WS 2011/12

Efficient Algorithms and Data Structures

Harald Räcke

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2011WS/ea/

Winter Term 2011/12

Organizational Matters

Organizational Matters

► Modul: IN2003

Name: "Efficient Algorithms and Data Structures"
 "Effiziente Algorithmen und Datenstrukturen"

► ECTS: 8 Credit points

Lectures:

► 4 SWS

Mon 12:15–13:45 (Room 00.13.009A) Thu 10:15–11:45 (Room 00.04.011, HS

Webpage: http://www14.in.tum.de/lehre/2011WS/ea/

Organizational Matters

► Modul: IN2003

Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"

ECTS: 8 Credit points

Lectures

► 4 SWS

Mon 12:15–13:45 (Room 00.13.009A) Thu 10:15–11:45 (Room 00.04.011, HS

▶ Webpage: http://www14.in.tum.de/lehre/2011WS/ea/

Organizational Matters

► Modul: IN2003

Name: "Efficient Algorithms and Data Structures"

"Effiziente Algorithmen und Datenstrukturen"

ECTS: 8 Credit points

Lectures:

4 SWS

Mon 12:15-13:45 (Room 00.13.009A) Thu 10:15-11:45 (Room 00.04.011, HS

▶ Webpage: http://www14.in.tum.de/lehre/2011WS/ea/

Organizational Matters

Modul: IN2003

Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"

ECTS: 8 Credit points

Lectures:

4 SWS

Mon 12:15-13:45 (Room 00.13.009A) Thu 10:15-11:45 (Room 00.04.011, HS2)

Webpage: http://www14.in.tum.de/lehre/2011WS/ea/

Organizational Matters

► Modul: IN2003

Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"

ECTS: 8 Credit points

Lectures:

4 SWS
 Mon 12:15-13:45 (Room 00.13.009A)
 Thu 10:15-11:45 (Room 00.04.011, HS2)

Webpage: http://www14.in.tum.de/lehre/2011WS/ea/

- IN0001, IN0003
 - "Introduction to Informatics 1/2"
 - "EinfAijhrung in die Informatik 1/2"
- ► IN0007
 - "Fundamentals of Algorithms and Data Structures"
 - "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- IN0011
 - "Basic Theoretic Informatics"
 - "EinfÄijhrung in die Theoretische Informatik" (THEO)
- ► IN0015
 - "Discrete Structures"
 - "Diskrete Strukturen" (DS)
- ► IN0018
 - "Discrete Probability Theory"
 - "Diskrete Wahrscheinlichkeitstheorie" (DWT)

► IN0001, IN0003

"Introduction to Informatics 1/2"

"EinfAijhrung in die Informatik 1/2"

► IN0007

"Fundamentals of Algorithms and Data Structures"

"Grundlagen: Algorithmen und Datenstrukturen" (GAD)

► IN0011

"Basic Theoretic Informatics"

"EinfAijhrung in die Theoretische Informatik" (THEO)

► IN0015

"Discrete Structures"

"Diskrete Strukturen" (DS)

► IN0018

"Discrete Probability Theory"

"Diskrete Wahrscheinlichkeitstheorie" (DWT)

► IN0001, IN0003

"Introduction to Informatics 1/2"

"EinfAijhrung in die Informatik 1/2"

► IN0007

"Fundamentals of Algorithms and Data Structures"

"Grundlagen: Algorithmen und Datenstrukturen" (GAD)

IN0011

"Basic Theoretic Informatics"

"EinfAijhrung in die Theoretische Informatik" (THEO)

► IN0015

"Discrete Structures"

"Diskrete Strukturen" (DS)

► INO018

"Discrete Probability Theory"

"Diskrete Wahrscheinlichkeitstheorie" (DWT)

► IN0001, IN0003

"Introduction to Informatics 1/2"

"EinfAijhrung in die Informatik 1/2"

► IN0007

"Fundamentals of Algorithms and Data Structures"

"Grundlagen: Algorithmen und Datenstrukturen" (GAD)

► IN0011

"Basic Theoretic Informatics"

"EinfAijhrung in die Theoretische Informatik" (THEO)

- N0015
- "Discrete Structures"
- "Diskrete Strukturen" (DS)
- ► IN0018
 - "Discrete Probability Theory"
 - "Diskrete Wahrscheinlichkeitstheorie" (DWT)

► IN0001, IN0003

"Introduction to Informatics 1/2"

"EinfAijhrung in die Informatik 1/2"

► IN0007

"Fundamentals of Algorithms and Data Structures"

"Grundlagen: Algorithmen und Datenstrukturen" (GAD)

► IN0011

"Basic Theoretic Informatics"

"EinfAijhrung in die Theoretische Informatik" (THEO)

► IN0015

"Discrete Structures"

"Diskrete Strukturen" (DS)

N0018

"Discrete Probability Theory"

"Diskrete Wahrscheinlichkeitstheorie" (DWT)

► IN0001, IN0003

"Introduction to Informatics 1/2"

"EinfAijhrung in die Informatik 1/2"

► IN0007

"Fundamentals of Algorithms and Data Structures"

"Grundlagen: Algorithmen und Datenstrukturen" (GAD)

► IN0011

"Basic Theoretic Informatics"

"EinfAijhrung in die Theoretische Informatik" (THEO)

► IN0015

"Discrete Structures"

"Diskrete Strukturen" (DS)

► IN0018

"Discrete Probability Theory"

"Diskrete Wahrscheinlichkeitstheorie" (DWT)

The Lecturer

► Harald RÃd'cke

► Email: raecke@in.tum.de

Room: 03.09.044

Office hours: (per appointment)

Tutorials

Tutor:

Chintan Shah

chintan.shah@tum.de

Room: 03.09.059

▶ Office hours: Wed 11:30-12:30

► Room: 00.08.038

▶ Time: Tue 14:14-15:45

- In order to pass the module you need to
 - 1. pass an exam, and
 - 2. obtain at least 40% of the points in the assignment sheets.
- ► Exam:
 - Date will be announced shortly.
 - There are no resources allowed, apart from a hand-writteners
 - piece of paper (A4).
 - Answers should be given in English, but German is also

- In order to pass the module you need to
 - 1. pass an exam, and
 - 2. obtain at least 40% of the points in the assignment sheets.
- Exam:
 - Date will be announced shortly
 - There are no resources allowed, apart from a hand-writtee
 - piece of paper (A4).
 - Answers should be given in English, but German is also

- In order to pass the module you need to
 - 1. pass an exam, and
 - 2. obtain at least 40% of the points in the assignment sheets.
- Exam:
 - Date will be announced shortly there are no resources allowed
 - piece of paper (A4).
 - Answers should be given
 - accepted

- In order to pass the module you need to
 - 1. pass an exam, and
 - 2. obtain at least 40% of the points in the assignment sheets.

Exam:

- Date will be announced shortly.
- There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

- In order to pass the module you need to
 - 1. pass an exam, and
 - 2. obtain at least 40% of the points in the assignment sheets.
- Exam:
 - Date will be announced shortly.
 - There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

- In order to pass the module you need to
 - 1. pass an exam, and
 - 2. obtain at least 40% of the points in the assignment sheets.
- Exam:
 - Date will be announced shortly.
 - ► There are no resources allowed, apart from a hand-written piece of paper (A4).
 - Answers should be given in English, but German is also accepted.

- In order to pass the module you need to
 - 1. pass an exam, and
 - 2. obtain at least 40% of the points in the assignment sheets.

Exam:

- Date will be announced shortly.
- ► There are no resources allowed, apart from a hand-written piece of paper (A4).
- Answers should be given in English, but German is also accepted.

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- We will probably have 12 assignment sheets. The first one will be out on Wednesday, 26 October.

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- We will probably have 12 assignment sheets. The first one will be out on Wednesday, 26 October.

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- We will probably have 12 assignment sheets. The first one will be out on Wednesday, 26 October.

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- We will probably have 12 assignment sheets. The first one will be out on Wednesday, 26 October.

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- We will probably have 12 assignment sheets. The first one will be out on Wednesday, 26 October.

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- We will probably have 12 assignment sheets. The first one will be out on Wednesday, 26 October.

- An assignment sheet is usually made available on Wednesday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Thursday.
- You can hand in your solutions by putting them in the right folder in front of room 03.09.052.
- Solutions have to be given in English.
- Solutions will be discussed in the subsequent tutorial on Tuesday.
- We will probably have 12 assignment sheets. The first one will be out on Wednesday, 26 October.

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings

- Foundations
 - Machine models
 - Efficiency measures
 - Asymptotic notation
 - Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings

2 Literatur I

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms,

McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia:

Algorithm design: Foundations, analysis, and internet examples,

John Wiley & Sons, 2002

2 Literatur II

Grundlegende Algorithmen: EinfÄijhrung in den Entwurf und die Analyse effizienter Algorithmen,

2. Auflage, Vieweg, 2003

Jon Kleinberg, Eva Tardos: Algorithm Design,

Addison-Wesley, 2005

Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental Algorithms,

3. Auflage, Addison-Wesley Publishing Company: Reading (MA), 1997

2 Literatur III

The art of computer programming. Vol. 3: Sorting and Searching,

3. Auflage, Addison-Wesley Publishing Company: Reading (MA), 1997

Christos H. Papadimitriou, Kenneth Steiglitz:

Combinatorial Optimization: Algorithms and Complexity,

Prentice Hall, 1982

Uwe SchÃČÂűning:

Algorithmik,

Spektrum Akademischer Verlag, 2001

2 Literatur IV

Steven S. Skiena: The Algorithm Design Manual, Springer, 1998

イロトイプトイミトイミト

Part II

Foundations

3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.
- Learn how to design efficient algorithms.

3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.
- Learn how to design efficient algorithms.

3 Goals

- Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.
- Learn how to design efficient algorithms.



- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- **>** ...

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- **>**

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- **>**

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- **.**

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- **.** . . .

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
-



- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- **.** . . .

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - the $O(n^{\prime})^{n}$
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting."
 - algorithm needs at least $\Omega(n\log n)$ comparisons in the worst

- Implementing and testing on representative inputs
 - How do you choose your inputs?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.

EADS
© Ernst Mayr, Harald Räcke

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Figure Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- ► Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1,\ldots,N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n\log N$, which would be the number of bits required to encode the input.

How to measure performance

How to measure performance

- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), . . .
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

How to measure performance

- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), . . .
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, . . .

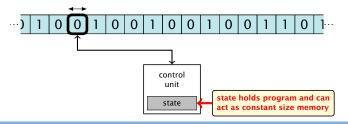
Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

How to measure performance

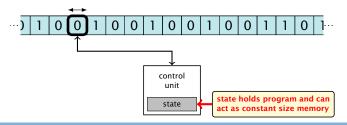
- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), . . .
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

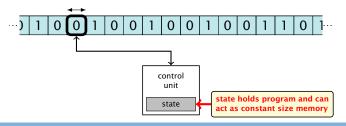
- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.



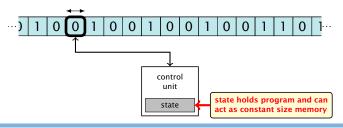
- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.



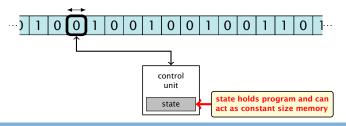
- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.



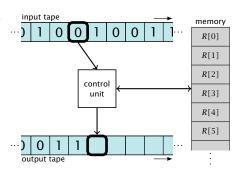
- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.



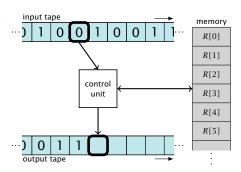
- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.



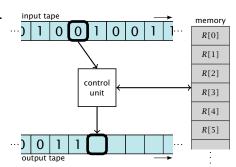
- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$
- Registers hold integers
- Indirect addressing.



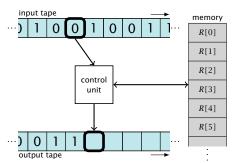
- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$
- Registers hold integers
- Indirect addressing.



- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$
- Registers hold integers.
 - Indirect addressing.



- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$
- Registers hold integers.
- Indirect addressing.



- ▶ input operations (input tape $\rightarrow R[i]$)
 - ▶ RFAD i
- ▶ output operations $(R[i] \rightarrow \text{output tape})$
- » WRITE i
- register-register transfers
- F(X) := K(U) F(X) := A
- * K[j] := 4
- indirect addressing
 - $\vdash R[j] := R[R[i]]$
 - loads the content of til
 - number y

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- output operations $(R[i] \rightarrow \text{output tape})$
- ► WKILLE 1
- register-register transfers
 - R[j] := R[i]
- ▶ indirect addressing
 - $\vdash R[j] := R[R[i]]$
 - number j

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- ▶ output operations $(R[i] \rightarrow \text{output tape})$
 - ► WRITE i
- register-register transfers

- ► indirect addressing
 - loads the co

Operations

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- output operations $(R[i] \rightarrow \text{output tape})$
 - ▶ WRITE i
- register-register transfers

▶ indirect addressing

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- ▶ output operations $(R[i] \rightarrow \text{output tape})$
 - ▶ WRITE i
- register-register transfers
 - R[j] := R[i]
 - $\triangleright R[j] := 4$
- indirect addressing

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- ▶ output operations $(R[i] \rightarrow \text{output tape})$
 - ▶ WRITE i
- register-register transfers
 - R[j] := R[i]
 - ightharpoonup R[j] := 4
- indirect addressing

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- ▶ output operations $(R[i] \rightarrow \text{output tape})$
 - ▶ WRITE i
- register-register transfers
 - R[j] := R[i]
 - R[j] := 4
- indirect addressing

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- ▶ output operations $(R[i] \rightarrow \text{output tape})$
 - ▶ WRTTF i
- register-register transfers
 - ► R[j] := R[i]► R[j] := 4
- indirect addressing
 - R[j] := R[R[i]] loads the content of the register number R[i] into register number i

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ i
- output operations $(R[i] \rightarrow \text{output tape})$
 - ▶ WRTTF i.
- register-register transfers
 - ► R[j] := R[i]► R[j] := 4
- indirect addressing
 - R[j] := R[R[i]] loads the content of the register number R[i] into register number j

Operations

branching (including loops) based on comparisons

```
    jump x
        jumps to position x in the program;
        sets instruction counter to x;
        reads the next operation to perform from register R[x]
        • jumpz x R[i]
        jump to x if R[i] = 0
        if not the instruction counter is increased by 1;
        • jumpi i
        jump to R[i] (indirect jump);
```

```
▶ arithmetic instructions: +, -, \times, /
```

```
R[i] := R[j] + R[k];
```


- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 - jumpz x R[i]jump to x if R[i] = 0if not the instruction counter is increased by 1;
 - jumpi i jump to R[i] (indirect jump);
- ▶ arithmetic instructions: +, -, ×, /

- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 - jumpz x R[i]
 jump to x if R[i] = 0
 if not the instruction counter is increased by 1;
 - ▶ jumpi i
 jump to R[i] (indirect jump);
- ▶ arithmetic instructions: +, -, \times , /

- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 - jumpz x R[i]
 jump to x if R[i] = 0
 if not the instruction counter is increased by 1;
 - jumpi i jump to R[i] (indirect jump);
- ▶ arithmetic instructions: +, -, ×, /

- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 - jumpz x R[i]
 jump to x if R[i] = 0
 if not the instruction counter is increased by 1;
 - jumpi i jump to R[i] (indirect jump);
- ▶ arithmetic instructions: +, -, ×, /

```
► R[i] := R[j] + R[k];

R[i] := -R[k]:
```


- branching (including loops) based on comparisons
 - jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 - jumpz x R[i]
 jump to x if R[i] = 0
 if not the instruction counter is increased by 1;
 - jumpi i jump to R[i] (indirect jump);
- ▶ arithmetic instructions: +, -, ×, /
 - ► R[i] := R[j] + R[k];R[i] := -R[k];

- uniform cost modelEvery operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
- Whe storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

- uniform cost modelEvery operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - ▶ The time for a step is equal to the largest operand involved:
 - ► The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

- uniform cost modelEvery operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - ► The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

- uniform cost modelEvery operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

- uniform cost model Every operation takes time 1.
- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Example 2

Algorithm 1 RepeatedSquaring(n)

1: $r \leftarrow 2$;

2: **for** $i = 1 \to n$ **do**

3: $r \leftarrow r^2$

Example 2

Algorithm 1 RepeatedSquaring(n)

1: $r \leftarrow 2$;

2: **for** $i = 1 \to n$ **do**

3: $r \leftarrow r^2$

4: return γ

running time:

- ▶ uniform model: *n* steps
- ▶ logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement

uniform model: $\mathcal{O}(1)$

Example 2

Algorithm 1 RepeatedSquaring(*n*)

1: $r \leftarrow 2$;

2: **for** $i = 1 \to n$ **do**

3: $r \leftarrow r^2$

- running time:
 - ▶ uniform model: n steps
 - ▶ logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement

Example 2

Algorithm 1 RepeatedSquaring(n)

1: $r \leftarrow 2$;

2: **for** $i = 1 \to n$ **do**

3: $r \leftarrow r^2$

- running time:
 - ▶ uniform model: n steps
 - ▶ logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement

Example 2

Algorithm 1 RepeatedSquaring(n)

1: $r \leftarrow 2$;

2: **for** $i = 1 \to n$ **do**

3: $r \leftarrow r^2$

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - ▶ logarithmic model: $\mathcal{O}(2^n)$

Example 2

Algorithm 1 RepeatedSquaring(*n*)

1: $r \leftarrow 2$;

2: **for** $i = 1 \to n$ **do**

3: $r \leftarrow r^2$

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - ▶ logarithmic model: $\mathcal{O}(2^n)$

Example 2

Algorithm 1 RepeatedSquaring(*n*)

1: $r \leftarrow 2$;

2: **for** $i = 1 \to n$ **do**

3: $r \leftarrow r^2$

- running time:
 - ▶ uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - uniform model: $\mathcal{O}(1)$
 - ▶ logarithmic model: $\mathcal{O}(2^n)$

best-case complexity:

$$C_{\mathrm{bc}}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{\mathrm{WC}}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

$$C_{\text{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

best-case complexity:

$$C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

$$C_{\text{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

best-case complexity:

$$C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

$$C_{\text{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

best-case complexity:

$$C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

$$C_{\operatorname{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

- amortized complexity:
 The average cost of data structure operations over a worst case sequence of operations.
- The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x.

There are different types of complexity bounds:

- amortized complexity:
 The average cost of data structure operations over a worst case sequence of operations.
- randomized complexity:

 The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x.

 Then take the worst-case over all x with |x| = n.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- ► A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

- ▶ We are usually interested in the running times for large values of *n*. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^+ .

▶ $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)

Formal Definition

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)
- ▶ $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 \colon [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)

Formal Definition

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)
- ▶ $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 \colon [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)

Formal Definition

- ▶ $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 \colon [g(n) \geq c \cdot f(n)] \}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- ▶ $o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)

Formal Definition

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)
- ▶ $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 \colon [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- ▶ $o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- $\omega(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \geq c \cdot f(n)] \}$ (set of functions that asymptotically grow faster than f)

There is an equivalent definition using limes notation. f and g are functions from $\mathbb N$ to $\mathbb R^+$.

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

There is an equivalent definition using limes notation. f and g are functions from $\mathbb N$ to $\mathbb R^+$.

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

There is an equivalent definition using limes notation. f and gare functions from \mathbb{N} to \mathbb{R}^+ .

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

•
$$g \in \Theta(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

There is an equivalent definition using limes notation. f and g are functions from $\mathbb N$ to $\mathbb R^+$.

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

•
$$g \in \Theta(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

$$g \in o(f): \quad \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

There is an equivalent definition using limes notation. f and g are functions from $\mathbb N$ to $\mathbb R^+$.

