is known to be NP-complete [Gol78] but solvable in poly-
nomial time if S ∪ T = Σ≤l for some l as seen in Chapter 4. It remains NP-
complete when restricted to the case S∪T ⊆ Σ≤l with |Σ≤l\(S∪T)| ≤ |Σ≤l|ε
for some fixed ε > 0 [Ang78]. Additionally for any constant k there can be
no polynomial-time approximation algorithm finding a consistent DFA with
less than optk states unless P = NP, where opt is the number of states of a
minimum consistent DFA [PW93].

Our problem is similar to the case S ∪ T = Σl (for given l). However
the words from S and T are not given explicitly but instead as a finite
automaton which makes the problem not easier, as a suitable automaton can
be constructed from given S and T in polynomial time. Being a special case
of Minimum Consistent DFA does not help in deciding whether Minimum
Equivalent DPkLlA is NP-hard, polynomial time solvable, or in between
(unless of course P = NP, which would make this entire section obsolete),
but it does help in finding suitable literature where similar problems are
handled.

A first classification is easily performed. From the section before we
know how to test equivalence of DPkLlAs in polynomial time, so there is a
simple nondeterministic polynomial time guess-and-check algorithm for the
Minimum Equivalent DPkLlA problem.

77

5.4. Negative results 5. Lookup automata

Lemma 5.10. Minimum Equivalent DPkLlA is in NP.

Additionally a similar construction as in the proof of Theorem 4.21 can
be used to show the minimal DPkClA for a language partition L of Σl to
be at most about l times smaller than a minimal DPkA. Thus converting
the given DPkLlA to a DPkA using a product construction and minimizing
the DPkA with any algorithm from Chapter 3 yields a simple approximation
algorithm.

Lemma 5.11. The optimization version of the Minimum Equivalent
DPkLlA problem can be approximated in polynomial time by a factor of
l + 1 if l is given in unary.

Next we will show that the class of algorithms used for DPkAs and
DPkClAs cannot be used for DPkLlAs. Therefore we introduce what we
call partition-and-merge algorithms. These are algorithms on an automaton
A = (Σ, Q, q0,P, δ) working in two steps. The first phase calculates a parti-
tion R = (R1, . . . , Rr) of Q, while the second phase merges the states from
each component of R into one new state. Merging here means that the new
automaton is (Σ,R, R1,PR, γ) where q0 ∈ R1 and PR chosen arbitrarily.
For γ we require consistence, i.e., for given a ∈ Σ the successor for an Ri

must be chosen from the representatives of the successor states of one of its
contained states, formally

γ(Ri, a) = Rj ⇒ ∃s ∈ Ri, t ∈ Rj : δ(s, a) = t .

Looking back, all minimization algorithms presented so far are from this
class. Contrary the Minimum Equivalent DPkLlA problem cannot be
solved this way.

Lemma 5.12. The Minimum Equivalent DPkLlA problem cannot be
solved by a partition-and-merge algorithm.

Proof. Consider the case Σ = {0, 1}, l = 4, L = (Σl \ {0011}, {0011}). We
know from Section 5.1 that the minimum DP2L4A for L has 3 states and is
unique (shown in Figure 5.5). So if there is a partition-and-merge algorithm,
each of the DP2L4As from Figure 5.4 with 4 states has to be reducible to the
minimum one by merging. As they only have to loose one state, two states
must be merged while for the other two states the transitions are fixed by
the consistence requirement. However it is easily checked, that for any two
states and any selection of transitions kept after merging, the result is never
isomorphic to the minimum DP2L4A for L.

Another hint on the hardness of the Minimum Equivalent DPkLlA
problem was already given in Section 5.3. For many problems the first
step towards an efficient algorithm is some kind of duality theorem proving

78

5.5. Heuristically reducing DPkLlA size 5. Lookup automata

equality for the optima between the primal and the dual problem. The most
prominent example for this is probably the max-flow min-cut theorem for
network flows, and here Theorem 4.13 can be interpreted as such a duality
result. On the other hand adding restrictions to a problem, which force a
gap between these optima, often makes the problem hard. An example is
the linear programming problem, which is solvable in polynomial time but
becomes NP-complete when searching for the integer optimum (known as
integer linear programming). Besides becoming NP-complete also a duality
gap appears1. So the gap identified in Theorem 5.9 could be another hint
on the hardness of Minimum Equivalent DPkLlA .

We finish this section by showing that for the case of IP addresses (Σ =
{0, 1}, l ∈ {32, 128}) the problem is (at least in theory) trivial.

Lemma 5.13. For fixed alphabet Σ and fixed l the Minimum Equivalent
DPkLlA problem can be solved in constant time.

Proof. Let m := |Σ|, then there is a DPkA with at most 1 +
∑l

i=0 mi ≤
max{ml+1, l + 2} =: N states. This is easily seen, as all words longer than l
are equivalent and thus can be collected in a single state. For the remaining
words we need at most one state per word. So it is sufficient to enumerate
all DPkLlA with less than N states.

For a given number of states n we have nmn ways to define the δ function.
Given the state set Q and δ we can test the equivalence to the input DPkLlA
by evaluating δ for each word in Σl for both automata and comparing the
state class of the states reached. This also implies the state partition P
which was not decided in advance.

Overall we have to check
∑N−1

i=0 imi automata where each check needs
O(lml) steps, but this together is an (albeit large) constant.

5.5 Heuristically reducing DPkLlA size

From the discussion in the previous section the DPkLlA minimization prob-
lem does not seem to be efficiently solvable. Nonetheless we are interested
in reducing the size of DPkLlAs when using them for the representation of
routing tables. While a minimal DPkLlA would be nice to have, for real
world applications it might be sufficient to just calculate a smaller DPkLlA.
So in this section we present a heuristic approach for transforming a given
DPkLlA into an equivalent one with possibly less states. However we can
give no guarantees on the amount of states lost here. To get an idea on the
quality of these heuristics we apply them on some real world instances in
Chapter 7.

The first idea might be to modify one of the partition-and-merge al-
gorithms from Chapters 3 and 4. As we know from Lemma 5.12 such an

1Details on the mentioned problems and theorems can be found in [PS82]

79

5.5. Heuristically reducing DPkLlA size 5. Lookup automata

algorithm will not be able to find a minimal DPkLlA, but maybe the re-
sulting DPkLlA is “small enough”. Unfortunately the canonical relations on
the states of a DPkLlA, which are the core of such an algorithm, either are
not “strong” enough (the resulting algorithm would be the same as DPkClA
minimization) or they do not have the required properties exploited by these
algorithms (namely the right-invariance on the state level). Even if we could
find a suitable relation, we still had to struggle to make an O(n log n) or even
linear time algorithm of it, if this is possible at all, as the simpler quadratic
algorithms are definitely to slow for the intended application with routing
tables, where we have automata with more than 106 states. So instead
we describe a different approach using the existing DPkClA minimization
algorithms. The key idea is captured in the next lemma.

Lemma 5.14. Let Σ be an alphabet, l a positive integer, and L be a language
k-partition of Σl. Then there is a k-partition L̂ of Σ≤l such that the minimal
DPkClA for L̂ is a minimal DPkLlA for L.

Proof. Denote by A = (Σ, Q, q0,P, δ) the minimal DPkLlA for L. This A
defines a component for each w ∈ Σ<l by χP(δ̂(q0, w)) and thus the partition
L̂. Obviously A is a DPkClA for L̂, and as L̂|Σl = L each DPkClA for L̂ is
a DPkLlA for L. Thus A is also a minimal DPkClA as otherwise a smaller
DPkLlA would exist.

From the lemma we know that we can find the minimal DPkLlA for a
partition L by “guessing” the right component for each word shorter than
l. This of course will not work for us, as not only we have no idea how to
perform this guesswork, but also there are

∑l−1
i=0 |Σ|i words to be guessed

which is usually exponential on the size of the automaton. However the
words from Σ<l are already implicitly clustered by the state languages Lq(A)
of the given automaton. So the idea is to “guess” a new component in P
for each state in Q and then use DPkClA minimization on the resulting
automaton. Of course this is only a rough approximation of what happens
in Lemma 5.14, but we are just looking for a heuristic solution anyway.
There are two aspects to be considered: we may not change the component
for a state q which is reachable from q0 by some word w of length l as this
would affect the language partition recognized, and we have to define how
guessing of the new component works.

For the first part we need another definition. We say some state q is
r-distant, if there is a word w ∈ Σr with δ̂(q0, w) = q. The set of all r-
distant states is denoted by Dr(A). As said before, we may only modify the
component for states from Q \Dl(A).

Lemma 5.15. Let A be a finite automaton with n states on alphabet Σ,
r > 0. We can calculate the sets D0(A), . . . , Dr(A) in O(|Σ|nr).

80

5.5. Heuristically reducing DPkLlA size 5. Lookup automata

Proof. We know D0(A) is just the initial state of A. Calculating Di(A) from
Di−1(A) can be performed in O(|Σ|n) in a straight forward fashion.

Using a similar technique as in Section 5.2 the set Dr can also be cal-
culated in O(|Σ|n + n3 log r). However we are only interested in l-distant
states, and as l is much smaller than n for IP routing tables, we prefer the
method presented in the lemma above.

Now that we know how to identify the states we may not modify, we have
to decide on how to guess the new component for each state. The simplest
method would be to choose for each state the target component randomly
from all available, but this does not work too well when there are many
components. A better approach is to select one of the successor states and
use the same component, thus allowing the DPkClA minimizer (which only
merges states from the same component) to combine them. Additionally we
handle the states “back-to-front”, i.e., in the order they appear in the sets
Dl−1(A), . . . , D0(A). The details are outlined in Algorithm 5.1.

Algorithm 5.1 A heuristic approach for DPkLlA size reduction
Input: A DPkLlA A = (Σ, Q, q0,P, δ)
Output: A DPkLlA B equivalent to A which is often smaller

Calculate D0(A), . . . , Dl(A)
S := Dl(A)
for i = l − 1 down to 0 do

for each q ∈ Di(A) \ S do
choose random a ∈ Σ uniformly distributed
move q to the same component of P as δ(q, a)

end for
S := S ∪Di(A)

end for
return the minimal equivalent DPkClA for the modified automaton

Lemma 5.16. Let A be a DPkLlA with n states with an alphabet of size
m. Algorithm 5.1 calculates an equivalent DPkLlA with at most n states in
O(mn(l + log n)) steps.

Proof. The equivalence is seen from the fact that only states not in Dl(A)
are moved to another component, and the DPkClA minimizer preserves the
assignment of all words in Σ≤l which includes the words in Σl. Furthermore
no step in the algorithm adds any states.

For the complexity we just combine Lemma 5.15 with Körner’s mini-
mization algorithm (Corollary 4.43).

As it is hard to judge the quality of our heuristic approach from its
description alone, we provide some results on routing table instances in

81

5.5. Heuristically reducing DPkLlA size 5. Lookup automata

Section 7.2. As the algorithm has a DPkLlA both as input and output
we can apply it multiple times, and the results indicate that two or three
repetitions are a good idea.

82

Chapter 6

Longest prefix matching
using automata

Until now we have studied finite automata for several classes of partitions,
but did not describe the connection between automata and the longest pre-
fix matching problem on IP addresses, which we initially intended to solve.
Closing this gap is the goal of this chapter, where we present several ap-
proaches of how a forwarding table can be represented as a finite automaton
and how these can be constructed efficiently.

In Section 1.2 the input for constructing a forwarding table was given as
a set of prefixes P , the next hops H, and a mapping f : P → H. To simplify
the construction of an automaton we assume H = {2, 3, . . . , k}, reserving
the answer 1 for the failed lookup, i.e., if no matching prefix is in P . Next
hop queries are only run on IP addresses, so the alphabet Σ = {0, 1} and
all query strings will have the same length l. Consequently we may assume
all strings in P having length at most l as well.

To clarify the differences between the presented methods we use a com-
mon example throughout the entire chapter. The prefixes and their next
hop are shown in Figure 6.1. To keep the example manageable we assume
l = 4, so we can manually enumerate all possible IP addresses.

In the following sections we show how a finite automaton can be used as
a forwarding table and address the problem of constructing such an automa-
ton. The remaining sections describe a useful automaton transformation and

prefix next hop
00 2
1 3
101 2
100 3

Figure 6.1: Prefixes and next hops for the example

83

6.1. Representing forwarding tables as automata6. Longest prefix matching using automata

IP address next hop
0000 2
0001 2
0010 2
0011 2
0100 1
0101 1
0110 1
0111 1

IP address next hop
1000 3
1001 3
1010 2
1011 2
1100 3
1101 3
1110 3
1111 3

Figure 6.2: Expanded IP table for the example

0

1

1,0
1

0 1,0

0

1

1

0

/21,0

/31,0

1,0

1,0

1,0

Figure 6.3: Expanded automaton for the example

a common trick to speed up the lookup process. Both of those techniques
are rather simple but technical, so we will only give the intuitive idea and
omit the algorithmic details and proofs.

As a side note we should mention, that we expect the transition function
δ to be represented as a plain table, so we can manipulate it in constant
time. Furthermore the automata constructed in this chapter usually are
not minimal, but they can be used with the algorithms from the previous
chapters to receive minimal ones.

6.1 Representing forwarding tables as automata

Basically there are two ways for storing the next hop information in an au-
tomaton. The more obvious one is probably just inserting the expanded
IP table (see Figure 6.2) into an automaton, which we will call the ex-
panded automaton. So the language to be decided by the automaton is
L = (L1, . . . , Lk) where Li := {w ∈ Σl | next hop for w is i}. A suitable
automaton is shown in Figure 6.3. The advantage of such an automaton is
the simplified lookup. If the automaton is given by (Σ, Q, q0,P, δ) for an IP
query w we just have to evaluate χP(δ̂(q0, w)). However it is not obvious
how to construct this automaton without determining the expanded IP ta-
ble whose number of entries is exponential in l. Later we will see how this
can be achieved in polynomial time.

An alternative approach is to only insert the prefixes into the automaton

84

6.1. Representing forwarding tables as automata6. Longest prefix matching using automata

0

/3

1

1,0

1

/2
0

1,0

1

0

1

/3
0

1,0

Figure 6.4: Prefix automaton for the example

Algorithm 6.1 Forwarding table lookup for a prefix automaton
Input: prefix automaton A = (Σ, Q, q0,P, δ),

IP address w = w1w2 . . . wl

Output: next hop for w (including 1 for unknown)

q := q0

h := χP(q)
for i := 1 to l do

q := δ(q, wi)
if χP(q) 6= 1 then

h := χP(q)
end if

end for
return h

(here called prefix automaton), thus deciding L = (L1, L2, . . . , Lk) where
Li := {w ∈ P | f(w) = i} for i ≥ 2 and L1 := Σ≤l \

⋃k
i=2 Li. This

is the method chosen by the existing trie-based algorithms although there
are many deviations from the basic scheme. The advantage here is the
often reduced size of such an automaton (Figure 6.4) over the expanded
automaton. However we now have to evaluate χP(δ̂(q0, v)) for every prefix
v of a given IP address w. Of course some efficiency is gained by using
intermediate results when using a method as the one shown in Algorithm 6.1.

Before heading to the construction algorithms we have to talk about the
efficiency measure used. For algorithms which build or transform automata,
we will use the usual asymptotic notation (Landau symbols). However for
the lookup complexity we are more interested in the exact number of memory
accesses required in the worst-case as explained in Section 1.2. We will later
implement automata using a lookup table (two-dimensional array) for δ
and an array containing the state class of each state for P. Thus both a
single transition δ(·, ·) and a state component lookup χP(·) require a single
memory access. We are discussing both operations separately nonetheless

85

6.2. Automaton construction using tries 6. Longest prefix matching using automata

0

/3

1

/20

0

/21

/3

0

Figure 6.5: The trie for the example prefixes

as it aids in understanding which operation contributes most to the lookup
time. For the expanded automaton a prefix lookup requires l transitions and
one component lookup, while the prefix automaton requires l transitions and
l component lookups.

6.2 Automaton construction using tries

Up to now all automata presented in this text simply appeared without
any hint on how to construct them systematically. In this section we will
address this issue. Our tool of choice is the trie, which was described in
[Fre60] as a way to organize memory for efficient retrieval of data indexed
by strings. Today the term trie is usually used for ordered trees where all
edges are labeled with a character from some alphabet Σ ([GT01], pp. 429).
The definition of a trie given here is motivated by the intended usage as an
“incrementally constructed automaton”.

Definition 6.1. An automaton A = (Σ, Q, q0,P, δ) is called trie, if there is
a unique sink state ⊥∈ P1 and for each q ∈ Q \ {⊥} we have |Lq(A)| = 1.

When drawing tries we will usually omit the state ⊥ and all transitions
to it, as the automaton then is much simpler to draw.

Remark 6.2. The transition graph induced by the states Q \ {⊥} of a trie
is a directed tree with root q0.

We give no proof for this, but it is easy to see that if the transition graph
was no tree, there had to be an undirected cycle which in turn would lead
to at least one state q having |Lq(A)| 6= 1. This is best seen at the trie for
the prefixes in our example as shown in Figure 6.5.

What makes tries especially useful is that inserting a word to a trie is
as easy as performing a lookup. The only difference is the eventual addition
of new states. This straight forward method is shown in Algorithm 6.2, the
formal description follows.

Lemma 6.3. Let A = (Σ, Q, q0,P, δ) be a trie, w ∈ Σ∗ a word of length m,
and 1 ≤ i ≤ |P| + 1. Applying Algorithm 6.2 on A, w, and i results in a
trie A′ = (Σ, Q′, q0,P ′, δ′) such that

86

6.2. Automaton construction using tries 6. Longest prefix matching using automata

Algorithm 6.2 Adding a word to a trie
Input: Trie (Σ, Q, q0,P, δ) with sink state ⊥

word w = w1w2 . . . wm and desired component index i
q := q0

for j := 1 to m do
if δ(q, wj) =⊥ then
{create new state q′}
denote by q′ some new state q′ 6∈ Q
Q := Q ∪ {q′}, P1 := P1 ∪ {q′}
δ(q′, a) :=⊥ for all a ∈ Σ
δ(q, wj) := q′

end if
q := δ(q, wj)

end for
move state q to component Pi

1. ∀v ∈ Σ∗ \ {w} : χP ′(δ̂′(q0, v)) = χP(δ̂(q0, v))

2. χP ′(δ̂′(q0, w)) = i

thereby adding at most m new states and needing O(m) steps.

Proof. From the way new states are initialized, it is obvious that once we
start inserting states, we will never reach an “old” state q ∈ Q but keep
adding new states. Let qw := δ̂′(q0, w). If qw ∈ Q (i.e., qw is not a new
state), then all that changes is moving qw to Pi. As A is a trie, |Lqw(A)| = 1
and so χP(δ̂(q0, v)) 6= χP ′(δ̂′(q0, v)) only for v = w.

Now let qw ∈ Q′\Q, so there were new states added. The first observation
is that new states are added in a way which does not violate the trie criterion,
so A′ is still a trie. As all added states replace a transition to the sink state
⊥∈ P1 and are also put into P1 the accepted language is not modified, until
we finally move the state in the last line. But this case was already discussed
above.

Corollary 6.4. Let Σ be an alphabet, P ⊆ Σ∗ a given set of words, H =
(H1, . . . ,Hk) a k-partition of P , and n :=

∑
w∈P |w|. We can construct a

trie A with L(A) = (H1 ∪ (Σ∗ \ P),H2, . . . ,Hk) with at most 2 + n states
using O(n) time.

Proof. Start with the empty trie (Σ, {q0,⊥}, q0, ({q0,⊥}), δ) with δ(q, a) =⊥
for all q ∈ {q0,⊥} and a ∈ Σ. Then use Algorithm 6.2 to add the words one
by one.

If the prefix automaton is represented as a trie, we can improve on the
number of operations required for a single longest prefix match. As every

87

6.3. Level shifting 6. Longest prefix matching using automata

state except the sink state is only reachable from one path, we can easily
determine for every state q the single word w with δ̂(q0, w) = q, and adjust
the state class of q to be the same as the result of a longest prefix matching
of w. For example in Figure 6.5 we would move the state δ̂(q0, 01) to state
class 3. This preprocessing step is called leaf-pushing in [SV99] and can be
performed in linear time using depth first search on the transition graph.
The benefit from this operation is a reduced number of operations for a
single longest prefix match. For an IP address w = w1 . . . wl now the result
is either χP(δ̂(q0, w)) if δ̂(q0, w) 6=⊥ or χP(q′), where q′ is the last state in
δ̂(q0, w1), δ̂(q0, w1w2), . . . , δ̂(q0, w1w2 . . . wl) which is not ⊥. So we can easily
adjust Algorithm 6.1 to perform the lookup using at most l transitions and
a single component lookup (opposed to l lookups without leaf-pushing).