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

•
$$g \in \Theta(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

$$g \in o(f): \quad \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

•
$$g \in \omega(f)$$
: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- 2. People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \to \mathbb{R}^+, n \mapsto f(n)$, and $g: \mathbb{N} \to \mathbb{R}^+, n \mapsto g(n)$.
- 3. People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that $h(n) \leq f(n) + z(n)$.
- 4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- 2. People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \to \mathbb{R}^+, n \mapsto f(n)$, and $g: \mathbb{N} \to \mathbb{R}^+, n \mapsto g(n)$.
- 3. People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that $h(n) \leq f(n) + z(n)$.
- 4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- 2. People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f : \mathbb{N} \to \mathbb{R}^+, n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+, n \mapsto g(n)$.
- 3. People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that $h(n) \leq f(n) + z(n)$.
- 4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- 2. People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f : \mathbb{N} \to \mathbb{R}^+, n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+, n \mapsto g(n)$.
- 3. People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that $h(n) \le f(n) + z(n)$.
- 4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

Lemma 3

Let f, g be functions with the property $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\triangleright \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

Lemma 3

Let f, g be functions with the property $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\triangleright \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

Lemma 3

Let f,g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0$: f(n) > 0 (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$

Lemma 3

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\bullet \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

Lemma 3

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- ▶ In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- ▶ In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

Algorithm 2 mergesort(list *L*)

1: $s \leftarrow \text{size}(L)$

2: **if** $s \le 1$ **return** L

3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{s}{2} \rfloor]$

4: $L_2 \leftarrow L[\lceil \frac{s}{2} \rceil \cdots n]$

5: $mergesort(L_1)$

6: mergesort(L_2)

7: $L \leftarrow \text{merge}(L_1, L_2)$

8: return L

This algorithm requires

$$T(n) \le 2T(\lceil \frac{n}{2} \rceil) + \mathcal{O}(n)$$

comparisons when n > 1 and 0 comparisons when $n \le 1$

Algorithm 2 mergesort(list *L*)

1: $s \leftarrow \text{size}(L)$

2: **if** $s \le 1$ **return** L

3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{s}{2} \rfloor]$

4: $L_2 \leftarrow L[\lceil \frac{s}{2} \rceil \cdots n]$

5: $mergesort(L_1)$

6: mergesort(L_2)

7: $L \leftarrow \text{merge}(L_1, L_2)$

8: return L

This algorithm requires

$$T(n) \le 2T(\lceil \frac{n}{2} \rceil) + \mathcal{O}(n)$$

comparisons when n > 1 and 0 comparisons when $n \le 1$.

How do we bring the expression for the number of comparisons (\approx running time) into a closed form?

For this we need to solve the recurrence.

How do we bring the expression for the number of comparisons (≈ running time) into a closed form?

For this we need to solve the recurrence.

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O} -notation in our recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

 $\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

Suppose we guess $T(n) \le dn \log n$ for a constant d. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$= dn\log n$$

if we choose $d \ge c$.

Suppose we guess $T(n) \le dn \log n$ for a constant d. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$= dn\log n$$

if we choose d > c.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

$$T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$.

$$T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$$

Guess: $T(n) \le dn \log n$. Proof. (by induction) $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

Guess: $T(n) \le dn \log n$. Proof. (by induction)

▶ **base case** $(2 \le n < 16)$:

```
T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}
```

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

base case $(2 \le n < 16)$: true if we choose $d \ge b$.

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

▶ base case $(2 \le n < 16)$: true if we choose $d \ge b$.

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

▶ induction step $2 \dots n - 1 \rightarrow n$:

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

- ▶ **base case** $(2 \le n < 16)$: **true** if we choose $d \ge b$.
- ▶ induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

- ▶ base case $(2 \le n < 16)$: true if we choose $d \ge b$.
- ▶ induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$.

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

- ▶ **base case** $(2 \le n < 16)$: **true** if we choose $d \ge b$.
 - ▶ induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$.

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

- ▶ **base case** $(2 \le n < 16)$: **true** if we choose $d \ge b$.
 - ▶ induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$.

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$
$$= dn(\log n - 1) + cn$$

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

Guess: $T(n) \leq dn \log n$.

Proof. (by induction)

- ▶ **base case** $(2 \le n < 16)$: **true** if we choose $d \ge b$.
 - ▶ induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$.

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- ▶ induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$.

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$= dn\log n$$

Guess: $T(n) \le dn \log n$.

Proof. (by induction)

- **base case** $(2 \le n < 16)$: true if we choose $d \ge b$.
- ▶ induction step $2 \dots n 1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \\ b & \text{otw.} \end{cases}$

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$= dn\log n$$

Hence, statement is true if we choose $d \ge c$.

Why did we change the recurrence by getting rid of the ceiling?

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 16 \\ b & \text{otherwise} \end{cases}$$

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 16 \\ b & \text{otherwise} \end{cases}$$

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

We also make a guess of $T(n) \le dn \log n$ and get

T(n)

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$
$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log \left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\boxed{\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1} \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1$$

$$\le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1 \right\rceil \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil \frac{n}{2} \right\rceil + 1 \le \frac{9}{16}n \right\rceil \le dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$T(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil \frac{n}{2} \right\rceil \log\left\lceil \frac{n}{2} \right\rceil\right) + cn$$

$$\left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 1 \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil \frac{n}{2} + 1 \le \frac{9}{16}n \right\rceil \le dn \log\left(\frac{9}{16}n\right) + 2d \log n + cn$$

$$\log \frac{9}{16}n = \log n + (\log 9 - 4)$$

$$T(n) \le 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \le \frac{n}{2} + 1\right\rceil \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \le \frac{9}{16}n\right\rceil \le dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log \frac{9}{16}n = \log n + (\log 9 - 4)$$

$$\log \frac{9}{16}n = \log n + (\log 9 - 4) = dn \log n + (\log 9 - 4)dn + 2d \log n + cn$$

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil = \log n + (\log 9 - 4)$$

$$= dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4}$$

$$T(n) \le 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\le 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \le \frac{n}{2} + 1\right\rceil \le 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \le \frac{9}{16}n\right\rceil \le dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4)$$

$$= dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\frac{\log \frac{9}{16}n = \log n + (\log 9 - 4)}{\log n \le \frac{n}{4}} = dn \log n + (\log 9 - 4)dn + 2d \log n = dn \log n + (\log 9 - 3.5)dn + cn$$

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4)$$

$$= dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\log n \leq \frac{n}{4} = dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1\right\rceil \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\log\frac{9}{16}n = \log n + (\log 9 - 4)$$

$$= dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\left\lceil\log n \leq \frac{n}{4}\right\rceil = dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

$$\leq dn\log n$$

for a suitable choice of d.

6.2 Master Theorem

Lemma 4

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) .$$

Case 1.

If
$$f(n) = \mathcal{O}(n^{\log_b(a) - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$.

Case 2.

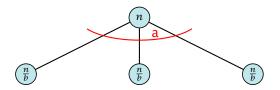
If
$$f(n) = \Theta(n^{\log_b(a)} \log^k n)$$
 then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.

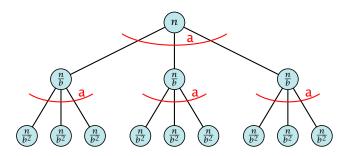
Case 3.

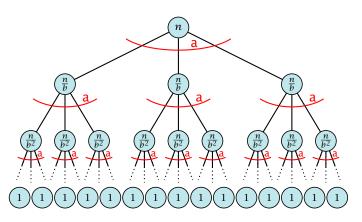
If $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ and for sufficiently large n $af(\frac{n}{h}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$.

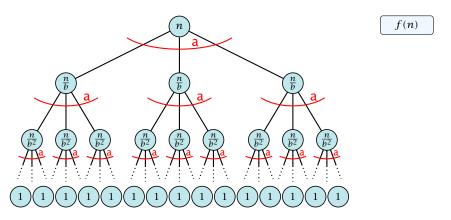
6.2 Master Theorem

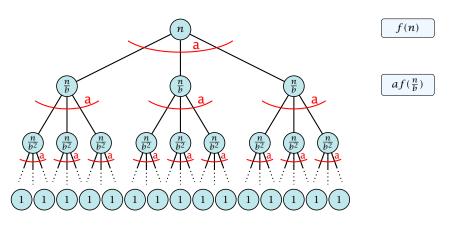
We prove the Master Theorem for the case that n is of the form b^{ℓ} , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

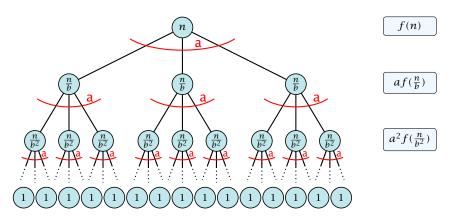


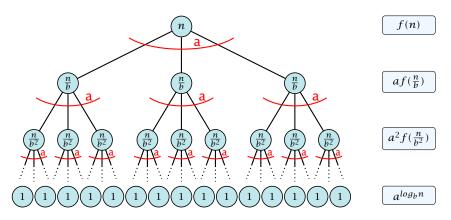


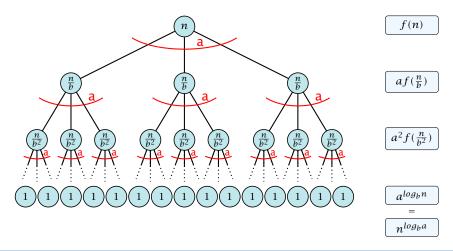












6.2 Master Theorem

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) \ .$$

$$T(n) - n^{\log_b a}$$

イロトイプトイミトイミト

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

イロトイプトイミトイミト

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\frac{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{b^{-i(\log_b a - \epsilon)}} = cn^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n} (b^{\epsilon})^i$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$

$$\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q-1}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\frac{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{c} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q^{-1}} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$

$$= c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$\sum_{i=0}^k a^i = \frac{a^{k+1} - 1}{a^{-1}} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$

$$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$

$$= c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$= c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$

$$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n-1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\underline{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n-1} (b^{\epsilon})^i$$

$$\sum_{i=0}^k q^i = \frac{q^{k+1}-1}{q-1} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

Hence,

$$T(n) \le \left(\frac{c}{h^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\frac{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{b^{-i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$\sum_{i=0}^{k} q^{i} = \frac{q^{k+1}-1}{q-1}$$

$$= c n^{\log_{b} a - \epsilon} (b^{\epsilon \log_{b} n} - 1)/(b^{\epsilon} - 1)$$

$$= c n^{\log_{b} a - \epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon}-1} n^{\log_{b} a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

Hence,

$$T(n) \le \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$

$$\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$$

$$T(n) - n^{\log_b a}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$
 $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$

$$T(n) - n^{\log_b a}$$

イロトイプトイミトイミト

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$
$$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \Omega(n^{\log_b a} \log_b n)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \Omega(n^{\log_b a} \log_b n)$$
 $\Rightarrow T(n) = \Omega(n^{\log_b a} \log n).$

$$T(n) - n^{\log_b a}$$

イロトイプトイミトイミト

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n=b^\ell\Rightarrow\ell=\log_b n$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$\boxed{n = b^\ell \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^\ell}{b^i}\right)\right)^k$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n = b^{\ell} \Rightarrow \ell = \log_b n$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k \approx \frac{1}{k} \ell^{k+1}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=1}^{\ell} i^k$$

$$\approx \frac{c}{b} n^{\log_b a} \ell^{k+1}$$

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n = b^{\ell} \Rightarrow \ell = \log_b n$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=1}^{\ell} i^k$$

$$\approx \frac{c}{b} n^{\log_b a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log^{k+1} n).$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

From this we get $a^if(n/b^i) \le c^if(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

From this we get $a^if(n/b^i) \le c^if(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$
$$= \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$
$$= \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q} \le \frac{1}{1-q}$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$= \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \le \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$= \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1 : \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \le \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$

Hence,

$$T(n) \leq \mathcal{O}(f(n))$$

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$= \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1 : \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \le \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$

Hence,

$$T(n) \leq \mathcal{O}(f(n))$$

$$\Rightarrow T(n) = \Theta(f(n)).$$

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

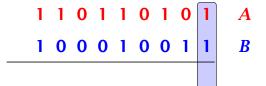
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

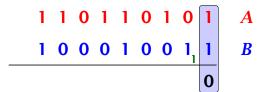
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

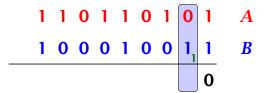
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



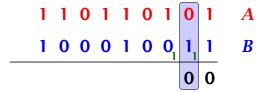
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



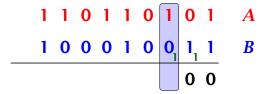
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



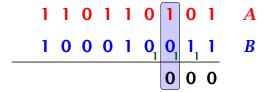
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



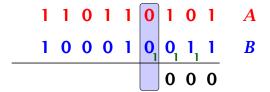
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



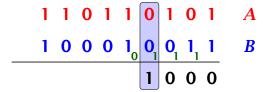
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

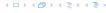


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

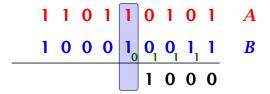


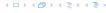
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



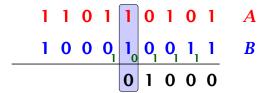


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

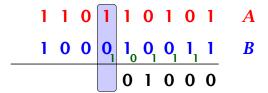




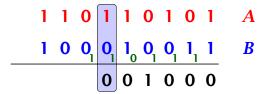
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

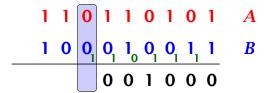


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

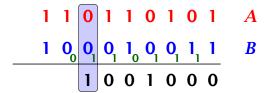


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

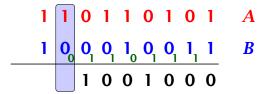
For this we first need to be able to add two integers A and B:

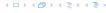


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

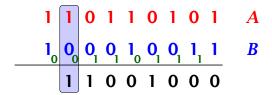


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



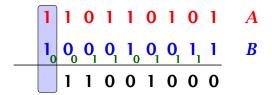


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

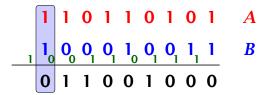


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

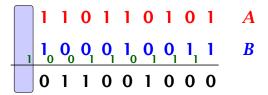


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.



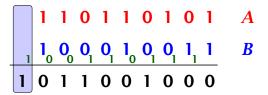
Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

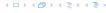
For this we first need to be able to add two integers A and B:



Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

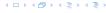




Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers \mathbf{A} and \mathbf{B} :

This gives that two n-bit integers can be added in time O(n).

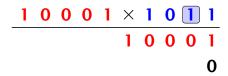


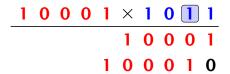
Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

1 0 0 0 1 × 1 0 1 1

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

1 0 0 0 1 × 1 0 1 1





1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
								0	0

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
							0	0	0

1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0

 1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0

_1	0	0	0	1	X	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

_1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

• Computing intermediate results: O(nm).

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

1	0	0	0	1	×	1	0	1	1
					1	0	0	0	1
				1	0	0	0	1	0
			0	0	0	0	0	0	0
		1	0	0	0	1	0	0	0
		1	0	1	1	1	0	1	1

Time requirement:

- ▶ Computing intermediate results: O(nm).
- ▶ Adding m numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

 $b_n \cdots b_{\frac{n}{2}} b_{\frac{n}{2}-1} \cdots b_0 \times a_n \cdots a_{\frac{n}{2}} a_{\frac{n}{2}-1} \cdots a_0$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: $\mathsf{split}\,A$ into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

O(1) O(n)

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

O(n) O(n)

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

O(n) O(n)

 $T(\frac{n}{2})$

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

return $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

 $\mathcal{O}(n)$

 $\mathcal{O}(n)$

 $T(\frac{n}{2})$

 $2T(\frac{n}{2}) + \mathcal{O}(n)$

Algorithm 3 mult(A, B)

1: **if** |A| = |B| = 1 **then**

return $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$

7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

 $\mathcal{O}(n)$

 $\mathcal{O}(n)$

 $T(\frac{n}{2})$

 $2T(\frac{n}{2}) + \mathcal{O}(n)$

 $T(\frac{n}{2})$

- 1		
	Algorithm 3 $mult(A, B)$	
	1: if $ A = B = 1$ then	$\mathcal{O}(1)$
	2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
	3: $splitA$ into A_0 and A_1	$\mathcal{O}(n)$
	4: split B into B_0 and B_1	$\mathcal{O}(n)$
	$5: Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
	6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
	7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
	8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

Algorithm 3 $mult(A, B)$	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
5: $Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) \ .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

$$Z_1 = A_1 B_0 + A_0 B_1$$

$$Z_1 = A_1 B_0 + A_0 B_1$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

 $\mathcal{O}(n)$

Hence,

Algorithm 4 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)

1: **if** |A| = |B| = 1 **then**

2: **return** $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

 $\mathcal{O}(n)$

 $\mathcal{O}(n)$

We can use the following identity to compute Z_1 :

6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)1: if |A| = |B| = 1 then 2: return $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ O(1) O(1) O(n) O(n)

7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)1: if |A| = |B| = 1 then 2: return $a_0 \cdot b_0$

3: split A into A_0 and A_1

4: split B into B_0 and B_1

5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$

6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$

7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$

8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$

 $\begin{array}{c}
\mathcal{O}(1) \\
\mathcal{O}(1) \\
\mathcal{O}(n) \\
\mathcal{O}(n) \\
T(\frac{n}{2})
\end{array}$

 $2T(\frac{n}{2}) + \mathcal{O}(n)$

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B) 1: if |A| = |B| = 1 then 2: return $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ O(1) O(n) O(n)

4 D > 4 A P > 4 B > 4 B >

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)1: **if** |A| = |B| = 1 **then** $\mathcal{O}(1)$ 2: **return** $a_0 \cdot b_0$ $\mathcal{O}(1)$ 3: split A into A_0 and A_1 $\mathcal{O}(n)$ 4: split B into B_0 and B_1 $\mathcal{O}(n)$ $T(\frac{n}{2})$ 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ 6: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ $2T(\frac{n}{2}) + \mathcal{O}(n)$ $T(\frac{n}{2})$ 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$.

Case 1:
$$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method"

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients $(c_0, c_k \neq 0)$.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients $(c_0, c_k \neq 0)$.

- ▶ T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of T[n]'s.
- ▶ If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients $(c_0, c_k \neq 0)$.

- ▶ T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of T[n]'s.
- ▶ If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients $(c_0, c_k \neq 0)$.

- ▶ T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- ▶ The recurrence is linear as there are no products of T[n]'s.
- ▶ If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients $(c_0, c_k \neq 0)$.

- ▶ T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- ▶ The recurrence is linear as there are no products of T[n]'s.
- ▶ If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- In fact, any *k* consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- ▶ In fact, any *k* consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- ► In fact, any *k* consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- In fact, any *k* consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- ▶ In fact, any *k* consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

Observations:

- ▶ The solution T[0], T[1], T[2],... is completely determined by a set of boundary conditions that specify values for T[0],..., T[k-1].
- In fact, any *k* consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

- First determine all solutions that satisfy recurrence relation.
- ► Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

The solution space

$$S = \{T = T[0], T[1], T[2], \dots \mid T \text{ fulfills recurrence relation} \}$$

is a vector space. This means that if $T_1, T_2 \in S$, then also $\alpha T_1 + \beta T_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

The solution space

$$S = \{T = T[0], T[1], T[2], \dots \mid T \text{ fulfills recurrence relation}\}$$

is a vector space. This means that if $T_1, T_2 \in S$, then also $\alpha T_1 + \beta T_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

The solution space

$$S = \{T = T[0], T[1], T[2], \dots \mid T \text{ fulfills recurrence relation}\}$$

is a vector space. This means that if $T_1, T_2 \in S$, then also $\alpha T_1 + \beta T_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

The solution space

$$S = \{T = T[0], T[1], T[2], \dots \mid T \text{ fulfills recurrence relation} \}$$

is a vector space. This means that if $T_1, T_2 \in S$, then also $\alpha T_1 + \beta T_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \dots + c_k \cdot \lambda^{n-k} = 0$$

The solution space

$$S = \{T = T[0], T[1], T[2], \dots \mid T \text{ fulfills recurrence relation} \}$$

is a vector space. This means that if $T_1, T_2 \in S$, then also $\alpha T_1 + \beta T_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \cdots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

Dividing by λ^{n-k} gives that all these constraints are identical to

$$c_0\lambda^k + c_1\lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for T[1], ..., T[k].

We show that the above set of solutions contains one solution for every choice of boundary conditions.

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for T[1], ..., T[k].

We show that the above set of solutions contains one solution for every choice of boundary conditions.

Proof (cont.).

Proof (cont.).

$$\alpha_1 \cdot \lambda_1 + \alpha_2 \cdot \lambda_2 + \cdots + \alpha_k \cdot \lambda_k = T[1]$$

Proof (cont.).

$$\alpha_1 \cdot \lambda_1 + \alpha_2 \cdot \lambda_2 + \cdots + \alpha_k \cdot \lambda_k = T[1]$$

 $\alpha_1 \cdot \lambda_1^2 + \alpha_2 \cdot \lambda_2^2 + \cdots + \alpha_k \cdot \lambda_k^2 = T[2]$

Proof (cont.).

$$\alpha_{1} \cdot \lambda_{1} + \alpha_{2} \cdot \lambda_{2} + \cdots + \alpha_{k} \cdot \lambda_{k} = T[1]$$

$$\alpha_{1} \cdot \lambda_{1}^{2} + \alpha_{2} \cdot \lambda_{2}^{2} + \cdots + \alpha_{k} \cdot \lambda_{k}^{2} = T[2]$$

$$\vdots$$

Proof (cont.).

$$\alpha_{1} \cdot \lambda_{1} + \alpha_{2} \cdot \lambda_{2} + \cdots + \alpha_{k} \cdot \lambda_{k} = T[1]$$

$$\alpha_{1} \cdot \lambda_{1}^{2} + \alpha_{2} \cdot \lambda_{2}^{2} + \cdots + \alpha_{k} \cdot \lambda_{k}^{2} = T[2]$$

$$\vdots$$

$$\alpha_{1} \cdot \lambda_{1}^{k} + \alpha_{2} \cdot \lambda_{2}^{k} + \cdots + \alpha_{k} \cdot \lambda_{k}^{k} = T[k]$$

Proof (cont.).

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ & & \vdots & \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} T[1] \\ T[2] \\ \vdots \\ T[k] \end{pmatrix}$$

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ & & \vdots & \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} T[1] \\ T[2] \\ \vdots \\ T[k] \end{pmatrix}$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

Proof (cont.).

Proof (cont.).

This we show by induction:

6.3 The Characteristic Polynomial

Proof (cont.).

This we show by induction:

▶ base case (*k* = 1):

A vector (λ_i) , $\lambda_i \neq 0$ is linearly independent.

Proof (cont.).

This we show by induction:

- ▶ base case (k = 1): A vector (λ_i) , $\lambda_i \neq 0$ is linearly independent.
- ▶ induction step $(k \rightarrow k + 1)$:

Proof (cont.).

This we show by induction:

- ▶ base case (k = 1): A vector (λ_i) , $\lambda_i \neq 0$ is linearly independent.
- ▶ induction step $(k \rightarrow k + 1)$: assume for contradiction that there exist α_i 's with

$$\alpha_1 \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_1^{k-1} \\ \lambda_1^k \end{pmatrix} + \cdots + \alpha_k \begin{pmatrix} \lambda_k \\ \vdots \\ \lambda_k^{k-1} \\ \lambda_k^k \end{pmatrix} = 0$$

and not all $\alpha_i = 0$.

Proof (cont.).

This we show by induction:

- ▶ base case (k = 1): A vector (λ_i) , $\lambda_i \neq 0$ is linearly independent.
- ▶ induction step $(k \rightarrow k + 1)$: assume for contradiction that there exist α_i 's with

$$\alpha_1 \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_1^{k-1} \\ \lambda_1^k \end{pmatrix} + \cdots + \alpha_k \begin{pmatrix} \lambda_k \\ \vdots \\ \lambda_k^{k-1} \\ \lambda_k^k \end{pmatrix} = 0$$

and not all $\alpha_i = 0$. Then all $\alpha_i \neq 0$!

$$\alpha_{1} \begin{pmatrix} \lambda_{1} \\ \lambda_{1}^{2} \\ \vdots \\ \lambda_{1}^{k-1} \\ \lambda_{1}^{k} \end{pmatrix} + \cdots + \alpha_{k} \begin{pmatrix} \lambda_{1} \\ \lambda_{k}^{2} \\ \vdots \\ \lambda_{k}^{k-1} \\ \lambda_{k}^{k} \end{pmatrix} = 0$$

$$v_1 := \begin{pmatrix} \lambda_1 \\ \lambda_1^2 \\ \vdots \\ \lambda_1^{k-1} \\ \lambda_1^k \end{pmatrix} + \cdots + \alpha_k \begin{pmatrix} \lambda_1 \\ \lambda_k^2 \\ \vdots \\ \lambda_k^{k-1} \\ \lambda_k^k \end{pmatrix} = 0$$

$$v_{1} := \begin{pmatrix} \lambda_{1} \\ \lambda_{1}^{2} \\ \vdots \\ \lambda_{1}^{k-1} \\ \lambda_{1}^{k} \end{pmatrix} + \cdots + \alpha_{k} \begin{pmatrix} \lambda_{1} \\ \lambda_{k}^{2} \\ \vdots \\ \lambda_{k}^{k-1} \\ \lambda_{k}^{k} \end{pmatrix} = 0$$

$$v_{1} := \begin{pmatrix} \lambda_{1} \\ \lambda_{1}^{2} \\ \vdots \\ \lambda_{1}^{k-1} \\ \lambda_{1}^{k} \end{pmatrix} + \cdots + \alpha_{k} \begin{pmatrix} \lambda_{1} \\ \lambda_{k}^{2} \\ \vdots \\ \lambda_{k}^{k-1} \\ \lambda_{k}^{k} \end{pmatrix} = 0$$

This means that

$$\sum_{i=1}^k \alpha_i v_i = 0 \text{ and } \sum_{i=1}^k \lambda_i \alpha_i v_i = 0$$

$$v_{1} := \begin{bmatrix} \lambda_{1} \\ \lambda_{1}^{2} \\ \vdots \\ \lambda_{1}^{k-1} \\ \lambda_{1}^{k} \end{bmatrix} + \cdots + \alpha_{k} \begin{bmatrix} \lambda_{1} \\ \lambda_{k}^{2} \\ \vdots \\ \lambda_{k}^{k-1} \\ \lambda_{k}^{k} \end{bmatrix} = 0$$

This means that

$$\sum_{i=1}^{k} \alpha_i v_i = 0 \text{ and } \sum_{i=1}^{k} \lambda_i \alpha_i v_i = 0$$

Hence,

$$\sum_{i=1}^{k-1} \alpha_i v_i + \alpha_k v_k = 0 \text{ and } -\frac{1}{\lambda_k} \sum_{i=1}^{k-1} \lambda_i \alpha_i v_i = \alpha_k v_k$$

This gives that

$$\sum_{i=1}^{k-1} (1 - \frac{\lambda_i}{\lambda_k}) \alpha_i v_i = 0 \ .$$

This gives that

$$\sum_{i=1}^{k-1} (1 - \frac{\lambda_i}{\lambda_k}) \alpha_i v_i = 0.$$

This is a contradiction as the v_i 's are linearly independent because of induction hypothesis.

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \dots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda-\lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \cdots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \dots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda-\lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \dots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least

2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \dots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda-\lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence.

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \dots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \cdots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence

$$\underbrace{c_0 n \lambda_i^n + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \dots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]}}_{T[n-k]} = 0$$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \dots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \cdots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \dots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

T[n] T[n-1] T[n-k]

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P(\lambda)\lambda^{n-k} = c_0\lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \dots + c_k\lambda^{n-k}$$

Since λ_i is a root we can write this as $Q(\lambda)(\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root λ_i .

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \cdots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times.

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times.

Lemma 6

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$$

Let λ_i , $i=1,\ldots,m$ be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_i . Then the general solution to the recurrence is given by

$$T[n] = \sum_{i=1}^{m} \sum_{j=0}^{\ell_i - 1} \alpha_{ij} \cdot (n^j \lambda_i^n) .$$

The full proof is omitted. We have only shown that any choice of α_{ij} 's is a solution to the recurrence.

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

$$\lambda^2 - \lambda - 1$$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

$$\lambda^2 - \lambda - 1$$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

$$\lambda^2 - \lambda - 1$$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

$$T[1] = 1$$
 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1$$

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

$$T[1] = 1$$
 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}$$

Hence, the solution is

$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

The general solution of the recurrence relation is

$$T(n) = T_h(n) + T_p(n) ,$$

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

The general solution of the recurrence relation is

$$T(n) = T_h(n) + T_p(n) ,$$

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

$$T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)$$

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2]$$
 $(n \ge 2)$

10

$$T[n] = 2T[n-1] - T[n-2] \qquad (n \ge 2)$$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2]$$
 $(n \ge 2)$

o r

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2]$$
 $(n \ge 2)$

or

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then.

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2]$$
 $(n \ge 2)$

or

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

Example: Characteristic polynomial:

$$\lambda^2 - 2\lambda + 1 = 0$$

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

$$T[0] = 1$$
 gives $\alpha = 1$.

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

$$T[0] = 1$$
 gives $\alpha = 1$.

$$T[1] = 2$$
 gives $1 + \beta = 2 \Longrightarrow \beta = 1$.

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$

 $-2T[n-2] + T[n-3] - 2n + 3$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$

- $2T[n-2] + T[n-3] - 2n + 3$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$

 $-2T[n-2] + T[n-3] - 2n + 3$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

Definition 7 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n=0}^{\infty} a_n z^n;$$

exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n>0} \frac{a_n}{n!} z^n$$

Definition 7 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n=0}^{\infty} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n>0} \frac{a_n}{n!} z^n.$$



Example 8

1. The generating function of the sequence $(1,0,0,\ldots)$ is

$$F(z) = 1$$
.

2. The generating function of the sequence $(1,1,1,\ldots)$ is

$$F(z) = \frac{1}{1-z} \,.$$

Example 8

1. The generating function of the sequence $(1,0,0,\ldots)$ is

$$F(z) = 1$$
.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z)=\frac{1}{1-z}.$$

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ▶ Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ► Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ► Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ▶ Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ▶ Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ► Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ▶ Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$.

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let
$$f = \sum_{n=0}^{\infty} a_n z^n$$
 and $g = \sum_{n=0}^{\infty} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n=0}^{\infty} (a_n + b_n) z^n$.
- ▶ Multiplication: $f \cdot g := \sum_{n=0}^{\infty} c_n z^n$ with $c = \sum_{p=0}^{n} a_p b_{n-p}$.

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

What does $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1-z and the power series $\sum_{n=0}^{\infty} z^n$ are invers, i.e.,

$$(1-z)\cdot \left(\sum_{n=0}^{\infty} z^n\right) = 1$$

This is well-defined

What does $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1-z and the power series $\sum_{n=0}^{\infty} z^n$ are invers, i.e.,

$$(1-z)\cdot \left(\sum_{n=0}^{\infty} z^n\right) = 1.$$

This is well-defined

What does $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1-z and the power series $\sum_{n=0}^{\infty} z^n$ are invers, i.e.,

$$(1-z)\cdot \left(\sum_{n=0}^{\infty} z^n\right) = 1.$$

This is well-defined.

Suppose we are given the generating function

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} .$$

Suppose we are given the generating function

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} .$$

We can compute the derivative:

$$\sum_{n>1} nz^{n-1} = \frac{1}{(1-z)^2}$$

Suppose we are given the generating function

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} .$$

We can compute the derivative:

$$\sum_{\substack{n \ge 1 \\ \sum_{n=0}^{\infty} (n+1)z^n}} nz^{n-1} = \frac{1}{(1-z)^2}$$

Suppose we are given the generating function

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} .$$

We can compute the derivative:

$$\sum_{\substack{n\geq 1\\\sum_{n=0}^{\infty}(n+1)z^n}} nz^{n-1} = \frac{1}{(1-z)^2}$$

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

We can repeat this

We can repeat this

$$\sum_{n=0}^{\infty} (n+1)z^n = \frac{1}{(1-z)^2} .$$

We can repeat this

$$\sum_{n=0}^{\infty} (n+1)z^n = \frac{1}{(1-z)^2} \ .$$

Derivative:

$$\sum_{n\geq 1} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

We can repeat this

$$\sum_{n=0}^{\infty} (n+1)z^n = \frac{1}{(1-z)^2} \ .$$

Derivative:

$$\sum_{\substack{n \ge 1 \\ \sum_{n=0}^{\infty} (n+1)(n+2)z^n}} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

We can repeat this

$$\sum_{n=0}^{\infty} (n+1)z^n = \frac{1}{(1-z)^2} .$$

Derivative:

$$\sum_{\substack{n \ge 1 \\ \sum_{n=0}^{\infty} (n+1)(n+2)z^n}} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^2}$.

$$\sum_{n\geq k} n(n-1)\dots(n-k+1)z^{n-k}$$

$$\sum_{n \ge k} n(n-1) \dots (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \dots (n+1) z^n$$

$$\sum_{n \ge k} n(n-1) \dots (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \dots (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}}.$$

Computing the k-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \dots (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \dots (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}}.$$

Hence:

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}}.$$

Computing the k-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \dots (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \dots (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}}.$$

Hence:

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}} .$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$

$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$

$$= \frac{z}{(1-z)^2}$$

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$

$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$

$$= \frac{z}{(1-z)^2}$$

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$
$$= \frac{z}{(1-z)^2}$$

The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

We know

$$\sum_{n\geq 0} y^n = \frac{1}{1-y}$$

Hence,

$$\sum_{n>0} a^n z^n = \frac{1}{1 - az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$

We know

$$\sum_{n\geq 0} y^n = \frac{1}{1-y}$$

Hence,

$$\sum_{n\geq 0} a^n z^n = \frac{1}{1-az}$$

The generating function of the sequence $f_n=a^n$ is $\frac{1}{1-az}$.

We know

$$\sum_{n\geq 0} y^n = \frac{1}{1-y}$$

Hence,

$$\sum_{n\geq 0} a^n z^n = \frac{1}{1-az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-a_n}$.

Suppose we have again the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

A(z)

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$A(z) = \sum_{n \ge 0} a_n z^n$$

= $a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$$

$$= 1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$$

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$$

$$= 1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$$

$$= z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$$

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$$

$$= 1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$$

$$= z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$$

$$= zA(z) + \sum_{n \ge 0} z^n$$

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} (a_{n-1} + 1) z^n$$

$$= 1 + z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} z^n$$

$$= z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} z^n$$

$$= zA(z) + \sum_{n \ge 0} z^n$$

$$= zA(z) + \frac{1}{1 - z}$$

Solving for A(z) gives

Solving for A(z) gives

$$A(z) = \frac{1}{(1-z)^2}$$

Solving for A(z) gives

$$\sum_{n \ge 0} a_n z^n = A(z) = \frac{1}{(1-z)^2}$$

イロトイプトイミトイミト

Solving for A(z) gives

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n\geq 0} (n+1) z^n$$

イロトイプトイミトイミト

Solving for A(z) gives

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n\geq 0} (n+1) z^n$$

Hence, $a_n = n + 1$.

Some Generating Functions

<i>n</i> -th sequence element	generating function
1	$\frac{1}{1-z}$
n + 1	
$\binom{n+k}{n}$	
n	
a^n	
n^2	
$\frac{1}{n!}$	

Some Generating Functions

<i>n</i> -th sequence element	generating function
1	$\frac{1}{1-z}$
n + 1	
$\binom{n+k}{n}$	
n	
a^n	
n^2	
$\frac{1}{n!}$	

<i>n</i> -th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
	$\frac{z}{(1-z)^2}$
	$\frac{1}{1-az}$
	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^3}$

\emph{n} -th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^3}$

\emph{n} -th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^3}$

\emph{n} -th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^3}$

\emph{n} -th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^3}$

\emph{n} -th sequence element	generating function
1	$\frac{1}{1-z}$
n+1	$\frac{1}{(1-z)^2}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^2}$
a^n	$\frac{1}{1-az}$
n^2	$\frac{z(1+z)}{(1-z)^3}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^3}$

<i>n</i> -th sequence element	generating function
cf_n	cF
$f_n + g_n$	
$\sum_{i=0}^{n} f_i \mathcal{G}_{n-i}$	
f_{n-k} $(n \ge k)$; 0 otw.	
$\sum_{i=0}^{n} f_i$	
nf_n	
$c^n f_n$	

<i>n</i> -th sequence element	generating function
cf_n	cF
$f_n + g_n$	
$\sum_{i=0}^{n} f_i \mathcal{G}_{n-i}$	
f_{n-k} $(n \ge k)$; 0 otw.	
$\sum_{i=0}^{n} f_i$	
nf_n	
$c^n f_n$	

<i>n</i> -th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i \mathcal{G}_{n-i}$	
f_{n-k} $(n \ge k)$; 0 otw.	
$\sum_{i=0}^{n} f_i$	
nf_n	
$c^n f_n$	

<i>n</i> -th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i \mathcal{G}_{n-i}$	$F\cdot G$
f_{n-k} $(n \ge k)$; 0 otw.	
$\sum_{i=0}^{n} f_i$	
nf_n	
$c^n f_n$	

\emph{n} -th sequence element	generating function
cf_n	cF
$f_n + g_n$	F+G
$\sum_{i=0}^n f_i \mathcal{G}_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k)$; 0 otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
$c^n f_n$	F(cz)

<i>n</i> -th sequence element	generating function
cf_n	cF
$f_n + g_n$	F + G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F\cdot G$
f_{n-k} $(n \ge k)$; 0 otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	
$c^n f_n$	

<i>n</i> -th sequence element	generating function
cf_n	cF
$f_n + g_n$	F+G
$\sum_{i=0}^{n} f_i g_{n-i}$	$F\cdot G$
f_{n-k} $(n \ge k)$; 0 otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$

\emph{n} -th sequence element	generating function
cf_n	cF
$f_n + g_n$	F+G
$\sum_{i=0}^n f_i g_{n-i}$	$F \cdot G$
f_{n-k} $(n \ge k)$; 0 otw.	$z^k F$
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$
nf_n	$z \frac{\mathrm{d}F(z)}{\mathrm{d}z}$
$c^n f_n$	F(cz)

1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables

- 1. Set $A(z) = \sum_{n \ge 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- 4. Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- 6. The coefficients of the resulting power series are the a_n .

1. Set up generating function:

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

1. Set up generating function:

$$A(z) = \sum_{n>0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n=1}^{\infty} a_n z^n$$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n>1} a_n z^n$$

2. Plug in:

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n>1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n>1} (2a_{n-1})z^n$$

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$
$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$

$$= 1 + 2z \cdot A(z)$$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$

$$= 1 + 2z \cdot A(z)$$

4. Solve for A(z).

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$

$$= 1 + 2z \cdot A(z)$$

4. Solve for A(z).

$$A(z) = \frac{1}{1 - 2z}$$

5. Rewrite f(n) as a power series:

$$A(z) = \frac{1}{1 - 2z}$$

© Ernst Mayr, Harald Räcke

5. Rewrite f(n) as a power series:

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{1-2z}$$

5. Rewrite f(n) as a power series:

$$\sum_{n \geq 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n \geq 0} 2^n z^n$$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$A(z) = \sum_{n>0} a_n z^n$$

$$A(z) = \sum_{n \ge 0} a_n z^n$$
$$= a_0 + \sum_{n \ge 1} a_n z^n$$

$$A(z) = \sum_{n\geq 0} a_n z^n$$

$$= a_0 + \sum_{n\geq 1} a_n z^n$$

$$= 1 + \sum_{n\geq 1} (3a_{n-1} + n) z^n$$

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} a_n z^n$$

$$= 1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$$

$$= 1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$$

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} a_n z^n$$

$$= 1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$$

$$= 1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$$

$$= 1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} n z^n$$

$$A(z) = \sum_{n\geq 0} a_n z^n$$

$$= a_0 + \sum_{n\geq 1} a_n z^n$$

$$= 1 + \sum_{n\geq 1} (3a_{n-1} + n) z^n$$

$$= 1 + 3z \sum_{n\geq 1} a_{n-1} z^{n-1} + \sum_{n\geq 1} n z^n$$

$$= 1 + 3z \sum_{n\geq 0} a_n z^n + \sum_{n\geq 0} n z^n$$

$$= 1 + 3z A(z) + \frac{z}{(1-z)^2}$$

4. Solve for A(z):

EADS

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2}$$

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2}$$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

5. Write f(z) as a formal power series:

5. Write f(z) as a formal power series:

$$A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}$$

© Ernst Mayr, Harald Räcke

イロトイプトイミトイミト

5. Write f(z) as a formal power series:

$$\begin{split} A(z) &= \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2} \\ &= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n \end{split}$$

5. Write f(z) as a formal power series:

$$A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}$$

$$= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n$$

$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2} (n + 1) \right) z^n$$

Example:
$$a_n = 3a_{n-1} + n$$
, $a_0 = 1$

5. Write f(z) as a formal power series:

$$\begin{split} A(z) &= \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2} \\ &= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n \\ &= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2} (n + 1) \right) z^n \end{split}$$

6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.