6.3 Level shifting

After having seen how to efficiently construct the prefix automaton using a
trie, we now look into constructing the expanded automaton by transforming
the prefix automaton. We call the technique used level shifting as it modifies
the levels of the automaton which carry information.

Definition 6.5. An acyclic DPkA A = (Σ, Q, q0,P, δ) is called leveled mod-
ulo m, iff for each relevant state q ∈ Q \ P1

level(q) ≡ 0 (mod m) .

The goal of level shifting modulo m is to transform an arbitrary acyclic
automaton A into an automaton B which is leveled modulo m and yields
the same result as A for longest prefix matching of all words of length l.
Obviously this is impossible if m - l, as can be seen by having two prefixes
of length l which only differ in the last character but are in different state
classes.

We can easily implement level shifting as follows. Let A = (Σ, Q, q0,P, δ)
be a minimal acyclic DPkA with sink state ⊥ and level(q) ≤ l for all q ∈ Q \
{⊥}. Visit each state q ∈ Q\{⊥} in topological sorted order (so no state has
a transition to one of the states already processed). If level(q) 6≡ 0 (mod m)
and q 6∈ P1 we have to move q to P1. To ensure the longest prefix lookup
to behave the same, we inspect the successor states for each letter a ∈ Σ.
There are three cases (denote by Pq the component of P containing q):

1. δ(q, a) ∈ P1 \ {⊥}:
Propagate the state class of q by moving δ(q, a) to Pq.

2. δ(q, a) 6∈ P1:
There is nothing to do, as a longest prefix matching along this path
would use the result of δ(q, a) anyway.

88

6.3. Level shifting 6. Longest prefix matching using automata

q0

q20

q4

1

q3/20

q5/30

q8/3

1

q61

q7

0

q9/21,0

q10/3
1,0

Figure 6.6: The trie after level shifting modulo 2

q0

q20

q4

1

q30
q81,0

q50

q10

1

q61

q7

0

q13/21,0

q14/31,0

q9/21,0

q11

1,0

q12/3
1,0

Figure 6.7: The trie after level shifting modulo 4

3. δ(q, a) =⊥:
Insert a new state q′ to Pq with δ(q′, b) =⊥ for each b ∈ Σ and set
δ(q, a) = q′.

It is not hard to verify that following these steps ensures the resulting
automaton to be both leveled modulo m and equivalent according to longest
prefix matching. As an example we applied level shifting to the trie from
Figure 6.5. The results are shown in Figures 6.6 and 6.7. Looking at the way
new states are added, it can be seen that they form chains of length at most
(m− 1) leading to some state q 6∈ P1. Thus managing these states carefully
and reusing them where possible, allows level shifting to be performed with
little overhead in the number of states added. This is captured by the next
lemma which follows from the discussion above.

Lemma 6.6. Let A = (Σ, Q, q0,P, δ) be a minimal acyclic DPkA with n
states. Level shifting modulo m can be performed in time O((|Σ|+m)n) and
by adding at most (|P| − 1)(m− 1) new states.

Our initial task of transforming the prefix automaton to an expanded
automaton is just level shifting modulo l. So as long as l is bounded by a
polynomial in the size of the automaton, which is a valid assumption in the
context of IP addresses, we have an efficient algorithm for constructing the
expanded automaton.

89

6.4. Alphabet expansion 6. Longest prefix matching using automata

q0

q2/2
00

q3/310

q4/3

11

q5/210,11

q6/3

01,00

Figure 6.8: The trie after level shifting and alphabet expansion with r = 2

6.4 Alphabet expansion

Initially we have seen longest prefix matching on an expanded automaton to
take up to l transitions and a single component lookup. Using leaf-pushing
we reach these numbers also for the prefix automaton. So for the component
lookups we are already optimal and to optimize further we have to address
the number of transitions needed. The idea here is to interpret an IP address
not as a sequence of l bits, but as a sequence of words in {0, 1}r. In the
routing community this technique is labeled multibit trie ([RSBD01]), but
as we apply it to general automata and it is essentially a modification of the
alphabet we call it alphabet expansion here.

The actual operation is fairly easy to describe. Let A = (Σ, Q, q0,P, δ)
be the input automaton and let r ∈ N be a compression factor. Alphabet
expansion generates the automaton B = (Σr, Q, q0,P, δ′) with δ′(q, w) =
δ̂(q, w) for each w ∈ Σr and q ∈ Q. The automaton B potentially includes
many unused states which should be eliminated afterwards.

To be of any use for longest prefix matching we have to ensure r | l
as otherwise we will not be able to query IP addresses, and the automa-
ton should be leveled modulo r so we do not loose information. Alphabet
expansion for our running example is displayed in Figure 6.8.

After applying alphabet expansion on our prefix or expanded automaton,
we can now perform longest prefix matching using only l

r transitions and a
single component lookup. Additionally the number of states is not increased
from alphabet expansion (if we omit the growth from the preceding level
shifting). However r has to be chosen carefully as the size of the alphabet
grows exponentially in r, which in turn contributes linearly to the size of
the automaton for many representations.

90

Chapter 7

Experimental results

To get an idea of the practical relevance of the theoretical work presented
so far, we will provide some computational results on real world routing ta-
bles. Our main interest is the size of the resulting automaton after applying
combinations of the preprocessing steps from the previous chapter and using
the minimization algorithms for DPkAs, DPkClAs, and DPkLlAs. We will
also discuss the number of memory lookups required in the worst case for a
single longest prefix matching.

It would be interesting to have results on the average lookup speed for
real IP traffic as well, but unfortunately traffic data in conjunction with the
routing table used is not publicly available. Additionally our approach relies
on getting the automaton small enough to fit into cache memory. But the
to get suitable measurements, the code has to be optimized for the cache
architecture of the hardware used, which was not explored.

Another issue not yet addressed is the representation of an automaton in
memory which of course influences its size. We will use a very simple model
here, where Σ = {0, . . . ,m − 1} and Q = {0, . . . , n − 1}. The transition
function δ then can be realized as a two-dimensional array storing the next
state for each state letter pair, and the state partition P is a plain array,
giving for each state the index of the component it belongs to. So for storing
an automaton in memory we need c(mn + n) bits, where c is the number
of bits used for one array entry. Using this model every state transition
and state class lookup translates to exactly one memory lookup. For this to
work, the array elements might need further alignment, contributing to the
size of the automaton even further, but as this again is machine dependant
we will ignore it herein.

Next we give an overview on the data used for testing, followed by ex-
perimental results on this data, including a comparison with existing similar
data structures. Then we close this chapter by interpreting these results and
giving possible directions for further development.

91

7.1. Test data 7. Experimental results

Network prefixes next hops
AS 553 (BelWue) 115347 194
AS 852 (Telus - East Coast) 176985 1
AS 852 (Telus - West Coast) 177040 1
AS 3257 (Tiscali) 176736 1
AS 3561 (Savvis Communications) 192200 2
AS 3741 (Internet Solutions) 844 1
AS 4323 (Time Warner Telecom) 180022 8
AS 5388 (Planet Online) 177456 1
AS 5511 (Opentransit) 180211 10
AS 6539 (GT Group Telecom) 178511 14
AS 6648 (Bayantel Inc.) 1974 1
AS 6667 (Eunet Finland) 176840 1
AS 6730 (Sunrise) 89761 51
AS 6939 (Hurricane Electric) 170807 393
AS 7474 (Optus Route Server Australia) 177945 10
AS 7911 (Wiltel) 142038 625
AS 8220 (Colt Internet) 187117 1
AS 9132 (Broadnet Mediascape Communications AG) 177190 413
AS 12312 (Tiscali Germany) 175896 1
AS 13645 (Host.net) 177404 2
AS 15290 (Allstream - East) 184812 7
AS 15290 (Allstream - West) 184743 8

Figure 7.1: Characteristics of the real-world routing tables used

7.1 Test data

We intend to evaluate the algorithms on real-world data, so we extracted
routing tables from the routers listed at [Ker06]. All tables were collected
at 3/31/2006 and preprocessed to eliminate duplicate entries. An overview
on the characteristics of these tables is given in Figure 7.1. Routing tables
listed in [Ker06] which are not included here could not be collected due to
technical problems such as time-outs.

To get an idea of the distribution of prefix lengths in a typical routing
table, we counted the number of prefixes for each possible length over all
those routing tables. The result is shown in Figure 7.2 using a logarithmic
scale. Obviously most prefixes have a length between 16 and 24 with notable
peaks at lengths 8, 16, and 24, which are the sizes of the network part for
class A, B, and C networks used before the introduction of CIDR.

Additionally we are using the routing tables from [NK98] which are also
similar to those from [DBCP97]. They are listed in Figure 7.3 and allows us
to compare our algorithms with theirs without having access to their code.

92

7.2. Results 7. Experimental results

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35

N
um

be
r o

f p
re

fix
es

 o
f l

en
gt

h

Prefix length

Figure 7.2: Number of prefixes of given length, aggregated over all real-world
routing tables used, logarithmically scaled

Site collection date prefixes next hops
AADS 08/24/97 20218 19
Mae East 10/30/97 38094 59
Mae West 10/30/97 14960 57
Pac Bell 08/24/97 20533 3

Figure 7.3: Characteristics of the routing tables used in [NK98]

7.2 Results

All previous chapters provided us with a variety of transformations and
algorithms we can apply to a forwarding table when represented as a finite
automaton. Chapter 6 introduced the differentiation into prefix automata
and expanded automata which is reflected in separate tables here. For the
prefix automata we always use leaf-pushing, so the number of worst-case
memory lookups is the same for both prefix and expanded automaton and
only depends on r, the level of alphabet expansion used (see Figure 7.4). As
l is considered constant, for p given prefixes all tries used can be constructed
in O(2rp) steps, as indicated by the results in Chapter 6. For minimizing
these tries we always used the most efficient algorithm available, i.e., O(2rn)
for DPkAs, O(2rn log n) for DPkClAs, and the O(2rn log n) heuristic for
DPkLlAs, where n = O(p) is the number of states of the constructed trie.