4 ロトイ部トイミトイミト

Example 9

$$f_0=1$$

$$f_1=2$$

$$f_n=f_{n-1}\cdot f_{n-2} \text{ for } n\geq 2 \ .$$

Example 9

$$f_0=1$$

$$f_1=2$$

$$f_n=f_{n-1}\cdot f_{n-2} \text{ for } n\geq 2 \ .$$

Define

$$g_n := \log f_n$$
.

Example 9

$$f_0 = 1$$

 $f_1 = 2$
 $f_n = f_{n-1} \cdot f_{n-2}$ for $n \ge 2$.

Define

$$g_n := \log f_n$$
.

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$

Example 9

$$f_0 = 1$$

 $f_1 = 2$
 $f_n = f_{n-1} \cdot f_{n-2}$ for $n \ge 2$.

Define

$$g_n := \log f_n$$
.

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$, $g_0 = 0$ (fÃČÅŠr $\log = \log_2$)



Example 9

$$f_0=1$$

$$f_1=2$$

$$f_n=f_{n-1}\cdot f_{n-2} \ \text{for} \ n\geq 2 \ .$$

Define

$$g_n := \log f_n$$
.

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$, $g_0 = 0$ (fÃČÅŠr $\log = \log_2$)
 $g_n = F_n$ (n -th Fibonacci number)

Example 9

$$f_0=1$$

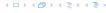
$$f_1=2$$

$$f_n=f_{n-1}\cdot f_{n-2} \text{ for } n\geq 2 \ .$$

Define

$$g_n := \log f_n$$
.

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$, $g_0 = 0$ (fÃČÅŠr $\log = \log_2$)
 $g_n = F_n$ (n -th Fibonacci number)
 $f_n = 2^{F_n}$



Example 10

$$f_1 = 1$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k$;

Example 10

$$f_1 = 1$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k$;

Define

$$g_k := f_{2^k}$$
.

Example 10

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

Example 10

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

We get,

$$g_k = 3^{k+1} - 2^{k+1},$$

Example 10

Then:

$$g_0 = 1$$

$$g_k = 3g_{k-1} + 2^k, \ k \ge 1$$

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence $f_n = 3 \cdot 3^k - 2 \cdot 2^k$

Example 10

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence $f_n = 3 \cdot 3^k - 2 \cdot 2^k$
= $3(2^{\log 3})^k - 2 \cdot 2^k$

Example 10

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence
 $f_n = 3 \cdot 3^k - 2 \cdot 2^k$
 $= 3(2^{\log 3})^k - 2 \cdot 2^k$
 $= 3(2^k)^{\log 3} - 2 \cdot 2^k$

Example 10

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence
 $f_n = 3 \cdot 3^k - 2 \cdot 2^k$
 $= 3(2^{\log 3})^k - 2 \cdot 2^k$
 $= 3(2^k)^{\log 3} - 2 \cdot 2^k$
 $= 3n^{\log 3} - 2n$.

Part III

Data Structures

Abstract Data Type

An abstract data type (ADT) is defined by an interface of operations or methods that can be performed and that have a defined behavior

The data types in this lecture all operate on objects that are represented by a [key, value] pair.

- ► The key comes from a totally ordered set, and we assume that there is an efficient comparison function.
- The value can be anything; it usually carries satellite information important for the application that uses the ADT.

Dynamic Set Operations

- ► *S*. search(k): Returns pointer to object x from S with key[x] = k or null.
- S. insert(x): Inserts object x into set S. key[x] must not currently exist in the data-structure.
- ► *S.* delete(*x*): Given pointer to object *x* from *S*, delete *x* from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- ► *S.* maximum(): Return pointer to object with largest key-value in *S*.
- ► S. successor(x): Return pointer to the next larger element in S or null if S is maximum.
- ► *S.* predecessor(*x*): Return pointer to the next smaller element in *S* or null if *S* is minimum.

Dynamic Set Operations

- ▶ *S.* union(S'): Sets $S := S \cup S'$. The set S' is destroyed.
- ▶ S. merge(S'): Sets $S := S \cup S'$. Requires $S \cap S' = \emptyset$.
- ► *S.* split(k, S'): $S := \{x \in S \mid \text{key}[x] \le k\}, S' := \{x \in S \mid \text{key}[x] > k\}.$
- ► S. concatenate(S'): $S := S \cup S'$. Requires S. maximum() $\leq S'$. minimum().
- ▶ *S.* decrease-key(x, k): Replace key[x] by $k \le \text{key}[x]$.

Examples of ADTs

Stack:

- S.push(x): Insert an element.
- ► **S.pop()**: Return the element from *S* that was inserted most recently; delete it from *S*.
- ► *S.*empty(): Tell if *S* contains any object.

Queue:

- S.enqueue(x): Insert an element.
- ► *S.*dequeue(): Return the element that is longest in the structure; delete it from *S*.
- *S.*empty(): Tell if *S* contains any object.

Priority-Queue:

- S.insert(x): Insert an element.
- S.delete-min(): Return the element with lowest key-value; delete it from S.

7 Dictionary

Dictionary:

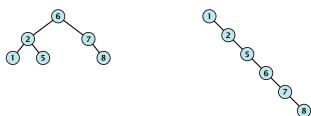
- S.insert(x): Insert an element x.
- S.delete(x): Delete the element pointed to by x.
- ▶ S.search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\ker[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

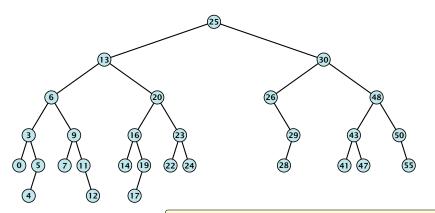
Examples:



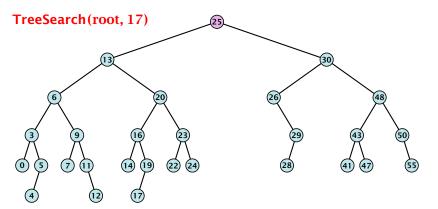
7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

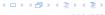
- ightharpoonup T. insert(x)
- ightharpoonup T. delete(x)
- ightharpoonup T. search(k)
- ightharpoonup T. successor(x)
- ► *T*. predecessor(*x*)
- ightharpoonup T. minimum()
- ightharpoonup T. maximum()

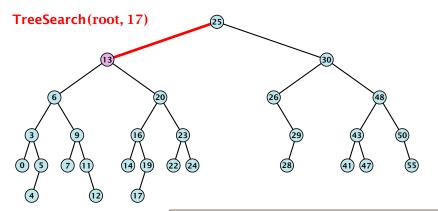


- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)

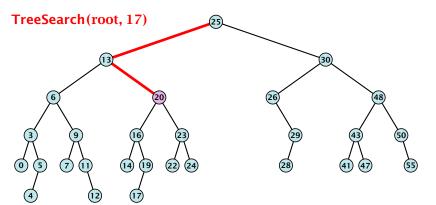


- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)

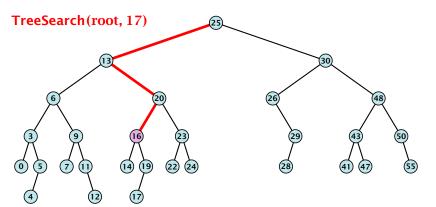




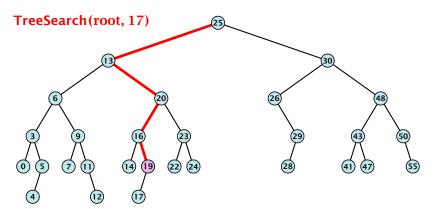
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



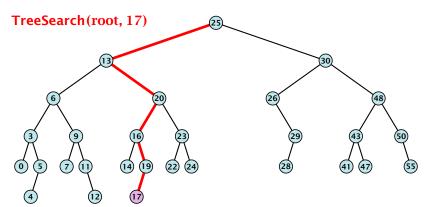
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



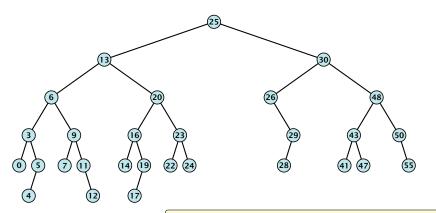
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



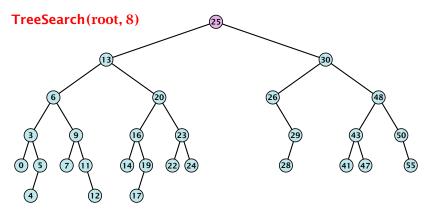
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



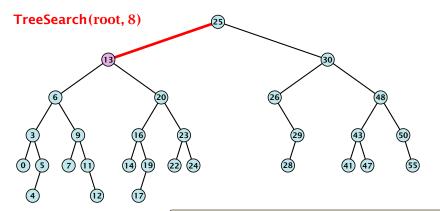
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



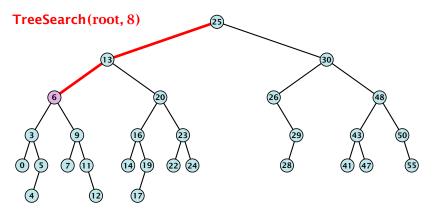
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



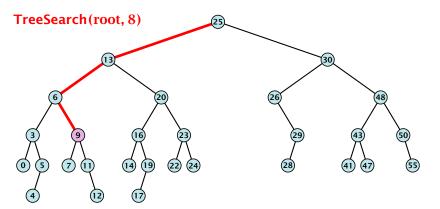
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



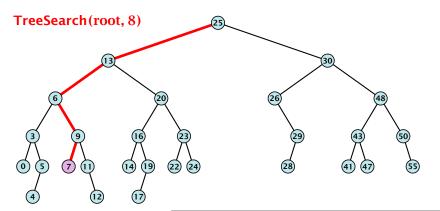
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



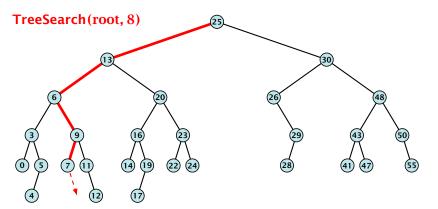
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



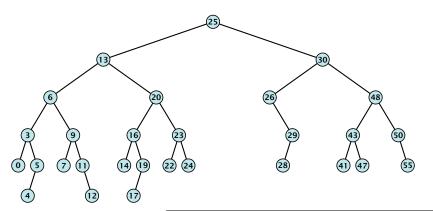
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



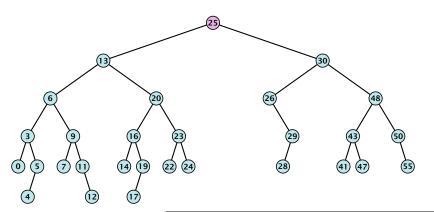
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)

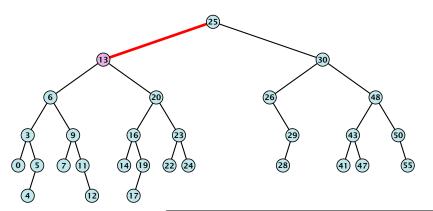


- 1: **if** x = null or left[x] = null return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeMin(left[x])

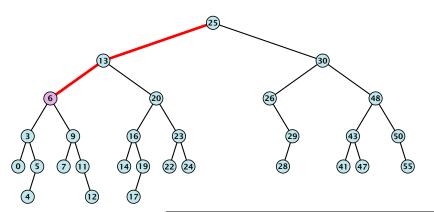


$\textbf{Algorithm 6} \; \mathsf{TreeMin}(\chi)$

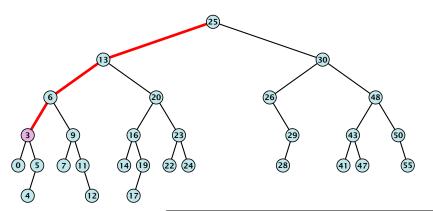
- 1: **if** x = null or left[x] = null return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeMin(left[x])



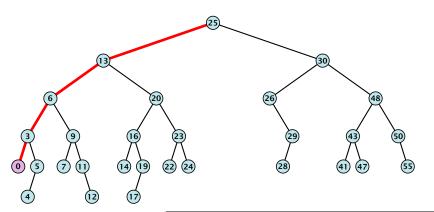
- 1: if x = null or left[x] = null return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeMin(left[x])



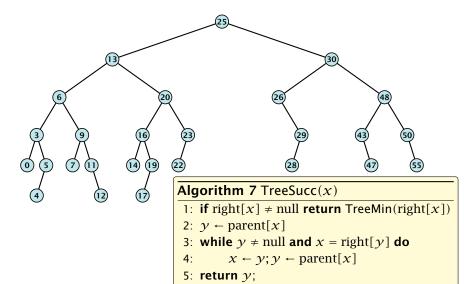
- 1: **if** x = null or left[x] = null return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeMin(left[x])

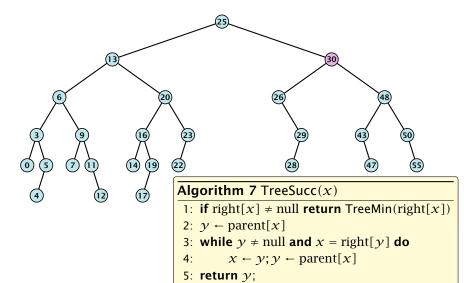


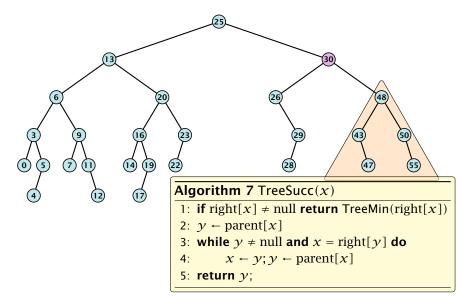
- 1: **if** x = null or left[x] = null return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeMin(left[x])

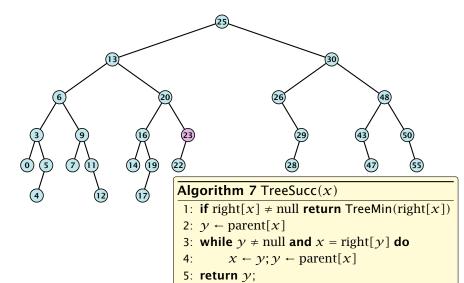


- 1: **if** x = null or left[x] = null return x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeMin(left[x])

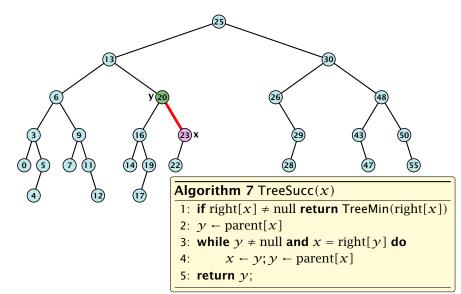




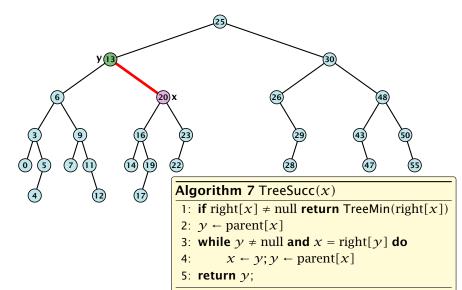




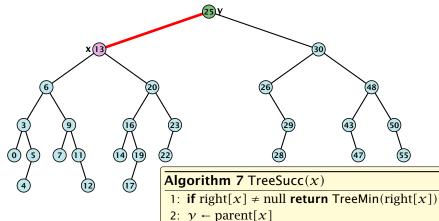
Binary Search Trees: Successor



Binary Search Trees: Successor



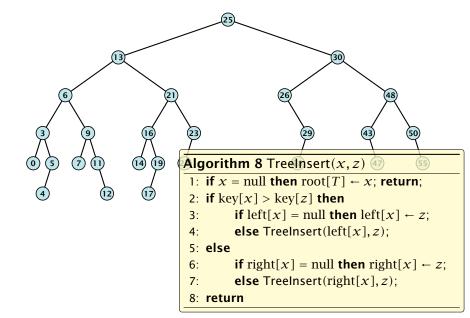
Binary Search Trees: Successor

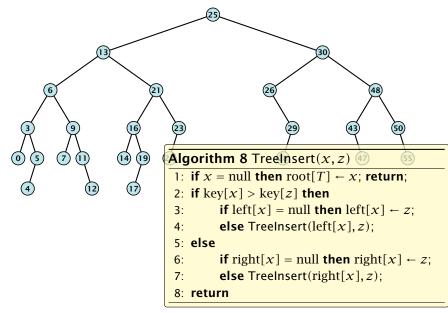


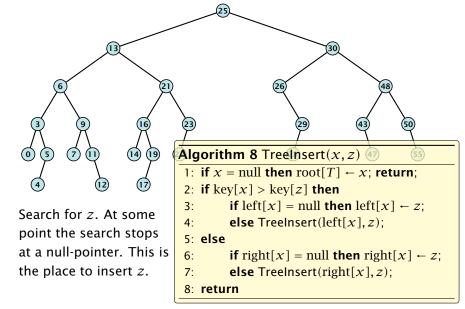
3: while $y \neq \text{null and } x = \text{right}[y]$ do

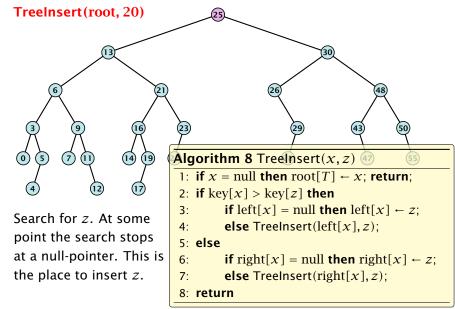
 $x \leftarrow y; y \leftarrow \text{parent}[x]$ 4:

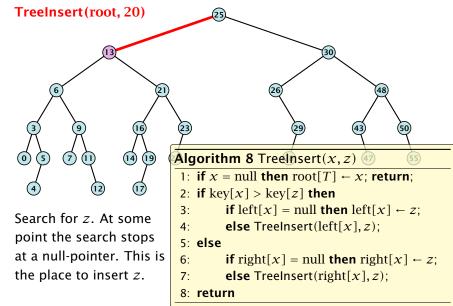
5: **return** y;

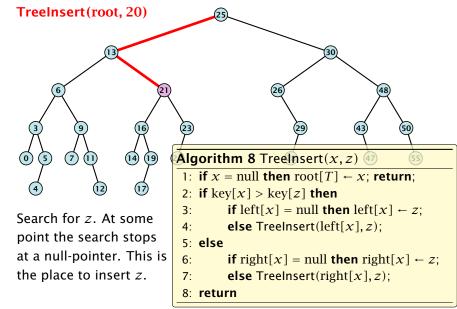


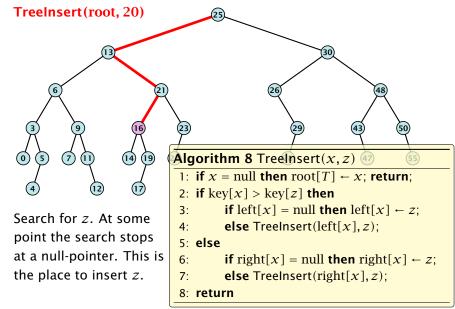


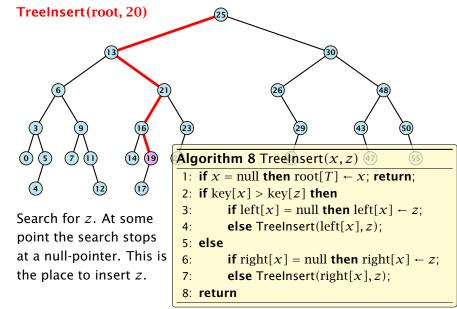


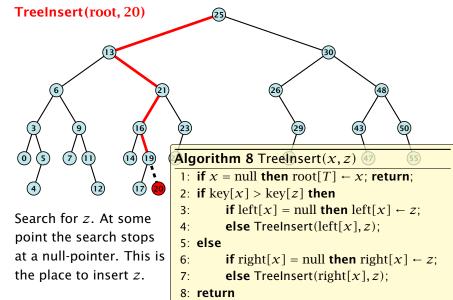


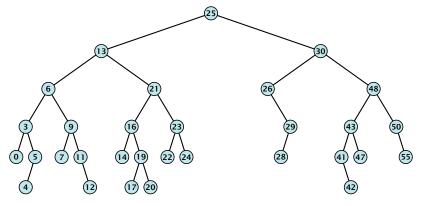


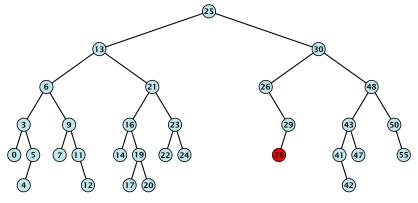








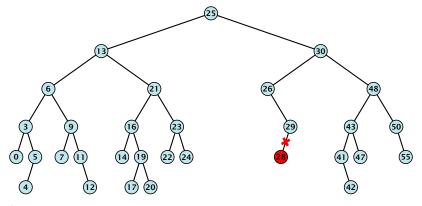




Case 1:

Element does not have any children

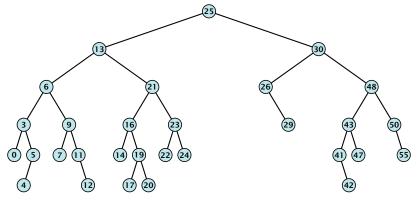
Simply go to the parent and set the corresponding pointer to null.



Case 1:

Element does not have any children

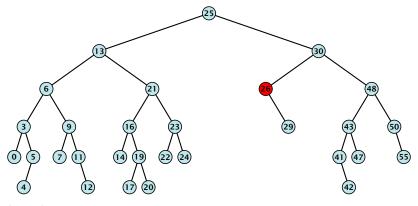
Simply go to the parent and set the corresponding pointer to null.



Case 1:

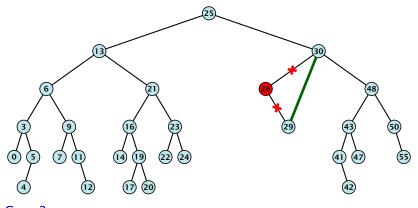
Element does not have any children

Simply go to the parent and set the corresponding pointer to null.



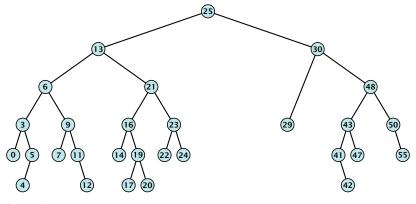
Case 2: Element has exactly one child

Splice the element out of the tree by connecting its parent to its successor.



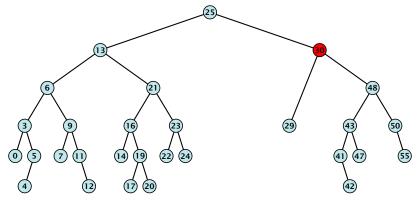
Case 2: Element has exactly one child

Splice the element out of the tree by connecting its parent to its successor.



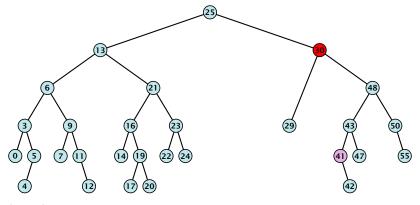
Case 2: Element has exactly one child

Splice the element out of the tree by connecting its parent to its successor.



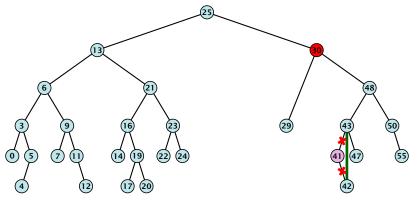
Case 3: Flement has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



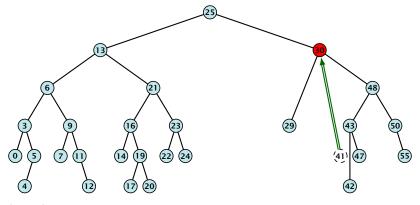
Case 3: Flement has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



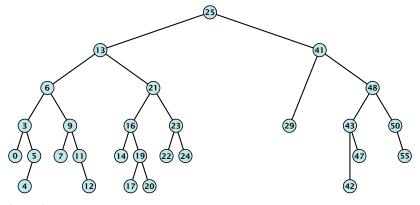
Case 3: Flement has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



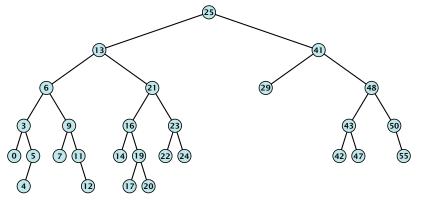
Case 3: Flement has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



Case 3: Flement has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor



Case 3: Flement has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

```
Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
          then y \leftarrow z else y \leftarrow \text{TreeSucc}(z); select y to splice out
 3: if left[\gamma] \neq null
 4: then x \leftarrow \text{left}[y] else x \leftarrow \text{right}[y]; x is child of y (or null)
 5: if x \neq \text{null then parent}[x] \leftarrow \text{parent}[y]; parent[x] is correct
 6: if parent[\gamma] = null then
 7: root[T] \leftarrow x
 8: else
                                                                   fix pointer to x
    if y = \text{left}[\text{parent}[x]] then
 9:
10:
                 left[parent[v]] \leftarrow x
11: else
12: \operatorname{right}[\operatorname{parent}[v]] \leftarrow x
13: if y \neq z then copy y-data to z
```


All operations on a binary search tree can be performed in time O(h), where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n).$

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

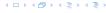
However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.



All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

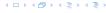
However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.



Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

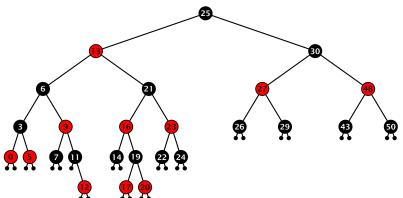
Definition 11

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a colour, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- 3. For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Red Black Trees: Example



Lemma 12

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Lemma 12

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

Lemma 12

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 13

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 14

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)}-1$ internal vertices.

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

 If height(v) (maximum distance btw. v and a node in thee sub-tree rooted at v) is 0 then v is a leaf.

 \succ The black height of v is 0.

The sub-free rooted at v contains 0 = 2^{m(v)} - 1 inner vertices.

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

The black beight of a is

The sub-tree rected at a

vertices.

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

- ▶ If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- ▶ The black height of v is 0.
- The sub-tree rooted at v contains 0 = 2^{bh(v)} − 1 inner vertices.

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

- ▶ If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- ▶ The black height of v is 0.
- The sub-tree rooted at v contains 0 = 2^{bh(v)} − 1 inner vertices.

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

- ▶ If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- ▶ The black height of v is 0.
- ► The sub-tree rooted at v contains $0 = 2^{bh(v)} 1$ inner vertices.

Proof (cont.)

induction step

- Supose v is a node with height(v) > 0.
- > v has two children with strictly smaller height.
 - These children (c_1, c_2) either have $\mathrm{bh}(c_i) = \mathrm{bh}(v)$ or
 - $\mathrm{bh}(c_i) = \mathrm{bh}(v) 1.$
 - By induction hypothesis both sub-trees contain at least 2¹⁰⁰ 1 1 Internel vertices
 - Then T_{v} contains at least $2(2^{\mathrm{bh}(v)-1}-1)+1\geq 2^{\mathrm{bh}(v)}-1$

Proof (cont.)

induction step

- ▶ Supose v is a node with height(v) > 0.
- lacktriangleright v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1}-1$ internal vertices.
- ► Then T_v contains at least $2(2^{\text{bh}(v)-1}-1)+1 \ge 2^{\text{bh}(v)}-1$ vertices.

Proof (cont.)

induction step

- ▶ Supose v is a node with height(v) > 0.
- lacksquare v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1}-1$ internal vertices.
- ▶ Then T_v contains at least $2(2^{\text{bh}(v)-1}-1)+1 \ge 2^{\text{bh}(v)}-1$ vertices.

Proof (cont.)

induction step

- ▶ Supose v is a node with height(v) > 0.
- ightharpoonup v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1}-1$ internal vertices.
- ▶ Then T_v contains at least $2(2^{\text{bh}(v)-1}-1)+1 \ge 2^{\text{bh}(v)}-1$ vertices.

Proof (cont.)

induction step

- ▶ Supose v is a node with height(v) > 0.
- ightharpoonup v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ▶ Then T_v contains at least $2(2^{\text{bh}(v)-1}-1)+1 \ge 2^{\text{bh}(v)}-1$ vertices.

Proof (cont.)

induction step

- ▶ Supose v is a node with height(v) > 0.
- ightharpoonup v has two children with strictly smaller height.
- ► These children (c_1, c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{\text{bh}(v)-1}-1)+1 \ge 2^{\text{bh}(v)}-1$ vertices.

Proof of Lemma 12.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on $\it p$ must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h/2.\,$

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $\hbar/2$.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$.

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2}-1$ internal vertices. Hence, $2^{h/2}-1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let p denote a path from the root to the furthest leaf.

At least half of the node on p must be black, since a red node must be followed by a black node.

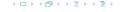
Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \ge n$.

Hence, $h \le 2 \log n + 1 = \mathcal{O}(\log n)$.

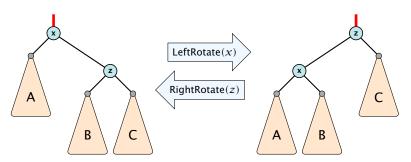
4 D > 4 A P > 4 B > 4 B >

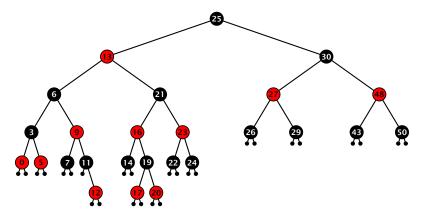
We need to adapt the insert and delete operations so that the red black properties are maintained.



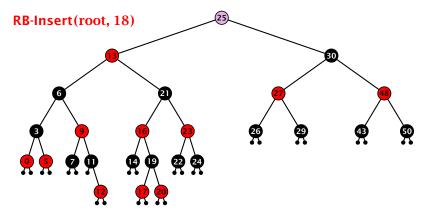
Rotations

The properties will be maintained through rotations:

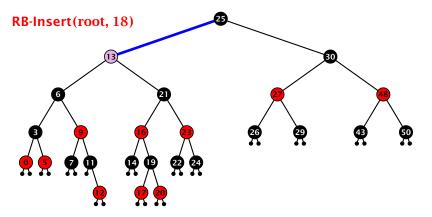




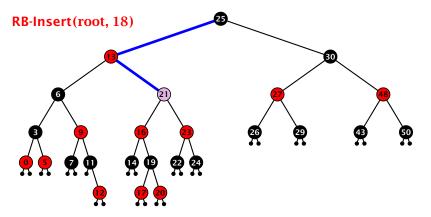
- first make a normal insert into a binary search tree
- then fix red-black properties



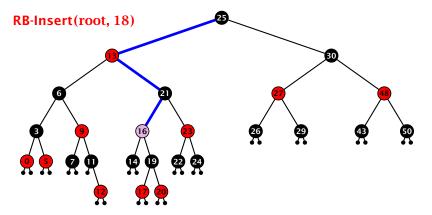
- first make a normal insert into a binary search tree
- then fix red-black properties



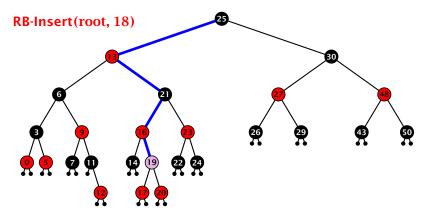
- first make a normal insert into a binary search tree
- then fix red-black properties



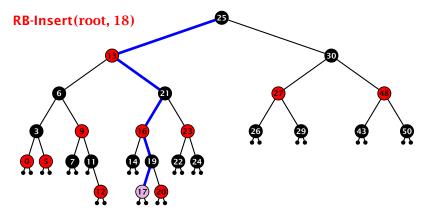
- first make a normal insert into a binary search tree
- then fix red-black properties



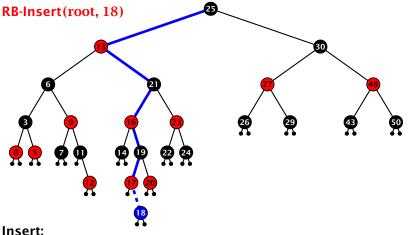
- first make a normal insert into a binary search tree
- then fix red-black properties



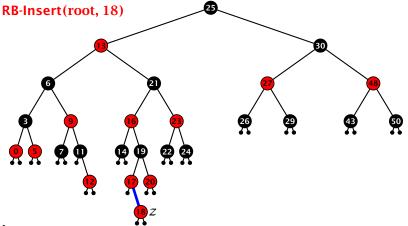
- first make a normal insert into a binary search tree
- then fix red-black properties



- first make a normal insert into a binary search tree
- then fix red-black properties



- isert.
- ▶ first make a normal insert into a binary search tree
- then fix red-black properties



- first make a normal insert into a binary search tree
- then fix red-black properties

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

```
either both of them are red
(most important case)
or the parent does not exist
```

(violation silice root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

```
(most important case)
or the parent does not exist
(violation since root must be black)
```

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Invariant of the fix-up algorithm:

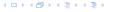
- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.


```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
          if parent[z] = left[gp[z]] then
 2:
                uncle \leftarrow right[grandparent[z]]
 3:
                if col[uncle] = red then
 4:
                     \operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};
 5:
                     col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
               else
 7:
 8:
                     if z = right[parent[z]] then
                           z \leftarrow p[z]: LeftRotate(z):
 9.
                     col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
                      RightRotate(gp[z]);
11:
12:
           else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```



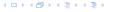
```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
          if parent[z] = left[gp[z]] then z in left subtree of grandparent
 2:
                uncle \leftarrow right[grandparent[z]]
 3:
                if col[uncle] = red then
 4:
                     \operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};
 5:
                     col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
               else
 7:
 8:
                     if z = right[parent[z]] then
                           z \leftarrow p[z]: LeftRotate(z):
 9.
                     col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
                      RightRotate(gp[z]);
11:
12:
           else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```



```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
          if parent[z] = left[gp[z]] then
 2:
                uncle \leftarrow right[grandparent[z]]
 3:
                if col[uncle] = red then
 4:
                                                                       Case 1: uncle red
                     \operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};
 5:
                     col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
               else
 7:
 8:
                     if z = right[parent[z]] then
                           z \leftarrow p[z]: LeftRotate(z):
 9.
                     col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
                      RightRotate(gp[z]);
11:
12:
           else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```



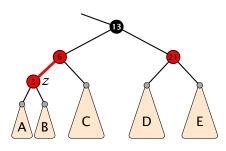
```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
          if parent[z] = left[gp[z]] then
 2:
                uncle \leftarrow right[grandparent[z]]
 3:
                if col[uncle] = red then
 4:
                     \operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};
 5.
                     col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
                else
 7:
                                                                     Case 2: uncle black
 8:
                     if z = right[parent[z]] then
                           z \leftarrow p[z]: LeftRotate(z):
 9.
                     col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
                      RightRotate(gp[z]);
11:
12:
           else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```



```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
          if parent[z] = left[gp[z]] then
 2:
                uncle \leftarrow right[grandparent[z]]
 3:
                if col[uncle] = red then
 4:
                     \operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};
 5:
                     col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
               else
 7:
 8:
                     if z = right[parent[z]] then
                                                                         2a: z right child
                           z \leftarrow p[z]: LeftRotate(z):
 9.
                     col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;
10:
                      RightRotate(gp[z]);
11:
12:
           else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```

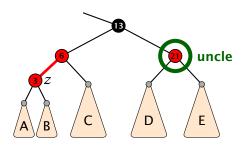


```
Algorithm 10 InsertFix(z)
 1: while parent[z] \neq null and col[parent[z]] = red do
          if parent[z] = left[gp[z]] then
 2:
                uncle \leftarrow right[grandparent[z]]
 3:
                if col[uncle] = red then
 4:
                     \operatorname{col}[p[z]] \leftarrow \operatorname{black}; \operatorname{col}[u] \leftarrow \operatorname{black};
 5:
                     col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];
 6:
               else
 7:
 8:
                     if z = right[parent[z]] then
                           z \leftarrow p[z]: LeftRotate(z):
 9.
                     col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z left child
10:
                      RightRotate(gp[z]);
11:
12:
           else same as then-clause but right and left exchanged
13: \operatorname{col}(\operatorname{root}[T]) \leftarrow \operatorname{black};
```

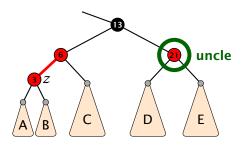
- recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z
- 4. you made progress

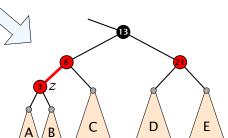
イロトイプトイミトイミト

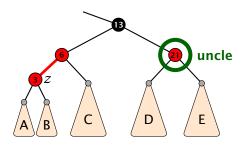


- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z
- 4. you made progress

イロトイプトイミトイミト

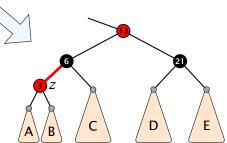




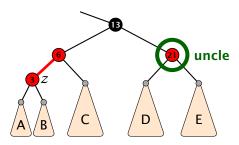


1. recolour

- 2. move z to grand-parent
- 3. invariant is fulfilled for new 2
- 4. you made progress

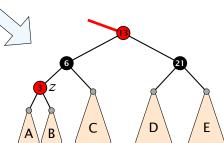


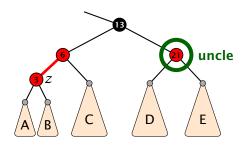
イロトイプトイミトイミト



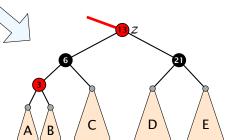
1. recolour

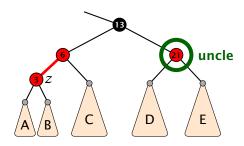
- 2. move z to grand-parent
- 3. invariant is fulfilled for new 2
- 4. you made progress





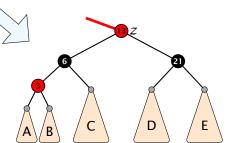
- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new 2
- 4. you made progress

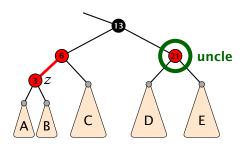




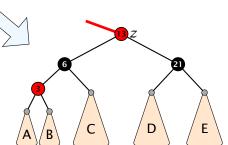
- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z

4. you made progress



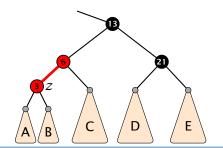


- 1. recolour
- 2. move z to grand-parent
- 3. invariant is fulfilled for new z
- 4. you made progress

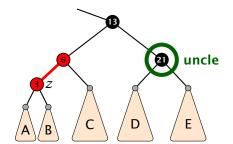


4 - 4 - 4 - 4 - 5 + 4 - 5 +

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

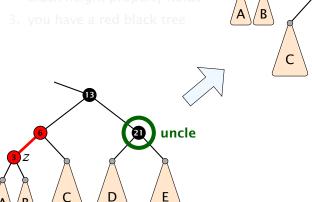


- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree



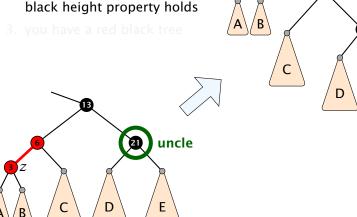
1. rotate around grandparent

re-colour to ensure that black height property holds



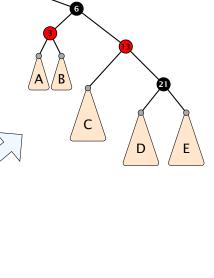
E

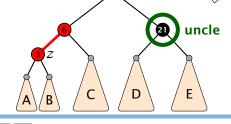
- 1. rotate around grandparent
- re-colour to ensure that black height property holds



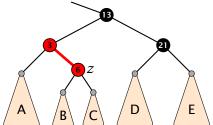
E

- 1. rotate around grandparent
- 2. re-colour to ensure that black height property holds
- 3. you have a red black tree

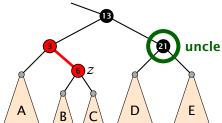




- 1. rotate around parent
- 2. move z downwards
- 3. you have case 2b.

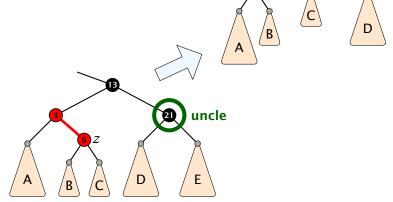


- 1. rotate around parent
- 2. move z downwards
- 3. you have case 2b.



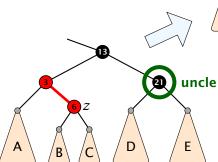
1. rotate around parent

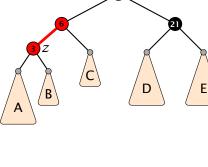
- 2. move z downwards
- 3. you have case 2b.



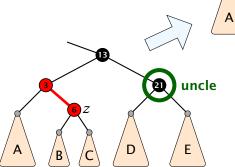
Ε

- 1. rotate around parent
- 2. move z downwards
- 3. you have case 2b.





- 1. rotate around parent
- 2. move z downwards
- 3. you have case 2b.



D

Ε

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case 2b → red-black tree

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