For each automaton we give both the number of states and the size

93

7.2. Results 7. Experimental results

Level of alphabet number of memory lookups
expansion (worst case)

none (r = 1) 33
r = 2 17
r = 4 9
r = 8 5

Figure 7.4: Number of memory lookups required for a forwarding table after
alphabet expansion (IPv4)

Alphabet expansion none 2 4 8
Instance Type States Mem Rel. size States Mem Rel. size States Mem Rel. size States Mem Rel. size
AS 553 Trie 326948 3832 100.00% 179788 3512 100.00% 106937 7102 100.00% 69860 70133 100.00%

DPA 77034 903 23.56% 34692 678 19.30% 14977 995 14.01% 5400 5422 7.73%
DPCA 77030 903 23.56% 34692 678 19.30% 14972 995 14.00% 5397 5419 7.73%

AS 3741 Trie 3563 42 100.00% 1923 38 100.00% 1104 74 100.00% 728 731 100.00%
DPA 1422 17 39.91% 675 14 35.10% 339 23 30.71% 131 132 17.99%
DPCA 1421 17 39.88% 674 14 35.05% 339 23 30.71% 131 132 17.99%

AS 5511 Trie 499947 5859 100.00% 278942 5449 100.00% 171199 11369 100.00% 119203 119669 100.00%
DPA 96662 1133 19.33% 42714 835 15.31% 19554 1299 11.42% 6490 6516 5.44%
DPCA 96625 1133 19.33% 42702 835 15.31% 19547 1299 11.42% 6487 6513 5.44%

AS 6667 Trie 488439 5724 100.00% 272438 5322 100.00% 166816 11078 100.00% 115602 116054 100.00%
DPA 72601 851 14.86% 30269 592 11.11% 12480 829 7.48% 3806 3821 3.29%
DPCA 72601 851 14.86% 30269 592 11.11% 12480 829 7.48% 3806 3821 3.29%

AS 7911 Trie 410468 4811 100.00% 228084 4455 100.00% 138076 9170 100.00% 94471 94841 100.00%
DPA 128348 1505 31.27% 61429 1200 26.93% 28280 1878 20.48% 8201 8234 8.68%
DPCA 128348 1505 31.27% 61429 1200 26.93% 28280 1878 20.48% 8201 8234 8.68%

Figure 7.5: Results for a subset of the test-data (prefix automaton)

of a memory representation in kB. Additionally we give the relative size
to the simple trie. For calculating the memory requirements we assume
the representation mentioned in the beginning of this chapter, using 32-bit
integer values as table entries. So the value of the Mem column is

⌈
n2r+n

256

⌉
,

where n is the number of states and r the level of alphabet expansion.
We will give results only for a subset of the routing tables here (those

written in italics in Figure 7.1), so we can be more focused on them. The
instances were chosen to have some variety in the number of prefixes and
next hops. Complete results for all instances are provided in Appendix A.

For the prefix automata we applied both DPkA and DPkClA minimiza-
tion to the trie for several levels of alphabet expansion. The value l is
chosen as 32/r, where r denotes the level of prefix expansion. In Figure 7.5
the corresponding numbers are shown.

Using this data we observe several trends, most of them not too surpris-
ing. At first, routing tables with a little number of next hops (AS 5511, AS
6667) can be compressed better than those with large variety in the next
hops (AS 553, AS 7911), as states are more “likely” to be equivalent in
the former case. Furthermore sparsely populated tables (AS 3741) do not
compress as well as the other denser routing tables. Finally compressibility
of the automata seems to improve with alphabet expansion. Probably this
operation has some kind of a “smoothing” effect on an automaton. While
the difference in size between the trie and the minimal DPkA is pretty ob-

94

7.2. Results 7. Experimental results

Alphabet expansion none 2 4 8
Instance Type States Mem Rel. size States Mem Rel. size States Mem Rel. size States Mem Rel. size
AS 553 Trie 329906 3867 100.00% 181141 3538 100.00% 107566 7144 100.00% 70111 70385 100.00%

DPA 56577 664 17.15% 28352 554 15.65% 13969 928 12.99% 5579 5601 7.96%
DPLA1 50236 589 15.23% 25732 503 14.21% 12987 863 12.07% 5276 5297 7.53%
DPLA2 48878 573 14.82% 25328 495 13.98% 12905 857 12.00% 5276 5297 7.53%
DPLA3 48030 563 14.56% 25137 491 13.88% 12888 856 11.98% 5276 5297 7.53%
DPLA4 47518 557 14.40% 25050 490 13.83% 12875 855 11.97% 5276 5297 7.53%

AS 3741 Trie 3582 42 100.00% 1932 38 100.00% 1108 74 100.00% 730 733 100.00%
DPA 1277 15 35.65% 625 13 32.35% 327 22 29.51% 126 127 17.26%
DPLA1 1149 14 32.08% 570 12 29.50% 306 21 27.62% 123 124 16.85%
DPLA2 1125 14 31.41% 543 11 28.11% 300 20 27.08% 123 124 16.85%
DPLA3 1124 14 31.38% 541 11 28.00% 298 20 26.90% 123 124 16.85%
DPLA4 1083 13 30.23% 541 11 28.00% 298 20 26.90% 123 124 16.85%

AS 5511 Trie 500152 5862 100.00% 279037 5450 100.00% 171243 11372 100.00% 119222 119688 100.00%
DPA 64155 752 12.83% 32115 628 11.51% 17442 1159 10.19% 6400 6425 5.37%
DPLA1 60663 711 12.13% 30580 598 10.96% 17016 1130 9.94% 6362 6387 5.34%
DPLA2 59171 694 11.83% 30122 589 10.79% 16907 1123 9.87% 6355 6380 5.33%
DPLA3 58476 686 11.69% 29862 584 10.70% 16866 1121 9.85% 6354 6379 5.33%
DPLA4 57383 673 11.47% 29741 581 10.66% 16847 1119 9.84% 6354 6379 5.33%

AS 6667 Trie 488463 5725 100.00% 272449 5322 100.00% 166821 11078 100.00% 115604 116056 100.00%
DPA 33490 393 6.86% 17265 338 6.34% 9241 614 5.54% 3710 3725 3.21%
DPLA1 32371 380 6.63% 16742 327 6.15% 8988 597 5.39% 3701 3716 3.20%
DPLA2 31301 367 6.41% 16433 321 6.03% 8919 593 5.35% 3701 3716 3.20%
DPLA3 30829 362 6.31% 16357 320 6.00% 8888 591 5.33% 3701 3716 3.20%
DPLA4 30542 358 6.25% 16263 318 5.97% 8869 589 5.32% 3701 3716 3.20%

AS 7911 Trie 417843 4897 100.00% 231491 4522 100.00% 139650 9274 100.00% 95150 95522 100.00%
DPA 115599 1355 27.67% 57997 1133 25.05% 28487 1892 20.40% 8766 8801 9.21%
DPLA1 101552 1191 24.30% 52260 1021 22.58% 26512 1761 18.98% 8004 8036 8.41%
DPLA2 99029 1161 23.70% 51520 1007 22.26% 26420 1755 18.92% 8004 8036 8.41%
DPLA3 97672 1145 23.38% 51165 1000 22.10% 26391 1753 18.90% 8004 8036 8.41%
DPLA4 97018 1137 23.22% 51019 997 22.04% 26375 1752 18.89% 8004 8036 8.41%

Figure 7.6: Results for a subset of the test-data (expanded automaton)

vious, unfortunately the minimal DPkClA only saves a couple of states (if
any) over the DPkA. It seems that the very regular structure exploited by a
DPkClA is rarely seen in practice (at least for routing tables).

The next table (Figure 7.6) summarizes the results for the expanded
automaton as both a trie and minimal DPkA. The DPLAn rows represent
the automaton after n iterations of the DPkLlA minimizing heuristic from
Section 5.5. Values for a minimal DPkClA were omitted here, as the struc-
ture of the expanded automaton (all states with level < l are in the first
component of P) does not permit any further compression than the DPkA
(only the sink state can be merged in some cases) and thus provides no new
information.

Basically we encounter the same trends as for the prefix automaton (com-
pression factor increases with density and level of alphabet expansion, but
decreases with number of next hops). What we are more interested in here,
are the results for the DPkLlAs. The numbers support the usefulness of
DPkLlA as they indeed can reduce automaton size somewhat. Multiple iter-
ations of the proposed heuristic approach yield better compression, although
the first iteration is the most effective. The amount of DPkLlA compression
decreases with increasing level of alphabet expansion, as then the value of
l = 32/r is reduced resulting in less “inter-level” state merges. It is in-
teresting that while constructing the expanded automaton by level shifting
increases the size of the trie somewhat, the corresponding minimal DPkA
often is remarkably smaller than the one for the prefix automaton.

As announced we want to compare our results to the approaches from

95

7.2. Results 7. Experimental results

Approach used memory AADS Mae East Mae West Pac Bell
lookups (in kB) (in kB) (in kB) (in kB)

Lule̊a-trie [DBCP97] 12 28 160 86 99
LC-trie [NK98] 6 672 1024 553 680
DPkA, r = 2 17 112 223 137 89
DPkA, r = 4 9 201 391 243 157
DPkA, r = 8 5 1191 2285 1503 885
DPkA, r = 2, BV 10 240 351 265 217
DPkA, r = 4, BV 6 329 519 371 285

Figure 7.7: Comparison of results with [NK98] and [DBCP97] (the DPkA
is a minimal prefix automaton, BV = with base vector). The number of
memory lookups denotes the worst-case.

[DBCP97] (Lule̊a-trie) and [NK98] (LC-trie) which are structurally similar.
Therefore we calculated the tables for prefix and expanded automata of the
routing tables from Figure 7.3. Here will only use selected numbers, the full
results can be found in Appendix A. The first two rows of Figure 7.7 give
the number of memory lookups and the sizes of the forwarding tables as
provided in the original papers1. Next are the values for minimal DPkAs of
alphabet expanded prefix automata. As the number of states permits this,
we are assuming 16-bit integers here, so the memory consumption is about
half of that shown in the appendix. The description of the remaining lines
follows later.

Apparently none of our automata is smaller than the Lule̊a-trie, although
we easily can beat it in terms of memory lookups. To have less lookups than
the LC-trie we have to perform alphabet expansion with r = 8 which makes
our automata larger than them. To understand the reason for this, we should
look at the techniques used in these papers.