```
    Parent and child of x were red; two adjacent red vertices
```

```
If you delete the root, the root may now be red.
```

```
    Every path from an ancestor of x to a descendant leaf of
```

```
might be violated
```


First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems

```
    Parent and child of x were red; two adjacent red vertices
```

```
If you delete the root, the root may now be red.
```

```
Changes the humber of black flodes. Black fleight property
```


First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

- ▶ Parent and child of x were red; two adjacent red vertices
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

First do a standard delete.

If the spliced out node x was red everyhting is fine.

If it was black there may be the following problems.

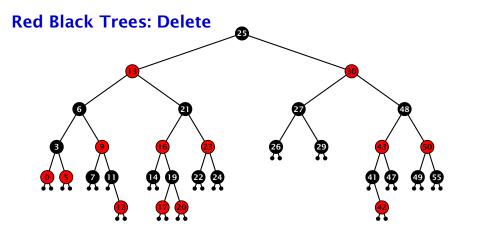
- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

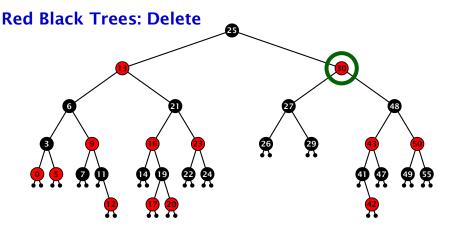
First do a standard delete.

If the spliced out node x was red everyhting is fine.

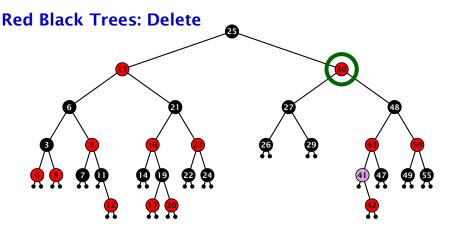
If it was black there may be the following problems.

- ▶ Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

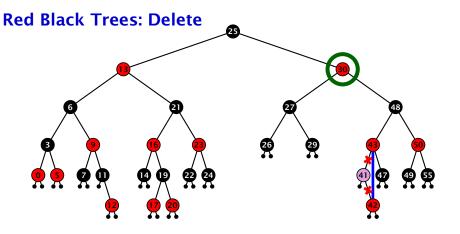




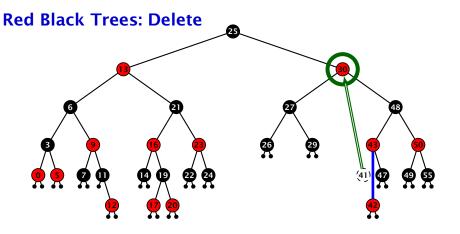
- do normal delete
- when replacing content by content of successor, don't change color of node



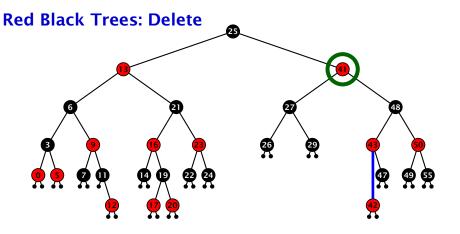
- ▶ do normal delete
- when replacing content by content of successor, don't change color of node



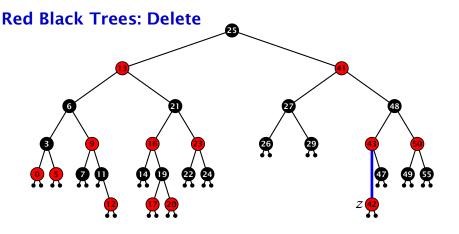
- ▶ do normal delete
- when replacing content by content of successor, don't change color of node



- do normal delete
- when replacing content by content of successor, don't change color of node

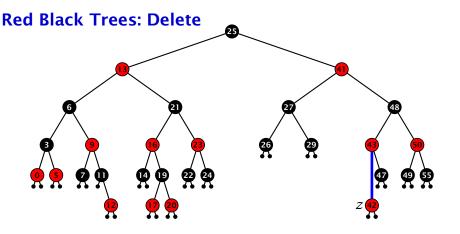


- ▶ do normal delete
- when replacing content by content of successor, don't change color of node



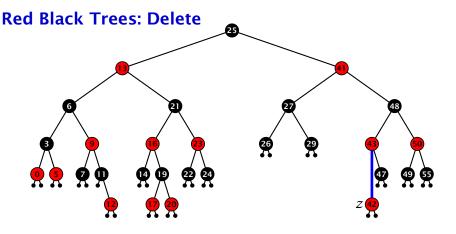
Delete:

- deleting black node messes up black-height property
- \blacktriangleright if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



Delete:

- deleting black node messes up black-height property
- ightharpoonup if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.



Delete:

- deleting black node messes up black-height property
- ightharpoonup if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Invariant of the fix-up algorihtm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Invariant of the fix-up algorihtm

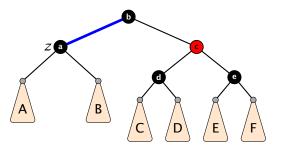
- ▶ the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

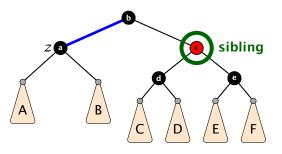
Invariant of the fix-up algorihtm

- ▶ the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

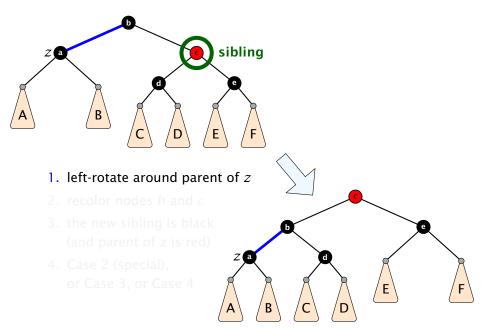
Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

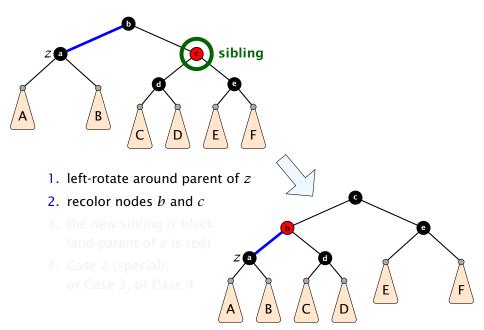


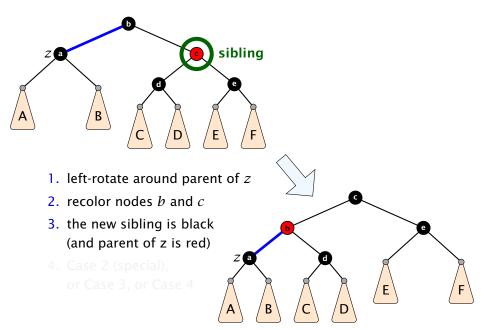
- 1. left-rotate around parent of z
- 2. recolor nodes b and c
- 3. the new sibling is black (and parent of z is red)
- 4. Case 2 (special), or Case 3, or Case 4

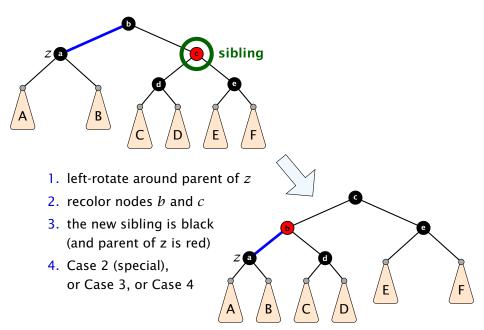


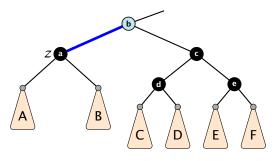
- 1. left-rotate around parent of z
- 2. recolor nodes *b* and *c*
- 3. the new sibling is black (and parent of z is red)
- 4. Case 2 (special), or Case 3, or Case 4



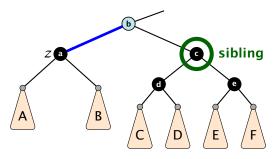




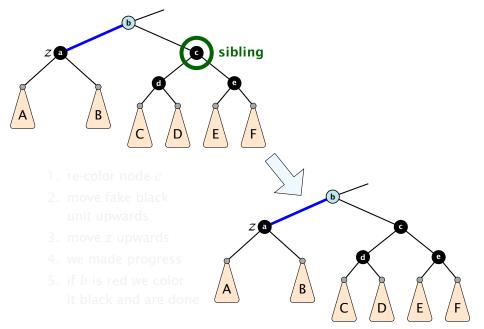


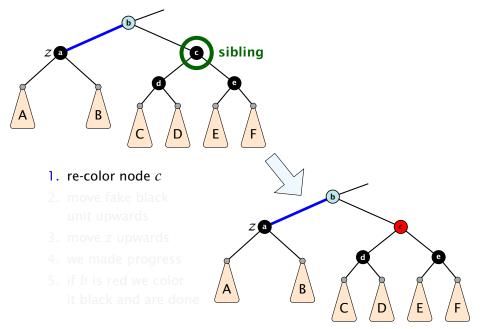


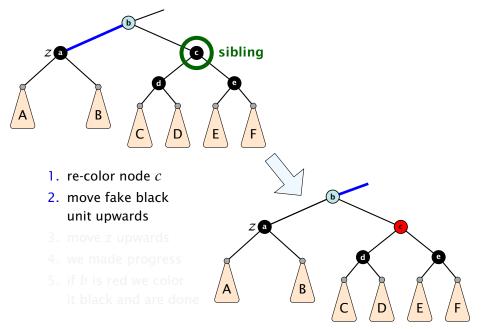
- 1. re-color node a
- 2. move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are don

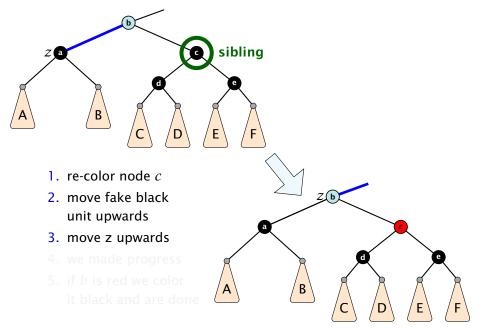


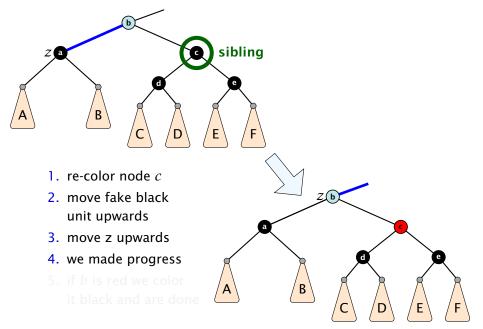
- 1. re-color node a
- move fake black unit upwards
- 3. move z upwards
- 4. we made progress
- 5. if *b* is red we color it black and are don

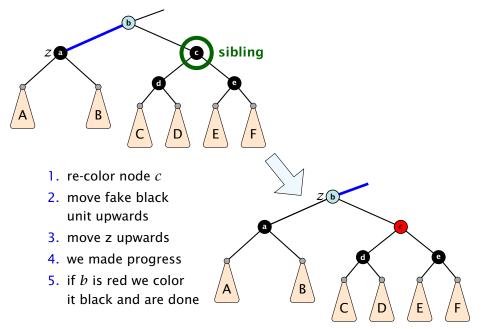




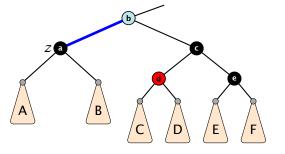




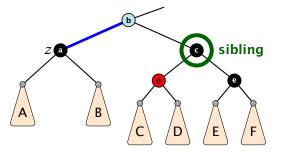


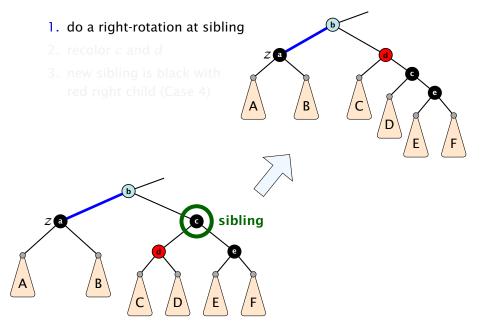


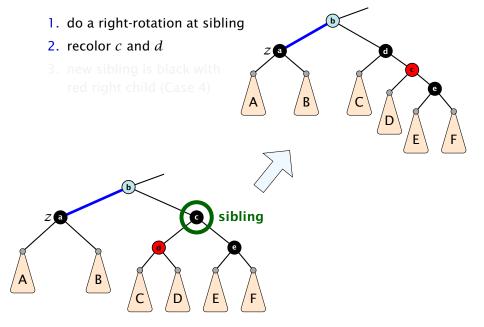
- 1. do a right-rotation at sibling
- 2. recolor c and a
- new sibling is black with red right child (Case 4)

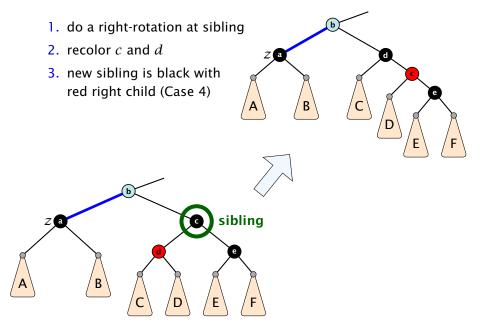


- 1. do a right-rotation at sibling
- 2. recolor c and a
- new sibling is black with red right child (Case 4)

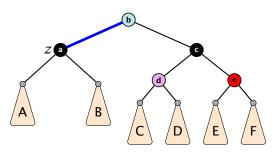






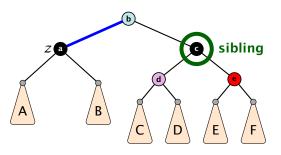


Case 4: Sibling is black with red right child



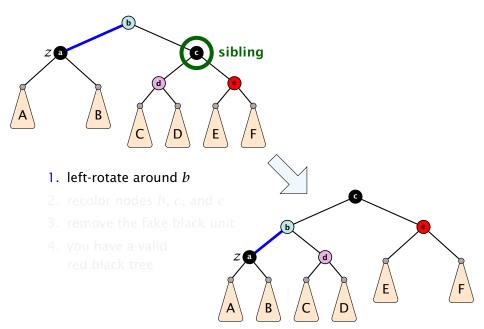
- 1. left-rotate around b
- 2. recolor nodes b, c, and e
- 3. remove the fake black unit
- you have a valid red black tree

Case 4: Sibling is black with red right child

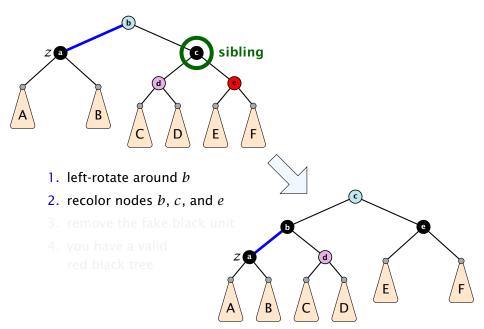


- 1. left-rotate around *b*
- 2. recolor nodes b, c, and e
- 3. remove the fake black unit
- you have a valid red black tree

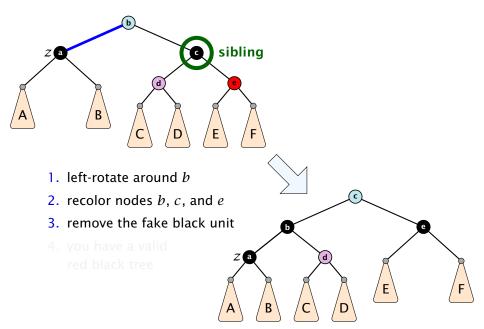
Case 4: Sibling is black with red right child



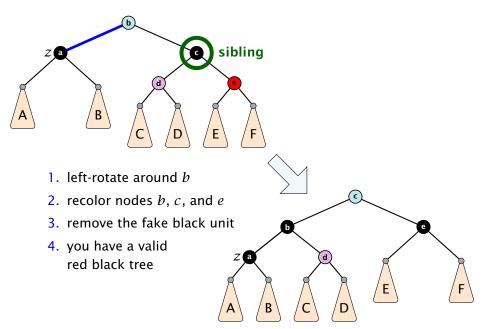
Case 4: Sibling is black with red right child



Case 4: Sibling is black with red right child



Case 4: Sibling is black with red right child



- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

Definition 15

AVL-trees are binary search trees that fulfill the following balance condition. For every node \boldsymbol{v}

 $|\text{height}(\text{left sub-tree}(v)) - \text{height}(\text{right sub-tree}(v))| \le 1$.

Lemma 16

An AVL-tree of height h contains at least $F_{h+2}-1$ and at most 2^h-1 internal nodes, where F_n is the n-th Fibonacci number $(F_0=0,\,F_1=1)$, and the height is the maximal number of edges from the root to an (empty) dummy leaf.



Definition 15

AVL-trees are binary search trees that fulfill the following balance condition. For every node \boldsymbol{v}

 $|\text{height}(\text{left sub-tree}(v)) - \text{height}(\text{right sub-tree}(v))| \le 1$.

Lemma 16

An AVL-tree of height h contains at least $F_{h+2}-1$ and at most 2^h-1 internal nodes, where F_n is the n-th Fibonacci number ($F_0=0$, $F_1=1$), and the height is the maximal number of edges from the root to an (empty) dummy leaf.

Proof.

The upper bound is clear, as a binary tree of height h can only contain

$$\sum_{j=0}^{h-1} 2^j = 2^h - 1$$

internal nodes.

Proof (cont.)

Induction (base cases):

- 1. an AVL-tree of height h = 1 contains at least one internal node, $1 \ge F_3 1 = 2 1 = 1$.
- 2. an AVL tree of height h=2 contains at least two internal nodes, $2 \ge F_4 1 = 3 1 = 2$

Proof (cont.)

Induction (base cases):

- 1. an AVL-tree of height h=1 contains at least one internal node, $1 \ge F_3 1 = 2 1 = 1$.
- 2. an AVL tree of height h=2 contains at least two internal nodes, $2 \ge F_4 1 = 3 1 = 2$

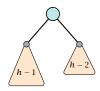
Proof (cont.)

Induction (base cases):

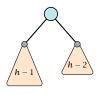
- 1. an AVL-tree of height h=1 contains at least one internal node, $1 \ge F_3 1 = 2 1 = 1$.
- 2. an AVL tree of height h = 2 contains at least two internal nodes, $2 \ge F_4 1 = 3 1 = 2$

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.



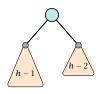
An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.



Let

 $f_h := 1 + \text{minimal size of AVL-tree of height } h$.

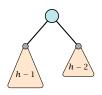
An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.



Let

$$f_h := 1 + \text{minimal size of AVL-tree of height } h$$
.

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.

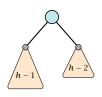


Let

$$f_h := 1 + \text{minimal size of AVL-tree of height } h$$
.

$$f_1 = 2 = F_3$$

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.

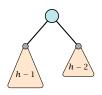


Let

$$f_h := 1 + \text{minimal size of AVL-tree of height } h$$
.

$$f_1 = 2$$
 = F_3 = F_4

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.

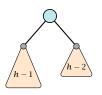


Let

$$f_h := 1 + \text{minimal size of AVL-tree of height } h$$
.

$$f_1 = 2$$
 = F_3
 $f_2 = 3$ = F_4
 $f_{h} - 1 = 1 + f_{h-1} - 1 + f_{h-2} - 1$, hence

An AVL-tree of height $h \ge 2$ of minimal size has a root with sub-trees of height h-1 and h-2, respectively. Both, sub-trees have minmal node number.



Let

$$f_h := 1 + \text{minimal size of AVL-tree of height } h$$
.

$$f_1 = 2$$
 $= F_3$ $= F_4$ $f_{h-1} = 1 + f_{h-1} - 1 + f_{h-2} - 1$, hence $f_{h} = f_{h-1} + f_{h-2}$ $= F_{h+2}$

Since

$$F(k) pprox rac{1}{\sqrt{5}} \left(rac{1+\sqrt{5}}{2}
ight)^k$$
 ,

an AVL-tree with n internal nodes has height $\Theta(\log n)$.

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the node. Let v denote a tree node with left child c_{ℓ} and right child c_{r} .

$$balance[v] := height(T_{C_{\ell}}) - height(T_{C_r})$$
,

where $T_{c_{\ell}}$ and T_{c_r} , are the sub-trees rooted at c_{ℓ} and c_r , respectively.

We need to maintain the balance condition through rotations.

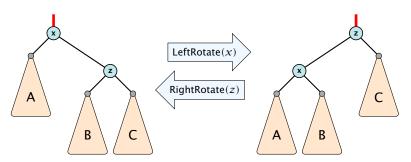
For this we store in every internal tree-node v the balance of the node. Let v denote a tree node with left child c_ℓ and right child c_r .

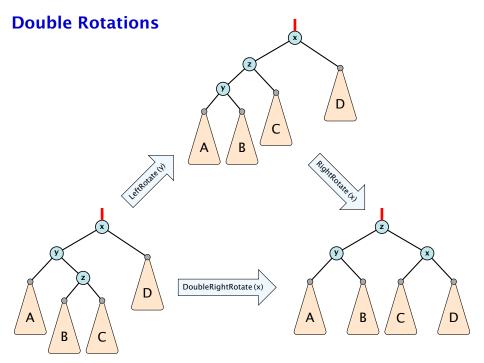
$$balance[v] := height(T_{c_{\ell}}) - height(T_{c_r})$$
,

where $T_{c_{\ell}}$ and T_{c_r} , are the sub-trees rooted at c_{ℓ} and c_r , respectively.

Rotations

The properties will be maintained through rotations:





Insert like in a binary search tree.

イロトイプトイミトイミト

- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.

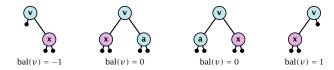
- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.
- One of the following cases holds:

bal(v) = 0

bal(v) = 0

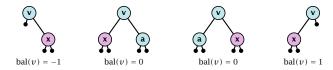
bal(v) = 1

- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.
- One of the following cases holds:



▶ If bal[v] ≠ 0, T_v has changed height; the balance-constraint may be violated at ancestors of v.

- Insert like in a binary search tree.
- Let v denote the parent of the newly inserted node x.
- One of the following cases holds:



- ▶ If $bal[v] \neq 0$, T_v has changed height; the balance-constraint may be violated at ancestors of v.
- ightharpoonup Call fix-up(parent[v]) to restore the balance-condition.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been inserted into T_c , where c is either the right or left child of v.
- T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
- 4. The balance at the node c fulfills balance[c] $\in \{-1,1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been inserted into T_c , where c is either the right or left child of v.
- T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
- 4. The balance at the node c fulfills balance[c] $\in \{-1,1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been inserted into T_c , where c is either the right or left child of v.
- T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
- 4. The balance at the node c fulfills balance[c] $\in \{-1,1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been inserted into T_c , where c is either the right or left child of v.
- 3. T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
- 4. The balance at the node c fulfills balance[c] $\in \{-1,1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been inserted into T_c , where c is either the right or left child of v.
- 3. T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
- 4. The balance at the node c fulfills balance $[c] \in \{-1, 1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.


```
Algorithm 11 AVL-fix-up-insert(v)

1: if balance[v] \in {-2, 2} then DoRotationInsert(v);
```

2: **if** balance[v] \in {0} **return**;

3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will do at most one rotation.


```
Algorithm 12 DoRotationInsert(v)
1: if balance[v] = -2 then
        if balance[right[v]] = -1 then
 2:
             LeftRotate(v);
 3:
        else
4:
             DoubleLeftRotate(v):
 5:
 6: else
        if balance[left[v]] = 1 then
 7:
 8:
             RightRotate(v);
        else
 9:
             DoubleRightRotate(v);
10:
```


It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v:

- ightharpoonup v fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ The height of T_v is the same as before the insert-operation took place.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- v fulfills balance condition.
- \blacktriangleright All children of v still fulfill the balance condition.
- ▶ The height of T_v is the same as before the insert-operation took place.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- $\triangleright v$ fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ The height of T_v is the same as before the insert-operation took place.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- v fulfills balance condition.
- \blacktriangleright All children of v still fulfill the balance condition.
- ▶ The height of T_v is the same as before the insert-operation took place.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ The height of T_v is the same as before the insert-operation took place.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ The height of T_v is the same as before the insert-operation took place.

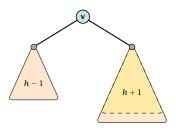
It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We have to show that after doing one rotation **all** balance constraints are fulfilled.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ The height of T_v is the same as before the insert-operation took place.

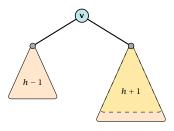
We have the following situation:



The right sub-tree of v has increased its height which results in a balance of -2 at v.

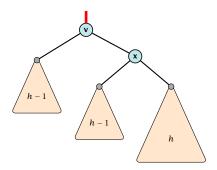
Before the insertion the height of T_v was h + 1.

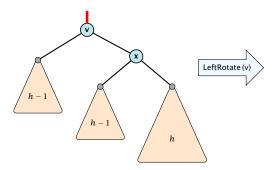
We have the following situation:

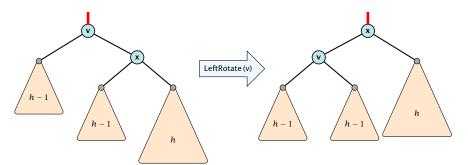


The right sub-tree of v has increased its height which results in a balance of -2 at v.

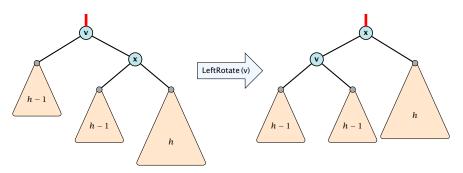
Before the insertion the height of T_v was h + 1.



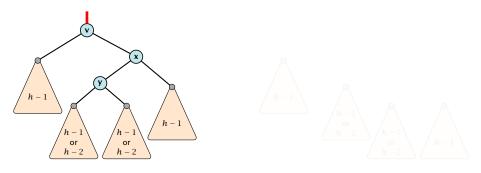


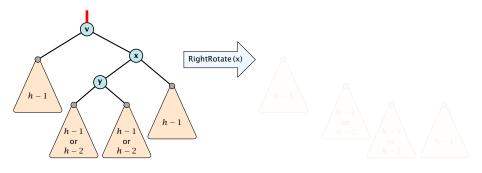


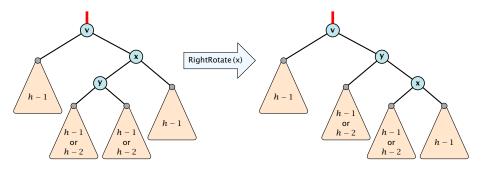
We do a left rotation at v

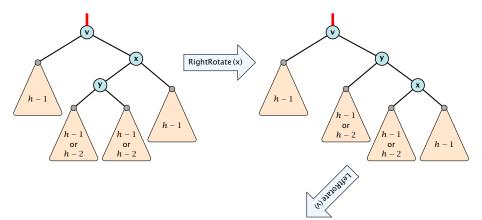


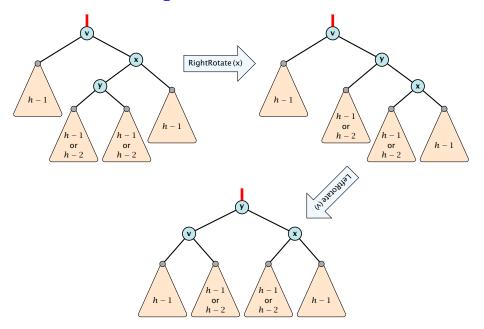
Now, T_v has height h + 1 as before the insertion. Hence, we do not need to continue.

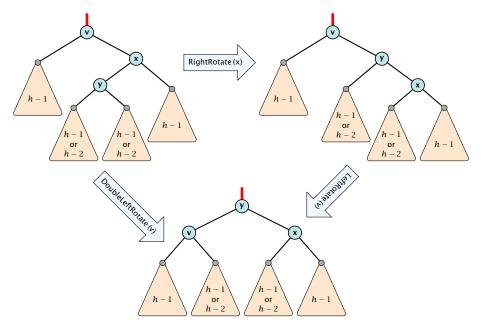


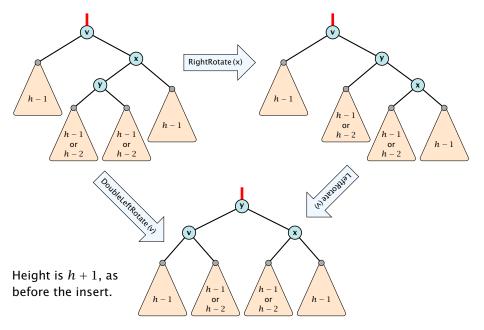












- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- ▶ Initially, the node *c*—the new root in the sub-tree that has changed— is either a dummy leaf or a node with two dummy leafs as children.

In both cases bal[c] = 0.

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- ▶ The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- ▶ Initially, the node *c*—the new root in the sub-tree that has changed— is either a dummy leaf or a node with two dummy leafs as children.

In both cases bal[c] = 0.

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- ▶ The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- ▶ Initially, the node *c*—the new root in the sub-tree that has changed— is either a dummy leaf or a node with two dummy leafs as children.

In both cases bal[c] = 0.

- Delete like in a binary search tree.
- ► Let *v* denote the parent of the node that has been spliced out.
- ▶ The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- ▶ Initially, the node *c*—the new root in the sub-tree that has changed— is either a dummy leaf or a node with two dummy leafs as children.

Case 1 Case 2

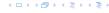
In both cases bal[c] = 0.

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- ▶ The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- ▶ Initially, the node *c*—the new root in the sub-tree that has changed— is either a dummy leaf or a node with two dummy leafs as children.



In both cases bal[c] = 0.

Call fix-up(v) to restore the balance-condition.



- 1. The balance constraints holds at all descendants of v.
- 2. A node has been deleted from T_c , where c is either the right or left child of v.
- 3. T_c has either decreased its height by one or it has stayed the same (note that this is clear right after the deletion but we have to make sure that it also holds after the rotations done within T_c in previous iterations).
- 4. The balance at the node c fulfills balance $[c] = \{0\}$. This holds because if the balance of c is in $\{-1,1\}$, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been deleted from T_c , where c is either the right or left child of v.
- 3. T_c has either decreased its height by one or it has stayed the same (note that this is clear right after the deletion but we have to make sure that it also holds after the rotations done within T_c in previous iterations).
- 4. The balance at the node c fulfills balance[c] = {0}. This holds because if the balance of c is in {-1,1}, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been deleted from T_c , where c is either the right or left child of v.
- 3. T_c has either decreased its height by one or it has stayed the same (note that this is clear right after the deletion but we have to make sure that it also holds after the rotations done within T_c in previous iterations).
- 4. The balance at the node c fulfills balance[c] = {0}. This holds because if the balance of c is in {-1,1}, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

- 1. The balance constraints holds at all descendants of v.
- 2. A node has been deleted from T_c , where c is either the right or left child of v.
- 3. T_c has either decreased its height by one or it has stayed the same (note that this is clear right after the deletion but we have to make sure that it also holds after the rotations done within T_c in previous iterations).
- 4. The balance at the node c fulfills balance[c] = {0}. This holds because if the balance of c is in {-1,1}, then T_c did not change its height, and the whole procedure will have been aborted in the previous step.

Algorithm 13 AVL-fix-up-delete(v)

1: **if** balance[v] \in {-2, 2} **then** DoRotationDelete(v);

2: **if** balance[v] \in {-1,1} **return**;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the case of a delete there may be a logarithmic number of rotations.

Algorithm 13 AVL-fix-up-delete(v)

1: **if** balance[v] \in {-2, 2} **then** DoRotationDelete(v);

2: **if** balance[v] \in {-1,1} **return**;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the case of a delete there may be a logarithmic number of rotations.