The Lule̊a-trie heavily relies on efficiently packing all values into bit-
level structures which are suitably aligned in memory. While this obviously
gives good compression results, it makes scaling very hard, as for larger
routing tables not only a single parameter, but the entire algorithm has to be
modified. We could try to find a more memory conserving representation for
an automaton, but this is likely to increase the number of memory lookups
we have to perform, so we did not explore it in more detail.

To reduce the number of memory lookups the LC-tries are using another
trick. Speaking in the terms defined here, they apply a different level of
alphabet expansion to different depths of the trie. So for the first depth
level a large alphabet is used allowing a large step, while the memory cost
is relatively small as only one state is affected. For the next level a smaller
alphabet is used as more states are at this level. Taken to the extreme

1The numbers for [DBCP97] refer to slightly older versions of the tables used. In
[NK98] no exact size in bytes is given, but using the provided data is it easily calculated.

96

7.3. Conclusion 7. Experimental results

we could replace the initial state of an automaton with a lookup table for
all possible 16-bit prefixes (called base vector in [NK98]), then precalculate
and store the resulting state in there. For an automaton with alphabet
expansion of level r this will replace the first 16/r transitions with a single
lookup, saving 16/r − 1 memory lookups. This increase in lookup speed is
paid for with additional 128 kB (16-bit state number for each of 216 prefixes).
The results we would retrieve when including a base vector are reported in
the last two lines of Figure 7.7. We could even have saved some memory
by removing all states no longer needed. But even without removing them,
we now easily beat the LC-trie in size while having the same low number of
memory lookups.

7.3 Conclusion

In this thesis we have seen several types of automata, studied their structure,
and found algorithms for their minimization (or at least size reduction in
the case of DPkLlAs). Together with the transformations introduced in
Chapter 6 we have a rich toolkit for solving the longest prefix matching
problem, which is the core problem for IP packet classification. Using these
building blocks we can tailor the construction of forwarding tables, finding
a compromise between memory size and lookup speed.

It is hard to decide whether the DPkA or the often smaller DPkLlA
should be used for practical applications as the worst-case lookup time is
the same for both. The decision depends on whether the reduced automaton
size justifies the increased running time of a minimization algorithm (O(n)
versus O(n log n)), which in turn is influenced by technical prerequisites and
requirements. Our results indicate both approaches to yield a more com-
pact representation of forwarding tables than the LC-trie having comparable
worst-case lookup times when used in conjunction with a base vector.

Further studies could target several directions. At first it would be in-
teresting to compare the average-case lookup times between the different
automata presented so far. This requires either access to a large sequence
of real world prefix lookups or a suitable model for the distribution of host
lookups in a router.

Additionally it might be worthwhile to find and apply more compact
memory representations for the given automata. Due to the requirement of
reducing the number of memory lookups this might include adaptions on a
given caching architecture.

The poor compression results for the DPkClA on concrete instances de-
spite its theoretical superiority to the DPkA are unfortunate. Maybe we can
modify the automaton without affecting the forwarding table it represents
in a similar manner as in Section 5.5 to make it more accessible to DPkClA
minimization.

97

7.3. Conclusion 7. Experimental results

Finally it remains an open problem to decide the complexity for Min-
imum Equivalent DPkLlA . From the results seen so far we doubt it to
be solvable in polynomial time, however an NP-completeness proof was not
found either.

98

Bibliography

[Ang78] D. Angluin. On the complexity of minimum inference of regular
sets. Information and Control, 39:337–350, 1978.

[CGH05] J.-M. Champarnaud, F. Guingne, and G. Hansel. Similarity
relations and cover automata. Theoretical Informatics and Ap-
plications, 39(1):115–123, 2005.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press and McGraw-Hill
Book Company, 2nd edition, 2001.

[CPY02] C. Câmpeanu, A. Paun, and S. Yu. An efficient algorithm for
constructing minimal cover automata for finite languages. Inter-
national Journal of Foundations of Computer Science, 13(1):83–
97, 2002.

[CSY01] C. Câmpeanu, N. Sântean, and S. Yu. Minimal cover-automata
for finite languages. Theoretical Computer Science, 267(1-2):3–
16, 2001.

[Dac03] J. Daciuk. Comparison of construction algorithms for minimal,
acyclic, deterministic, finite-state automata from sets of strings.
In Proceedings of the 7th International Conference on Implemen-
tation and Application of Automata (CIAA ’02), volume 2608
of Lecture Notes in Computer Science, pages 255–261. Springer-
Verlag, 2003.

[DBCP97] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
forwarding tables for fast routing lookups. In Proceedings of
the ACM SIGCOMM ’97 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication
(SIGCOMM ’97), pages 3–14. ACM Press, 1997.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460, December 1998.

99

BIBLIOGRAPHY BIBLIOGRAPHY

[FLYV93] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggre-
gation Strategy. RFC 1519, September 1993.

[Fre60] E. Fredkin. Trie memory. Communications of the ACM,
3(9):490–499, 1960.

[GH04] J.-C. Grégoire and Angèle M. Hamel. You can get there from
here: Routing in the internet. In 1st Workshop on Combinato-
rial and Algorithmic Aspects of Networking (CAAN 2004), vol-
ume 3405 of Lecture Notes in Computer Science, pages 173–182.
Springer-Verlag, 2004.

[GJ79] M. R. Garey and D. S. Johnson. Computers and intractability.
A guide to the theory of NP -completeness. W.H. Freeman and
Company, 1979.

[Gol78] E. M. Gold. Complexity of automaton identification from given
data. Information and Control, 37:302–320, 1978.

[Gri73] D. Gries. Describing an algorithm by Hopcroft. Acta Informat-
ica, 2:97–109, 1973.

[GT01] M. T. Goodrich and R. Tamassia. Algorithm Design: Foun-
dations, Analysis and Internet Examples. John Wiley & Sons,
2001.

[HD03] R. Hinden and S. Deering. Internet Protocol Version 6 (IPv6)
Addressing Architecture. RFC 3513 (Proposed Standard), April
2003.

[Hop71] J. E. Hopcroft. An n log n algorithm for minimizing the states
in a finite automaton. In Z. Kohavi, editor, The Theory of
Machines and Computations., pages 189–196. Academic Press,
1971.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley Publishing
Company, 1979.

[Ker06] T. Kernen. traceroute.org web site. http://www.traceroute.org,
2006. Route Servers section.

[Kör03] H. Körner. A time and space efficient algorithm for minimizing
cover automata for finite languages. International Journal of
Foundations of Computer Science, 14(6):1071–1086, 2003.

100

BIBLIOGRAPHY BIBLIOGRAPHY

[KR02] J. F. Kurose and K. Ross. Computer Networking: A Top-Down
Approach Featuring the Internet. Addison-Wesley Publishing
Company, 2002.

[LSV99] B. Lampson, V. Srinivasan, and G. Varghese. IP lookups using
multiway and multicolumn search. IEEE/ACM Transactions on
Networking, 7(3):324–334, 1999.

[NK98] S. Nilsson and G. Karlsson. Fast address look-up for internet
routers. In Proceedings of the 4th International Conference on
Broadband Communications (BC ’98), pages 11–22. Chapman
& Hall, Ltd., 1998.

[Odl03] A. M. Odlyzko. Internet traffic growth: sources and impli-
cations. In Proceedings of Optical Transmission Systems and
Equipment for WDM Networking II, volume 5247, pages 1–15.
SPIE The International Society for Optical Engineering, 2003.

[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimiza-
tion: Algorithms and complexity. Prentice-Hall, 1982.

[PW93] L. Pitt and M.K. Warmuth. The minimum consistent DFA prob-
lem cannot be approximated within any polynomial. Journal of
the ACM, 40(1):95–142, 1993.

[Rev91] D. Revuz. Minimisation of acyclic deterministic automata in
linear time. Theoretical Computer Science, 92:181–189, 1991.

[RSBD01] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous. Survey
and taxonomy of IP address lookup algorithms. IEEE Network
Magazine, 15(2), 2001.

[SV99] V. Srinivasan and G. Varghese. Fast address lookups using con-
trolled prefix expansion. ACM Transactions on Computer Sys-
tems, 17(1):1–40, 1999.

[Wat94] B. W. Watson. A taxonomy of finite automata minimization
algorithms. Technical report, Eindhoven University of Technol-
ogy, 1994.

[WVTP97] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable
high speed IP routing table lookups. In Proceedings of the ACM
SIGCOMM ’97 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, pages
25–36, September 1997.

101

Appendix A

Detailed results

In this appendix we provide the detailed results omitted from Section 7.2.
All numbers given there are also covered in these tables to provide a complete
overview.

Alphabet expansion none 2 4 8
Instance Type States Mem Rel. size States Mem Rel. size States Mem Rel. size States Mem Rel. size
AADS Trie 99398 1165 100.00% 53530 1046 100.00% 30690 2039 100.00% 20131 20210 100.00%

DPA 22397 263 22.53% 11465 224 21.42% 6039 402 19.68% 2372 2382 11.78%
DPCA 22397 263 22.53% 11465 224 21.42% 6039 402 19.68% 2372 2382 11.78%

Mae East Trie 172215 2019 100.00% 93065 1818 100.00% 53718 3568 100.00% 35777 35917 100.00%
DPA 44479 522 25.83% 22736 445 24.43% 11753 781 21.88% 4551 4569 12.72%
DPCA 44479 522 25.83% 22736 445 24.43% 11753 781 21.88% 4551 4569 12.72%

Mae West Trie 80864 948 100.00% 43064 842 100.00% 24119 1602 100.00% 15128 15188 100.00%
DPA 26906 316 33.27% 14028 274 32.57% 7294 485 30.24% 2994 3006 19.79%
DPCA 26906 316 33.27% 14028 274 32.57% 7294 485 30.24% 2993 3005 19.78%

Pac Bell Trie 99073 1162 100.00% 53496 1045 100.00% 30840 2048 100.00% 20418 20498 100.00%
DPA 17653 207 17.82% 9050 177 16.92% 4712 313 15.28% 1762 1769 8.63%
DPCA 17653 207 17.82% 9050 177 16.92% 4712 313 15.28% 1762 1769 8.63%

Figure A.1: Results for routing tables from [NK98] (prefix automaton)

Alphabet expansion none 2 4 8
Instance Type States Mem Rel. size States Mem Rel. size States Mem Rel. size States Mem Rel. size
AADS Trie 99735 1169 100.00% 53682 1049 100.00% 30761 2043 100.00% 20159 20238 100.00%

DPA 23683 278 23.75% 11771 230 21.93% 6143 408 19.97% 2393 2403 11.87%
DPLA1 21363 251 21.42% 11018 216 20.52% 5923 394 19.25% 2355 2365 11.68%
DPLA2 20959 246 21.01% 10811 212 20.14% 5885 391 19.13% 2355 2365 11.68%
DPLA3 20438 240 20.49% 10752 210 20.03% 5874 391 19.10% 2355 2365 11.68%
DPLA4 20311 239 20.36% 10729 210 19.99% 5866 390 19.07% 2355 2365 11.68%

Mae East Trie 173132 2029 100.00% 93484 1826 100.00% 53913 3581 100.00% 35856 35997 100.00%
DPA 47033 552 27.17% 23501 460 25.14% 11928 793 22.12% 4621 4640 12.89%
DPLA1 43296 508 25.01% 22116 432 23.66% 11488 763 21.31% 4513 4531 12.59%
DPLA2 41204 483 23.80% 21711 425 23.22% 11441 760 21.22% 4511 4529 12.58%
DPLA3 40697 477 23.51% 21558 422 23.06% 11430 760 21.20% 4511 4529 12.58%
DPLA4 40533 475 23.41% 21461 420 22.96% 11427 759 21.20% 4511 4529 12.58%

Mae West Trie 81797 959 100.00% 43485 850 100.00% 24312 1615 100.00% 15203 15263 100.00%
DPA 31178 366 38.12% 15552 304 35.76% 7688 511 31.62% 3071 3083 20.20%
DPLA1 27498 323 33.62% 14151 277 32.54% 7258 482 29.85% 2966 2978 19.51%
DPLA2 26381 310 32.25% 13853 271 31.86% 7193 478 29.59% 2965 2977 19.50%
DPLA3 25903 304 31.67% 13714 268 31.54% 7181 477 29.54% 2965 2977 19.50%
DPLA4 25616 301 31.32% 13647 267 31.38% 7177 477 29.52% 2965 2977 19.50%

Pac Bell Trie 99134 1162 100.00% 53524 1046 100.00% 30853 2049 100.00% 20423 20503 100.00%
DPA 17293 203 17.44% 8720 171 16.29% 4646 309 15.06% 1762 1769 8.63%
DPLA1 16498 194 16.64% 8376 164 15.65% 4517 300 14.64% 1754 1761 8.59%
DPLA2 15741 185 15.88% 8202 161 15.32% 4497 299 14.58% 1754 1761 8.59%
DPLA3 15715 185 15.85% 8187 160 15.30% 4486 298 14.54% 1754 1761 8.59%
DPLA4 15706 185 15.84% 8184 160 15.29% 4483 298 14.53% 1754 1761 8.59%

Figure A.2: Results for routing tables from [NK98] (expanded automaton)

102

A. Detailed results

Alphabet expansion none 2 4 8
Instance Type States Mem Rel. size States Mem Rel. size States Mem Rel. size States Mem Rel. size
AS 553 Trie 326948 3832 100.00% 179788 3512 100.00% 106937 7102 100.00% 69860 70133 100.00%

DPA 77034 903 23.56% 34692 678 19.30% 14977 995 14.01% 5400 5422 7.73%
DPCA 77030 903 23.56% 34692 678 19.30% 14972 995 14.00% 5397 5419 7.73%

AS 852 (east) Trie 489218 5734 100.00% 273012 5333 100.00% 167196 11103 100.00% 115949 116402 100.00%
DPA 72648 852 14.85% 30254 591 11.08% 12455 828 7.45% 3738 3753 3.22%
DPCA 72647 852 14.85% 30253 591 11.08% 12455 828 7.45% 3738 3753 3.22%

AS 852 (west) Trie 489323 5735 100.00% 273073 5334 100.00% 167236 11106 100.00% 115984 116438 100.00%
DPA 72661 852 14.85% 30259 591 11.08% 12457 828 7.45% 3737 3752 3.22%
DPCA 72660 852 14.85% 30258 591 11.08% 12457 828 7.45% 3737 3752 3.22%

AS 3257 Trie 487945 5719 100.00% 272343 5320 100.00% 166851 11080 100.00% 115749 116202 100.00%
DPA 72402 849 14.84% 30140 589 11.07% 12401 824 7.43% 3732 3747 3.22%
DPCA 72402 849 14.84% 30140 589 11.07% 12401 824 7.43% 3732 3747 3.22%

AS 3561 Trie 528531 6194 100.00% 295656 5775 100.00% 180242 11970 100.00% 124443 124930 100.00%
DPA 78313 918 14.82% 32617 638 11.03% 13387 889 7.43% 4024 4040 3.23%
DPCA 78182 917 14.79% 32598 637 11.03% 13380 889 7.42% 4024 4040 3.23%

AS 3741 Trie 3563 42 100.00% 1923 38 100.00% 1104 74 100.00% 728 731 100.00%
DPA 1422 17 39.91% 675 14 35.10% 339 23 30.71% 131 132 17.99%
DPCA 1421 17 39.88% 674 14 35.05% 339 23 30.71% 131 132 17.99%

AS 4323 Trie 494317 5793 100.00% 276274 5396 100.00% 169702 11270 100.00% 118277 118740 100.00%
DPA 101376 1188 20.51% 45187 883 16.36% 21287 1414 12.54% 7007 7035 5.92%
DPCA 101376 1188 20.51% 45187 883 16.36% 21287 1414 12.54% 7007 7035 5.92%

AS 5388 Trie 490557 5749 100.00% 273736 5347 100.00% 167690 11136 100.00% 116332 116787 100.00%
DPA 72867 854 14.85% 30377 594 11.10% 12507 831 7.46% 3791 3806 3.26%
DPCA 72863 854 14.85% 30375 594 11.10% 12507 831 7.46% 3791 3806 3.26%

AS 5511 Trie 499947 5859 100.00% 278942 5449 100.00% 171199 11369 100.00% 119203 119669 100.00%
DPA 96662 1133 19.33% 42714 835 15.31% 19554 1299 11.42% 6490 6516 5.44%
DPCA 96625 1133 19.33% 42702 835 15.31% 19547 1299 11.42% 6487 6513 5.44%

AS 6539 Trie 492772 5775 100.00% 275085 5373 100.00% 168580 11195 100.00% 117188 117646 100.00%
DPA 97216 1140 19.73% 43009 841 15.63% 19668 1307 11.67% 6634 6660 5.66%
DPCA 97216 1140 19.73% 43009 841 15.63% 19668 1307 11.67% 6634 6660 5.66%

AS 6648 Trie 6425 76 100.00% 3637 72 100.00% 2270 151 100.00% 1664 1671 100.00%
DPA 2077 25 32.33% 989 20 27.19% 488 33 21.50% 224 225 13.46%
DPCA 2077 25 32.33% 989 20 27.19% 488 33 21.50% 224 225 13.46%

AS 6667 Trie 488439 5724 100.00% 272438 5322 100.00% 166816 11078 100.00% 115602 116054 100.00%
DPA 72601 851 14.86% 30269 592 11.11% 12480 829 7.48% 3806 3821 3.29%
DPCA 72601 851 14.86% 30269 592 11.11% 12480 829 7.48% 3806 3821 3.29%

AS 6730 Trie 256529 3007 100.00% 142997 2793 100.00% 86967 5776 100.00% 60847 61085 100.00%
DPA 65309 766 25.46% 29975 586 20.96% 14216 945 16.35% 3779 3794 6.21%
DPCA 65309 766 25.46% 29975 586 20.96% 14216 945 16.35% 3779 3794 6.21%

AS 6939 Trie 476489 5584 100.00% 266021 5196 100.00% 162757 10809 100.00% 112822 113263 100.00%
DPA 94969 1113 19.93% 42067 822 15.81% 18787 1248 11.54% 6138 6162 5.44%
DPCA 94969 1113 19.93% 42067 822 15.81% 18787 1248 11.54% 6138 6162 5.44%

AS 7474 Trie 491517 5760 100.00% 274217 5356 100.00% 167880 11149 100.00% 116131 116585 100.00%
DPA 117863 1382 23.98% 54896 1073 20.02% 28083 1865 16.73% 8592 8626 7.40%
DPCA 117861 1382 23.98% 54896 1073 20.02% 28083 1865 16.73% 8592 8626 7.40%

AS 7911 Trie 410468 4811 100.00% 228084 4455 100.00% 138076 9170 100.00% 94471 94841 100.00%
DPA 128348 1505 31.27% 61429 1200 26.93% 28280 1878 20.48% 8201 8234 8.68%
DPCA 128348 1505 31.27% 61429 1200 26.93% 28280 1878 20.48% 8201 8234 8.68%

AS 8220 Trie 515156 6037 100.00% 286924 5604 100.00% 173883 11547 100.00% 118394 118857 100.00%
DPA 76153 893 14.78% 31699 620 11.05% 13155 874 7.57% 4012 4028 3.39%
DPCA 76130 893 14.78% 31693 620 11.05% 13155 874 7.57% 4012 4028 3.39%

AS 9132 Trie 488899 5730 100.00% 273127 5335 100.00% 167375 11115 100.00% 116173 116627 100.00%
DPA 121241 1421 24.80% 56183 1098 20.57% 25312 1681 15.12% 7850 7881 6.76%
DPCA 121240 1421 24.80% 56183 1098 20.57% 25312 1681 15.12% 7850 7881 6.76%

AS 12312 Trie 485997 5696 100.00% 271107 5296 100.00% 165944 11020 100.00% 114927 115376 100.00%
DPA 72260 847 14.87% 30097 588 11.10% 12394 824 7.47% 3728 3743 3.24%
DPCA 72260 847 14.87% 30097 588 11.10% 12394 824 7.47% 3728 3743 3.24%

AS 13645 Trie 490587 5750 100.00% 273584 5344 100.00% 167409 11118 100.00% 116001 116455 100.00%
DPA 73053 857 14.89% 30458 595 11.13% 12547 834 7.49% 3819 3834 3.29%
DPCA 73045 856 14.89% 30456 595 11.13% 12547 834 7.49% 3819 3834 3.29%

AS 15290 (east) Trie 507030 5942 100.00% 282456 5517 100.00% 171224 11371 100.00% 117043 117501 100.00%
DPA 118309 1387 23.33% 55096 1077 19.51% 27574 1832 16.10% 8731 8766 7.46%
DPCA 118291 1387 23.33% 55085 1076 19.50% 27572 1831 16.10% 8731 8766 7.46%

AS 15290 (west) Trie 506960 5941 100.00% 282397 5516 100.00% 171185 11368 100.00% 116996 117454 100.00%
DPA 118185 1385 23.31% 55079 1076 19.50% 27594 1833 16.12% 8698 8732 7.43%
DPCA 118169 1385 23.31% 55069 1076 19.50% 27593 1833 16.12% 8698 8732 7.43%

Figure A.3: Results for the test-data (prefix automaton)

103

A. Detailed results

Alphabet expansion none 2 4 8
Instance Type States Mem Rel. size States Mem Rel. size States Mem Rel. size States Mem Rel. size
AS 553 Trie 329906 3867 100.00% 181141 3538 100.00% 107566 7144 100.00% 70111 70385 100.00%

DPA 56577 664 17.15% 28352 554 15.65% 13969 928 12.99% 5579 5601 7.96%
DPLA1 50236 589 15.23% 25732 503 14.21% 12987 863 12.07% 5276 5297 7.53%
DPLA2 48878 573 14.82% 25328 495 13.98% 12905 857 12.00% 5276 5297 7.53%
DPLA3 48030 563 14.56% 25137 491 13.88% 12888 856 11.98% 5276 5297 7.53%
DPLA4 47518 557 14.40% 25050 490 13.83% 12875 855 11.97% 5276 5297 7.53%

AS 852 (east) Trie 489242 5734 100.00% 273023 5333 100.00% 167201 11104 100.00% 115951 116404 100.00%
DPA 33424 392 6.83% 17234 337 6.31% 9228 613 5.52% 3710 3725 3.20%
DPLA1 32387 380 6.62% 16773 328 6.14% 8960 595 5.36% 3701 3716 3.19%
DPLA2 31001 364 6.34% 16526 323 6.05% 8884 590 5.31% 3701 3716 3.19%
DPLA3 30599 359 6.25% 16293 319 5.97% 8863 589 5.30% 3701 3716 3.19%
DPLA4 30431 357 6.22% 16234 318 5.95% 8857 589 5.30% 3701 3716 3.19%

AS 852 (west) Trie 489347 5735 100.00% 273084 5334 100.00% 167241 11106 100.00% 115986 116440 100.00%
DPA 33424 392 6.83% 17234 337 6.31% 9228 613 5.52% 3709 3724 3.20%
DPLA1 32209 378 6.58% 16617 325 6.08% 8958 595 5.36% 3701 3716 3.19%
DPLA2 31848 374 6.51% 16387 321 6.00% 8893 591 5.32% 3700 3715 3.19%
DPLA3 30983 364 6.33% 16301 319 5.97% 8868 589 5.30% 3700 3715 3.19%
DPLA4 30888 362 6.31% 16239 318 5.95% 8859 589 5.30% 3700 3715 3.19%

AS 3257 Trie 487969 5719 100.00% 272354 5320 100.00% 166856 11081 100.00% 115751 116204 100.00%
DPA 33421 392 6.85% 17233 337 6.33% 9227 613 5.53% 3715 3730 3.21%
DPLA1 32270 379 6.61% 16843 329 6.18% 8963 596 5.37% 3707 3722 3.20%
DPLA2 31970 375 6.55% 16629 325 6.11% 8892 591 5.33% 3706 3721 3.20%
DPLA3 31364 368 6.43% 16484 322 6.05% 8872 590 5.32% 3706 3721 3.20%
DPLA4 31042 364 6.36% 16436 322 6.03% 8864 589 5.31% 3705 3720 3.20%

AS 3561 Trie 528569 6195 100.00% 295673 5775 100.00% 180250 11970 100.00% 124446 124933 100.00%
DPA 35303 414 6.68% 18157 355 6.14% 9645 641 5.35% 3958 3974 3.18%
DPLA1 33782 396 6.39% 17430 341 5.90% 9285 617 5.15% 3911 3927 3.14%
DPLA2 33436 392 6.33% 17178 336 5.81% 9199 611 5.10% 3902 3918 3.14%
DPLA3 33248 390 6.29% 17006 333 5.75% 9177 610 5.09% 3899 3915 3.13%
DPLA4 33158 389 6.27% 16955 332 5.73% 9168 609 5.09% 3898 3914 3.13%

AS 3741 Trie 3582 42 100.00% 1932 38 100.00% 1108 74 100.00% 730 733 100.00%
DPA 1277 15 35.65% 625 13 32.35% 327 22 29.51% 126 127 17.26%
DPLA1 1149 14 32.08% 570 12 29.50% 306 21 27.62% 123 124 16.85%
DPLA2 1125 14 31.41% 543 11 28.11% 300 20 27.08% 123 124 16.85%
DPLA3 1124 14 31.38% 541 11 28.00% 298 20 26.90% 123 124 16.85%
DPLA4 1083 13 30.23% 541 11 28.00% 298 20 26.90% 123 124 16.85%

AS 4323 Trie 494484 5795 100.00% 276351 5398 100.00% 169738 11272 100.00% 118293 118756 100.00%
DPA 71657 840 14.49% 35580 695 12.87% 19448 1292 11.46% 6924 6952 5.85%
DPLA1 68153 799 13.78% 34111 667 12.34% 19068 1267 11.23% 6903 6930 5.84%
DPLA2 66689 782 13.49% 33526 655 12.13% 18988 1261 11.19% 6903 6930 5.84%
DPLA3 65835 772 13.31% 33286 651 12.04% 18953 1259 11.17% 6903 6930 5.84%
DPLA4 64997 762 13.14% 33181 649 12.01% 18943 1258 11.16% 6903 6930 5.84%

AS 5388 Trie 490581 5749 100.00% 273747 5347 100.00% 167695 11136 100.00% 116334 116789 100.00%
DPA 33545 394 6.84% 17295 338 6.32% 9262 616 5.52% 3728 3743 3.20%
DPLA1 32276 379 6.58% 16852 330 6.16% 8997 598 5.37% 3716 3731 3.19%
DPLA2 31244 367 6.37% 16556 324 6.05% 8925 593 5.32% 3713 3728 3.19%
DPLA3 30803 361 6.28% 16377 320 5.98% 8899 591 5.31% 3712 3727 3.19%
DPLA4 30524 358 6.22% 16294 319 5.95% 8887 591 5.30% 3711 3726 3.19%

AS 5511 Trie 500152 5862 100.00% 279037 5450 100.00% 171243 11372 100.00% 119222 119688 100.00%
DPA 64155 752 12.83% 32115 628 11.51% 17442 1159 10.19% 6400 6425 5.37%
DPLA1 60663 711 12.13% 30580 598 10.96% 17016 1130 9.94% 6362 6387 5.34%
DPLA2 59171 694 11.83% 30122 589 10.79% 16907 1123 9.87% 6355 6380 5.33%
DPLA3 58476 686 11.69% 29862 584 10.70% 16866 1121 9.85% 6354 6379 5.33%
DPLA4 57383 673 11.47% 29741 581 10.66% 16847 1119 9.84% 6354 6379 5.33%

AS 6539 Trie 493023 5778 100.00% 275199 5375 100.00% 168631 11199 100.00% 117208 117666 100.00%
DPA 65247 765 13.23% 32608 637 11.85% 17807 1183 10.56% 6557 6583 5.59%
DPLA1 62110 728 12.60% 31253 611 11.36% 17416 1157 10.33% 6527 6553 5.57%
DPLA2 60463 709 12.26% 30780 602 11.18% 17318 1151 10.27% 6527 6553 5.57%
DPLA3 59714 700 12.11% 30535 597 11.10% 17293 1149 10.25% 6527 6553 5.57%
DPLA4 58809 690 11.93% 30390 594 11.04% 17280 1148 10.25% 6527 6553 5.57%

Figure A.4: Results for the test-data (expanded automaton, part 1)

104

A. Detailed results

Alphabet expansion none 2 4 8
Instance Type States Mem Rel. size States Mem Rel. size States Mem Rel. size States Mem Rel. size
AS 6648 Trie 6441 76 100.00% 3644 72 100.00% 2273 151 100.00% 1665 1672 100.00%

DPA 1834 22 28.47% 907 18 24.89% 485 33 21.34% 222 223 13.33%
DPLA1 1679 20 26.07% 835 17 22.91% 454 31 19.97% 220 221 13.21%
DPLA2 1647 20 25.57% 815 16 22.37% 449 30 19.75% 219 220 13.15%
DPLA3 1554 19 24.13% 806 16 22.12% 449 30 19.75% 219 220 13.15%
DPLA4 1543 19 23.96% 804 16 22.06% 449 30 19.75% 219 220 13.15%

AS 6667 Trie 488463 5725 100.00% 272449 5322 100.00% 166821 11078 100.00% 115604 116056 100.00%
DPA 33490 393 6.86% 17265 338 6.34% 9241 614 5.54% 3710 3725 3.21%
DPLA1 32371 380 6.63% 16742 327 6.15% 8988 597 5.39% 3701 3716 3.20%
DPLA2 31301 367 6.41% 16433 321 6.03% 8919 593 5.35% 3701 3716 3.20%
DPLA3 30829 362 6.31% 16357 320 6.00% 8888 591 5.33% 3701 3716 3.20%
DPLA4 30542 358 6.25% 16263 318 5.97% 8869 589 5.32% 3701 3716 3.20%

AS 6730 Trie 257201 3015 100.00% 143306 2799 100.00% 87114 5785 100.00% 60912 61150 100.00%
DPA 51072 599 19.86% 25433 497 17.75% 13339 886 15.31% 3784 3799 6.21%
DPLA1 47887 562 18.62% 24122 472 16.83% 13044 867 14.97% 3714 3729 6.10%
DPLA2 46848 549 18.21% 23769 465 16.59% 13014 865 14.94% 3714 3729 6.10%
DPLA3 46197 542 17.96% 23617 462 16.48% 13000 864 14.92% 3714 3729 6.10%
DPLA4 45788 537 17.80% 23521 460 16.41% 12994 863 14.92% 3714 3729 6.10%

AS 6939 Trie 481647 5645 100.00% 268386 5242 100.00% 163865 10882 100.00% 113262 113705 100.00%
DPA 67183 788 13.95% 33741 660 12.57% 17500 1163 10.68% 6527 6553 5.76%
DPLA1 58949 691 12.24% 30083 588 11.21% 16034 1065 9.78% 6034 6058 5.33%
DPLA2 57351 673 11.91% 29573 578 11.02% 15972 1061 9.75% 6034 6058 5.33%
DPLA3 56346 661 11.70% 29387 574 10.95% 15943 1059 9.73% 6034 6058 5.33%
DPLA4 55856 655 11.60% 29306 573 10.92% 15929 1058 9.72% 6034 6058 5.33%

AS 7474 Trie 491724 5763 100.00% 274313 5358 100.00% 167925 11152 100.00% 116150 116604 100.00%
DPA 99927 1172 20.32% 49176 961 17.93% 26715 1775 15.91% 8471 8505 7.29%
DPLA1 95331 1118 19.39% 47175 922 17.20% 26289 1746 15.66% 8442 8475 7.27%
DPLA2 93275 1094 18.97% 46534 909 16.96% 26180 1739 15.59% 8442 8475 7.27%
DPLA3 91997 1079 18.71% 46153 902 16.82% 26138 1736 15.57% 8442 8475 7.27%
DPLA4 91193 1069 18.55% 45944 898 16.75% 26119 1735 15.55% 8442 8475 7.27%

AS 7911 Trie 417843 4897 100.00% 231491 4522 100.00% 139650 9274 100.00% 95150 95522 100.00%
DPA 115599 1355 27.67% 57997 1133 25.05% 28487 1892 20.40% 8766 8801 9.21%
DPLA1 101552 1191 24.30% 52260 1021 22.58% 26512 1761 18.98% 8004 8036 8.41%
DPLA2 99029 1161 23.70% 51520 1007 22.26% 26420 1755 18.92% 8004 8036 8.41%
DPLA3 97672 1145 23.38% 51165 1000 22.10% 26391 1753 18.90% 8004 8036 8.41%
DPLA4 97018 1137 23.22% 51019 997 22.04% 26375 1752 18.89% 8004 8036 8.41%

AS 8220 Trie 515180 6038 100.00% 286935 5605 100.00% 173888 11548 100.00% 118396 118859 100.00%
DPA 35427 416 6.88% 18253 357 6.36% 9658 642 5.55% 3979 3995 3.36%
DPLA1 33973 399 6.59% 17641 345 6.15% 9335 620 5.37% 3946 3962 3.33%
DPLA2 33394 392 6.48% 17377 340 6.06% 9253 615 5.32% 3938 3954 3.33%
DPLA3 33200 390 6.44% 17073 334 5.95% 9220 613 5.30% 3938 3954 3.33%
DPLA4 33010 387 6.41% 16992 332 5.92% 9207 612 5.29% 3938 3954 3.33%

AS 9132 Trie 494750 5798 100.00% 275804 5387 100.00% 168619 11198 100.00% 116674 117130 100.00%
DPA 98764 1158 19.96% 49554 968 17.97% 24657 1638 14.62% 8237 8270 7.06%
DPLA1 87847 1030 17.76% 45045 880 16.33% 23023 1529 13.65% 7638 7668 6.55%
DPLA2 85602 1004 17.30% 44461 869 16.12% 22949 1524 13.61% 7638 7668 6.55%
DPLA3 84466 990 17.07% 44202 864 16.03% 22928 1523 13.60% 7638 7668 6.55%
DPLA4 83951 984 16.97% 44029 860 15.96% 22918 1522 13.59% 7638 7668 6.55%

AS 12312 Trie 486021 5696 100.00% 271118 5296 100.00% 165949 11021 100.00% 114929 115378 100.00%
DPA 33386 392 6.87% 17221 337 6.35% 9224 613 5.56% 3710 3725 3.23%
DPLA1 32329 379 6.65% 16764 328 6.18% 8952 595 5.39% 3702 3717 3.22%
DPLA2 31760 373 6.53% 16449 322 6.07% 8891 591 5.36% 3701 3716 3.22%
DPLA3 31039 364 6.39% 16304 319 6.01% 8869 589 5.34% 3701 3716 3.22%
DPLA4 30844 362 6.35% 16223 317 5.98% 8858 589 5.34% 3701 3716 3.22%

AS 13645 Trie 490626 5750 100.00% 273602 5344 100.00% 167417 11118 100.00% 116004 116458 100.00%
DPA 33755 396 6.88% 17406 340 6.36% 9314 619 5.56% 3731 3746 3.22%
DPLA1 32242 378 6.57% 16929 331 6.19% 9032 600 5.39% 3718 3733 3.21%
DPLA2 31857 374 6.49% 16771 328 6.13% 8965 596 5.35% 3714 3729 3.20%
DPLA3 31429 369 6.41% 16618 325 6.07% 8939 594 5.34% 3713 3728 3.20%
DPLA4 31045 364 6.33% 16409 321 6.00% 8931 594 5.33% 3713 3728 3.20%

AS 15290 (east) Trie 507190 5944 100.00% 282530 5519 100.00% 171258 11373 100.00% 117057 117515 100.00%
DPA 99156 1162 19.55% 48800 954 17.27% 26295 1747 15.35% 8588 8622 7.34%
DPLA1 94186 1104 18.57% 46505 909 16.46% 25749 1710 15.04% 8538 8572 7.29%
DPLA2 92266 1082 18.19% 45771 894 16.20% 25636 1703 14.97% 8533 8567 7.29%
DPLA3 90559 1062 17.86% 45420 888 16.08% 25595 1700 14.95% 8531 8565 7.29%
DPLA4 89822 1053 17.71% 45230 884 16.01% 25573 1699 14.93% 8531 8565 7.29%

AS 15290 (west) Trie 507119 5943 100.00% 282471 5518 100.00% 171219 11371 100.00% 117010 117468 100.00%
DPA 99111 1162 19.54% 48799 954 17.28% 26316 1748 15.37% 8570 8604 7.32%
DPLA1 94362 1106 18.61% 46539 909 16.48% 25775 1712 15.05% 8524 8558 7.28%
DPLA2 92343 1083 18.21% 45779 895 16.21% 25671 1705 14.99% 8517 8551 7.28%
DPLA3 90418 1060 17.83% 45438 888 16.09% 25635 1703 14.97% 8514 8548 7.28%
DPLA4 89504 1049 17.65% 45259 884 16.02% 25610 1701 14.96% 8512 8546 7.27%

Figure A.5: Results for the test-data (expanded automaton, part 2)

105

Appendix B

Implementation

All algorithms described in this thesis have been implemented in Java (with
the exception of the brute force DPkLlA minimizer which was written in
C++) to gain some experience with the algorithms and perform correctness
tests on them. Additionally the code provided a platform for experiment-
ing with different algorithmic ideas in the context of finite automata (e.g.,
when developing heuristics for DPkLlA size reduction) as well as testing
different setups for the creation and minimization of forwarding tables. Fi-
nally the programs were used to calculate the results from Section 7.2 and
Appendix A.

With more than 6000 lines of code (including about 1000 lines of testing
code) the sources can not be included here. Instead they are available upon
request from the author (or can be found on the accompanying CD for the
printed version). The intention of this section is to give an overview on
the available source code, and to serve as a starting point for users and
developers working with the code.

The code is organized as several loosely coupled Java packages within
the edu.tum.cs.flang hierarchy (flang was chosen as a short form of finite
language although the DPkA code can be used with infinite regular languages
as well).

core
Definition of the IFiniteAutomaton interface, as well as basic imple-
mentations of this interface, including the Trie and the Treelike-
Automaton (a special automaton slightly more general than the trie
which supports leaf-pushing and level shifting as operations).

dpa
Implementations of the textbook, Hopcroft, and acyclic DPkA mini-
mization algorithms (Algorithms 3.1, 3.4, and 3.6). Furthermore code
for alphabet expansion of DPkAs as well as various tool code (such as
testing whether two DPkAs are isomorphic) are located here.

106

B. Implementation

dpca
Implementations of the quadratic and Körner DPkClA minimization
algorithms (Algorithms 4.1 with 4.2, and 4.3), as well as a DPkLlA
equivalence test (in DPCATools).

dpla
Besides the heuristic described in Section 5.5 (DPLAOrderedFlipping-
Minimizer) an older (less efficient) version of the heuristic assigning
arbitrary state classes (DPLARandomFlippingMinimizer) and DPkLlA
equivalence testing code (the non-polynomial time version) are in-
cluded. Additionally the ILPTransformer can create an LP file con-
taining an integer linear program for the minimization problem of a
given DPkLlA. We hoped that in conjunction with commercial ILP
solvers such as CPLEX1, larger instances as with our simple brute
force solver could be optimized. This did not work as expected, which
might both be inherent to the DPkLlA minimization problem and our
LP formulation.

io
This package has code for reading and writing DPkAs using a propri-
etary file format. The DotWriter produces input files for the dot2

program, which was also used to create the automata images in this
paper. Being able to visualize medium sized automata easily this way
proved to be invaluable for debugging.

rtable
Code for dealing with routing tables, such as conversions from different
formats to a simple proprietary one, and building a trie from a routing
table.

bin
Command-line tools for converting and minimizing automata, and cre-
ating statistics tables such as those given in Appendix A.

util
Utility code not directly related to the project, but used from some of
the other classes.

For further details on the classes and implementation the reader is en-
couraged to look into the actual code or the generated JavaDoc documen-
tation coming with it.

1CPLEX is a commercial mixed integer linear programming solver from ILOG
(http://www.ilog.com)

2dot is part of the Open Source graph layout package GraphViz available at
http://www.graphviz.org/

107

B. Implementation

We want to loose a final word on testing. Testing complex algorithms
is usually complicated as corner cases are overlooked and manually check-
ing non-trivial test cases is often nearly impossible. An advantage of our
implementation is the presence of at least two different algorithms for both
DPkA and DPkClA minimization. So besides the usual simple test cases
we included concurrent testing, where larger automata are randomly gener-
ated and minimized using different algorithms. From the theoretical results
we know that the minimal automata produced by different algorithms for
the same problem must have the same size and are isomorphic (DPkA) or
equivalent (DPkClA) which both can be checked programmatically. Thus
the algorithms are used to verify each other increasing the “trust level” of
the implementation.

108