```
Algorithm 14 DoRotationDelete(v)
 1: if balance[v] = -2 then
        if balance[right[v]] = -1 then
 2:
             LeftRotate(v);
 3:
        else
4:
             DoubleLeftRotate(v):
 5:
6: else
        if balance[left[v]] = {0, 1} then
 7:
 8:
             RightRotate(v);
        else
 9:
             DoubleRightRotate(v);
10:
```


It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v:

- $\triangleright v$ fulfills balance condition.
- \blacktriangleright All children of v still fulfill the balance condition.
- ▶ If now balance[v] ∈ {-1,1} we can stop as the height of T_v is the same as before the deletion.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills balance condition.
- \blacktriangleright All children of v still fulfill the balance condition.
- ▶ If now balance[v] ∈ {-1,1} we can stop as the height of T_v is the same as before the deletion.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills balance condition.
- \blacktriangleright All children of v still fulfill the balance condition.
- ▶ If now balance[v] ∈ {-1,1} we can stop as the height of T_v is the same as before the deletion.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ If now balance[v] ∈ {-1,1} we can stop as the height of T_v is the same as before the deletion.

It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ If now balance[v] ∈ {-1,1} we can stop as the height of T_v is the same as before the deletion.

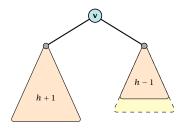


It is clear that the invariant for the fix-up routine holds as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- ▶ If now balance[v] ∈ {-1,1} we can stop as the height of T_v is the same as before the deletion.

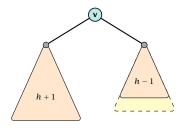
We have the following situation:



The right sub-tree of v has decreased its height which results in a balance of 2 at v.

Before the insertion the height of T_v was h + 2.

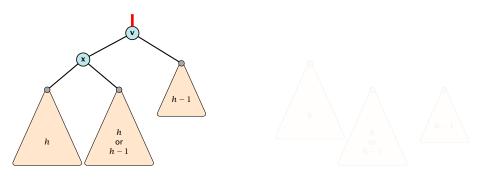
We have the following situation:



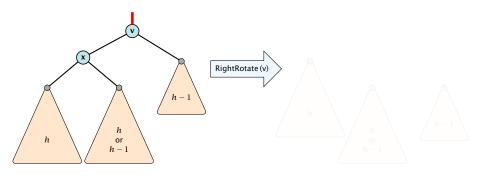
The right sub-tree of v has decreased its height which results in a balance of 2 at v.

Before the insertion the height of T_v was h + 2.

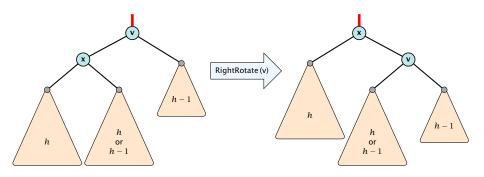
If the middle subtree has height h the whole tree has height h+2 as before the deletion. The iteration stops as the balance at the root is non-zero.



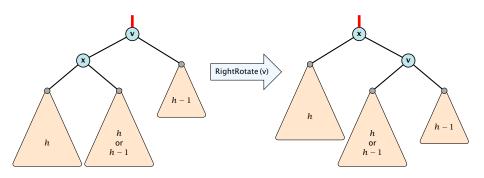
If the middle subtree has height h the whole tree has height h+2 as before the deletion. The iteration stops as the balance at the root is non-zero.



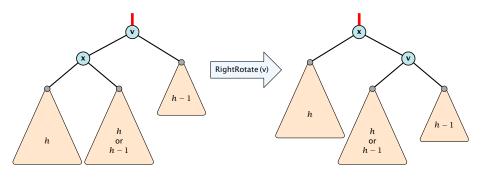
If the middle subtree has height h the whole tree has height h+2 as before the deletion. The iteration stops as the balance at the root is non-zero.



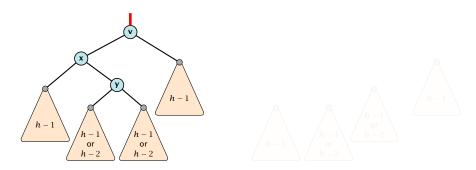
If the middle subtree has height h the whole tree has height h+2 as before the deletion. The iteration stops as the balance at the root is non-zero.

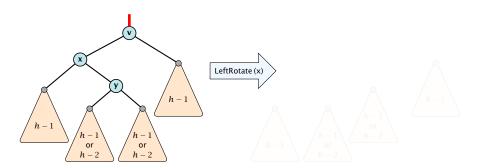


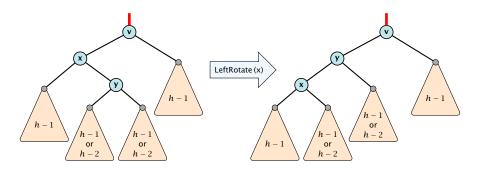
If the middle subtree has height h the whole tree has height h+2 as before the deletion. The iteration stops as the balance at the root is non-zero.

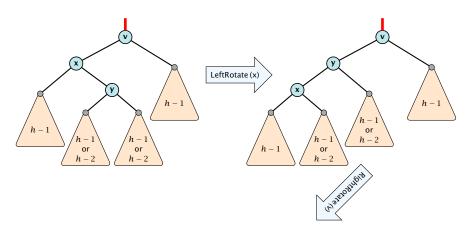


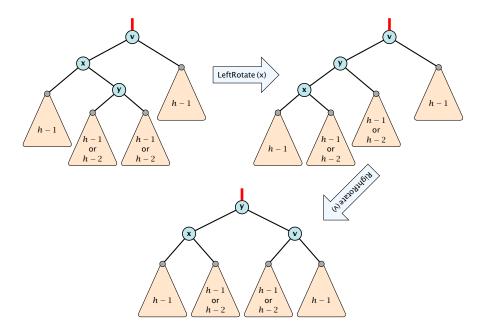
If the middle subtree has height h the whole tree has height h+2 as before the deletion. The iteration stops as the balance at the root is non-zero.

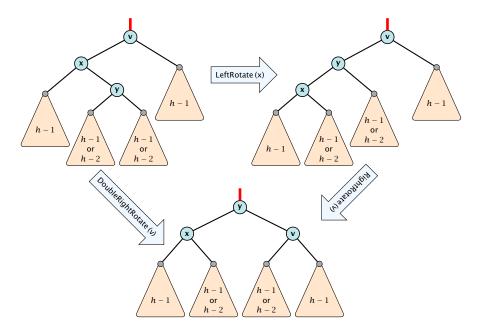


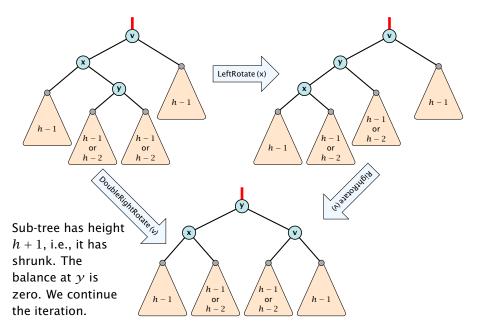












Definition 17

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex \boldsymbol{v} has at least \boldsymbol{a} and at most \boldsymbol{b} children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex \boldsymbol{v} has at least \boldsymbol{a} and at most \boldsymbol{b} children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex \boldsymbol{v} has at least \boldsymbol{a} and at most \boldsymbol{b} children
- 3. the root has degree at least 2 if the tree is non-empty
- the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex \boldsymbol{v} has at least \boldsymbol{a} and at most \boldsymbol{b} children
- 3. the root has degree at least 2 if the tree is non-empty
- the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex \boldsymbol{v} has at least \boldsymbol{a} and at most \boldsymbol{b} children
- 3. the root has degree at least 2 if the tree is non-empty
- the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Definition 17

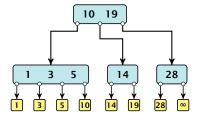
- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex \boldsymbol{v} has at least \boldsymbol{a} and at most \boldsymbol{b} children
- 3. the root has degree at least 2 if the tree is non-empty
- the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

Each internal node v with d(v) children stores d-1 keys $k_1, \ldots, k_d - 1$. The *i*-th subtree of v fulfills

$$k_{i-1} < \text{key in } i\text{-th sub-tree } \le k_i$$
 ,

where we use $k_0 = -\infty$ and $k_d = \infty$.

Example 18



- The dummy leaf element may not exist; this only makes implementation more convenient.
- Variants in which b = 2a are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B^* tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a B-tree).

- The dummy leaf element may not exist; this only makes implementation more convenient.
- ► Variants in which b = 2a are commonly referred to as B-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B* tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a B-tree).



- ► The dummy leaf element may not exist; this only makes implementation more convenient.
- ► Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B* tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a B-tree).

- The dummy leaf element may not exist; this only makes implementation more convenient.
- ► Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- ► A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B* tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a B-tree).

- The dummy leaf element may not exist; this only makes implementation more convenient.
- ▶ Variants in which b = 2a are commonly referred to as B-trees.
- ► A *B*-tree usually refers to the variant in which keys and data are stored at internal nodes.
- ► A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- ► A B* tree requires that a node is at least 2/3-full as only 1/2-full (the requirement of a B-tree).



Let T be an (a,b)-tree for n>0 elements (i.e., n+1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

- 1. $2a^{h-1} \le n+1 \le b^h$
- $2. \log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$

Proof

- If n > 0 the root has degree at least 2 and all other nodes.
- made is at least 2 dfc. This gives that the hornor of the
- Analogously, the degree of any node is at most b and, hence of any node is at most b and, hence of any node is at most b.
 - the number of leaf nodes at most b^n

Let T be an (a,b)-tree for n>0 elements (i.e., n+1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

- 1. $2a^{h-1} \le n+1 \le b^h$
- 2. $\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$

Proof

Let T be an (a,b)-tree for n>0 elements (i.e., n+1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

- 1. $2a^{h-1} \le n+1 \le b^h$
- 2. $\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$

Proof.

- ▶ If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- ► Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h

Let T be an (a,b)-tree for n>0 elements (i.e., n+1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

- 1. $2a^{h-1} \le n+1 \le b^h$
- 2. $\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$

Proof.

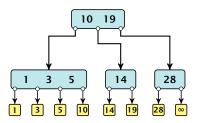
- ▶ If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- ► Analogously, the degree of any node is at most *b* and, hence, the number of leaf nodes at most *b*^h

Let T be an (a,b)-tree for n>0 elements (i.e., n+1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

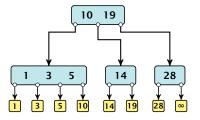
- 1. $2a^{h-1} \le n+1 \le b^h$
- 2. $\log_b(n+1) \le h \le \log_a(\frac{n+1}{2})$

Proof.

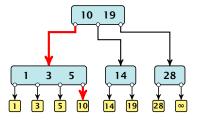
- ▶ If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h .



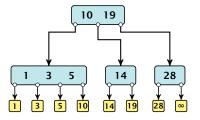
Search(8)



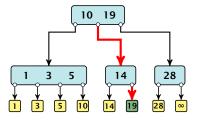
Search(8)

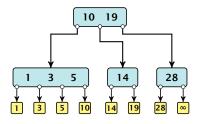


Search(19)

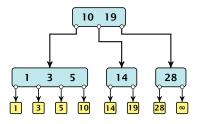


Search(19)





The search is straightforward. It is only important that you need to go all the way to the leaf.



The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h) = \mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.

- ▶ Follow the path as if searching for key[x].
- ▶ If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- ▶ If after the insert v contains b nodes, do Rebalance(v).

- Follow the path as if searching for key[x].
- If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- ▶ If after the insert v contains b nodes, do Rebalance(v).

- ▶ Follow the path as if searching for key[x].
- If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance(v).



- ▶ Follow the path as if searching for key[x].
- If this search ends in leaf ℓ , insert x before this leaf.
- For this add key[x] to the key-list of the last internal node v on the path.
- ▶ If after the insert v contains b nodes, do Rebalance(v).

- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ► Create two nodes v_1 , and v_2 . v_1 gets all keys $k_1, ..., k_{j-1}$ and v_2 gets keys $k_{j+1}, ..., k_b$.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_j) in the parent is added to point to v_2 .
- Then, re-balance the parent.

- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ▶ Create two nodes v_1 , and v_2 . v_1 gets all keys $k_1, ..., k_{j-1}$ and v_2 gets keys $k_{j+1}, ..., k_b$.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_j) in the parent is added to point to v_2 .
- Then, re-balance the parent.

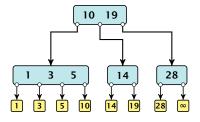
- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ▶ Create two nodes v_1 , and v_2 . v_1 gets all keys $k_1, ..., k_{j-1}$ and v_2 gets keys $k_{j+1}, ..., k_b$.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_j) in the parent is added to point to v_2 .
- ▶ Then, re-balance the parent.

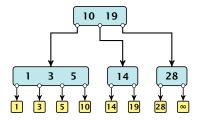
- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ▶ Create two nodes v_1 , and v_2 . v_1 gets all keys $k_1, ..., k_{j-1}$ and v_2 gets keys $k_{j+1}, ..., k_b$.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_j) in the parent is added to point to v_2 .
- ▶ Then, re-balance the parent.

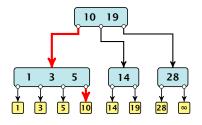
- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ▶ Create two nodes v_1 , and v_2 . v_1 gets all keys $k_1, ..., k_{j-1}$ and v_2 gets keys $k_{j+1}, ..., k_b$.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ► They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ► The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_i) in the parent is added to point to v_2 .
- ▶ Then, re-balance the parent.

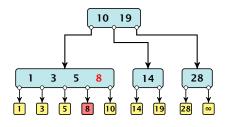
- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ▶ Create two nodes v_1 , and v_2 . v_1 gets all keys $k_1, ..., k_{j-1}$ and v_2 gets keys $k_{j+1}, ..., k_b$.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_j) in the parent is added to point to v_2 .
- ▶ Then, re-balance the parent.

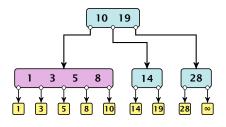
- Let k_i , i = 1, ..., b denote the keys stored in v.
- ▶ Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- ▶ Create two nodes v_1 , and v_2 . v_1 gets all keys $k_1, ..., k_{j-1}$ and v_2 gets keys $k_{j+1}, ..., k_b$.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- ▶ They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- ▶ The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1 , and a new pointer (to the right of k_j) in the parent is added to point to v_2 .
- Then, re-balance the parent.

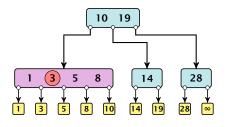


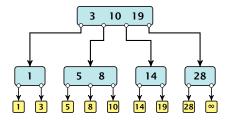


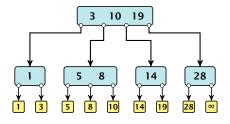


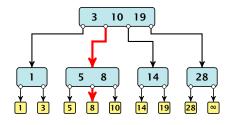


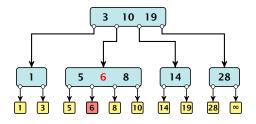


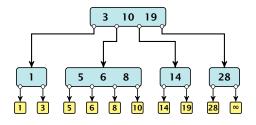




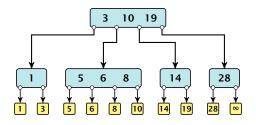




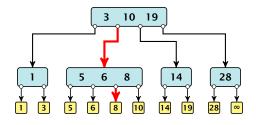


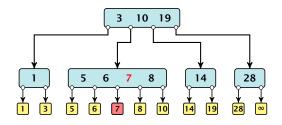


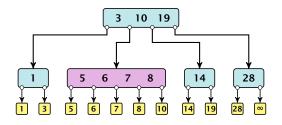
Insert(7)

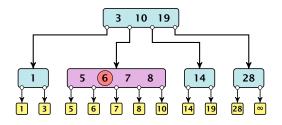


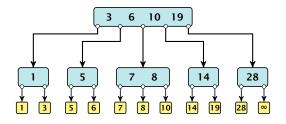
Insert(7)

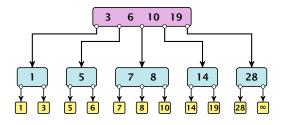


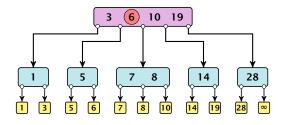


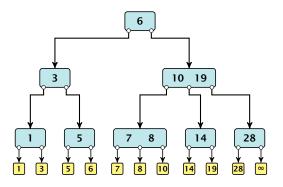












Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ▶ If now the number of keys in v is below a-1 perform Rebalance'(v).

Delete element *x* (pointer to leaf vertex):

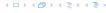
- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- If now the number of keys in v is below a-1 perform Rebalance'(v).

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- ▶ If now the number of keys in v is below a-1 perform Rebalance'(v).

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- ► The merged node contains at most (a-2) + (a-1) + 1 keys, and has therefore at most $2a 1 \le b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

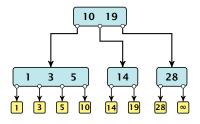
- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- ▶ The merged node contains at most (a-2) + (a-1) + 1 keys, and has therefore at most $2a 1 \le b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.



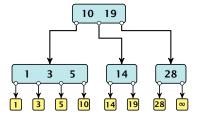
- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- ▶ If not: merge v with one of its neighbours.
- ▶ The merged node contains at most (a-2) + (a-1) + 1 keys, and has therefore at most $2a 1 \le b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- ▶ The merged node contains at most (a-2) + (a-1) + 1 keys, and has therefore at most $2a 1 \le b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

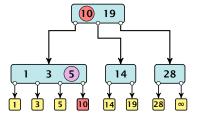
- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- ▶ If not: merge v with one of its neighbours.
- ▶ The merged node contains at most (a-2) + (a-1) + 1 keys, and has therefore at most $2a 1 \le b$ successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.



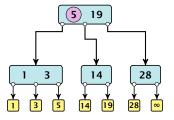
Delete(10)

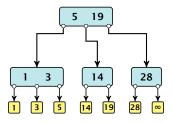


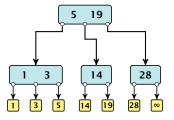
Delete(10)

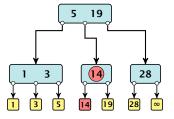


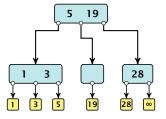
Delete(10)

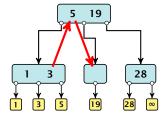


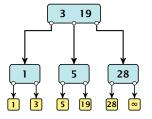


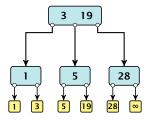


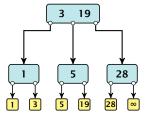


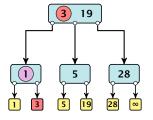


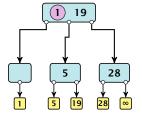


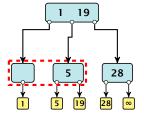


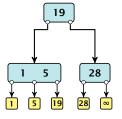


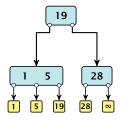


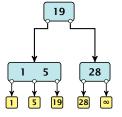


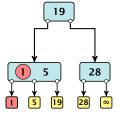


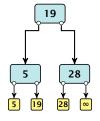


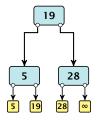


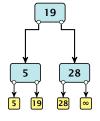


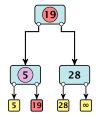


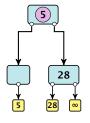


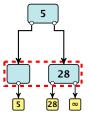


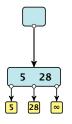


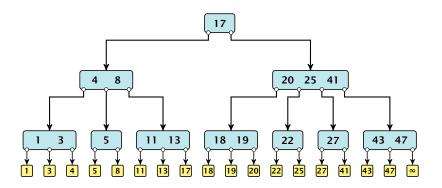


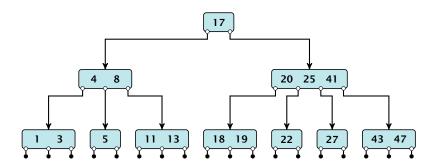


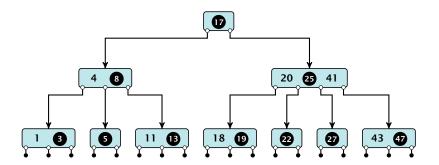


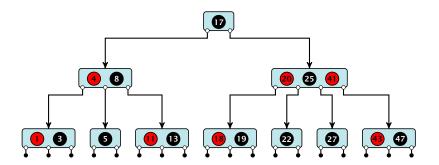


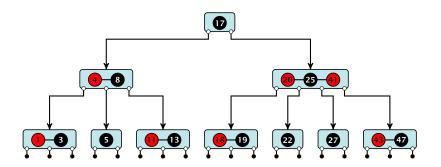


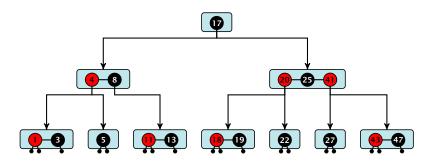


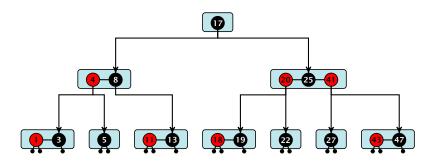


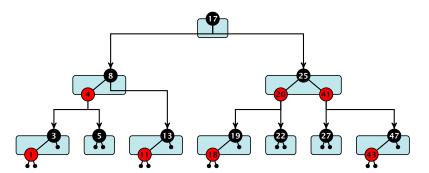


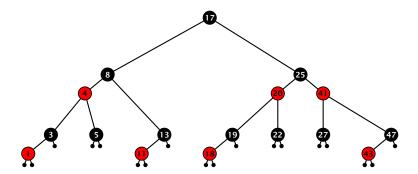




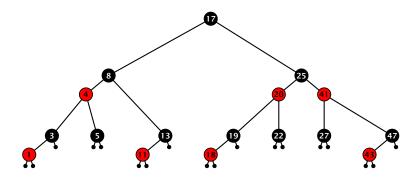








There is a close relation between red-black trees and (2,4)-trees:

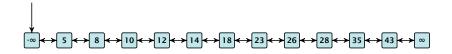


Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2,4)-tree.

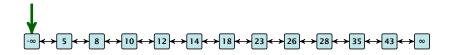
- ▶ time for search $\Theta(n)$
- ▶ time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete Θ(1) if we are given a handle to the object, otw. Θ(1)

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$

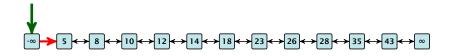
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$



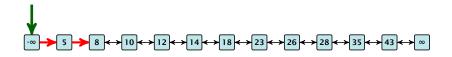
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$



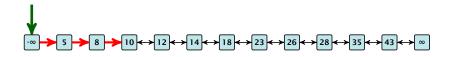
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$

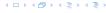


- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$

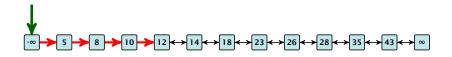


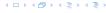
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$



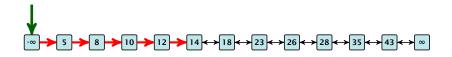


- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$

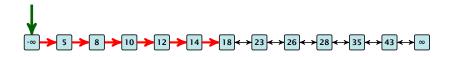




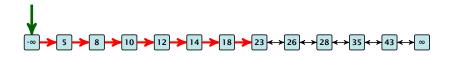
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$



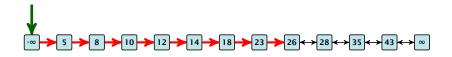
- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$



- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$



- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(1)$



How can we improve the search-operation?

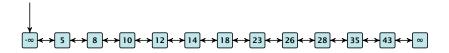
EADS

How can we improve the search-operation?

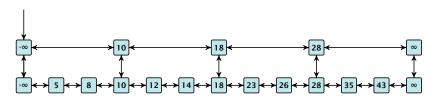
Add an express lane:

イロトイプトイミトイミト

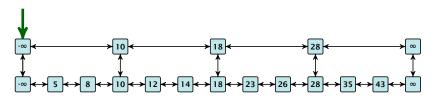
How can we improve the search-operation?



How can we improve the search-operation?



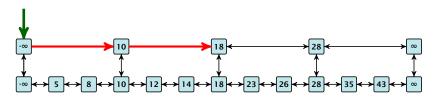
How can we improve the search-operation?



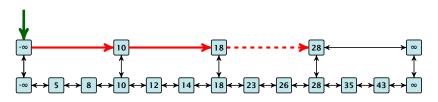
How can we improve the search-operation?



How can we improve the search-operation?

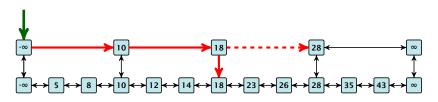


How can we improve the search-operation?



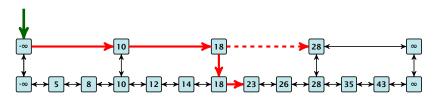
How can we improve the search-operation?

Add an express lane:



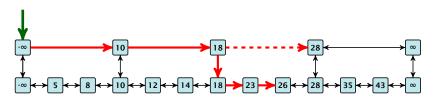
How can we improve the search-operation?

Add an express lane:



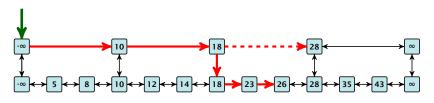
How can we improve the search-operation?

Add an express lane:



How can we improve the search-operation?

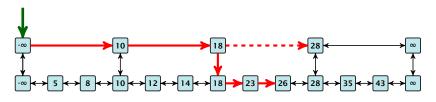
Add an express lane:



Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0|=n$ the number of all elements (ignoring dummy elements).

How can we improve the search-operation?

Add an express lane:



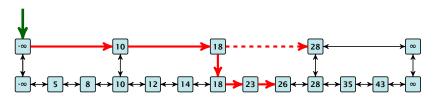
Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)



How can we improve the search-operation?

Add an express lane:



Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

Search(x)
$$(k + 1 \text{ lists } L_0, \ldots, L_k)$$

Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil \frac{|L_{k-1}|}{|I_{k}|+1} \right\rceil + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil \frac{|L_{k-1}|}{|L_k|+1} \right\rceil + 2$ steps.
- ▶ Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \right\rceil + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil \frac{|L_{k-1}|}{|L_k|+1} \right\rceil + 2$ steps.
- ▶ Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \right\rceil + 2$ steps.

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$ -th item from list L_{i-1} .

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil \frac{|L_{k-1}|}{|L_k|+1} \right\rceil + 2$ steps.
- ▶ Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \right\rceil + 2$ steps.
- **.** . . .
- ► At most $|L_k| + \sum_{i=1}^k \frac{L_{i-1}}{L_i} + 3(k+1)$ steps.

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|}=r$, and, hence, $L_k\approx r^{-k}n$.

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $\mathcal{O}(r^{-k}n + kr)$. Choose

$$r = \sqrt[k+1]{n} \implies \text{time: } \mathcal{O}(k^{k+1}\sqrt{n})$$

イロトイプトイミトイミト

Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|I_{i-1}|} = r$, and, hence, $L_k \approx r^{-k}n$.

Worst case running time is: $O(r^{-k}n + kr)$. Choose

$$r = \sqrt[k+1]{n} \implies \text{time: } \mathcal{O}(k^{k+1}\sqrt{n})$$

Choosing $k = \Theta(\log k)$ gives a logarithmic running time.

イロトイプトイミトイミト

How to do insert and delete?

Use randomization instead!

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

How to do insert and delete?

If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

Insert:

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete

```
You get all predecessors via backward pointers.
```

The time for both operation is dominated by the search t

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete

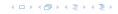
```
You get all predecessors via backward pointers.

Poleto v in all lists in azgrally appears in
```


Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete



Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete:

- You get all predecessors via backward pointers.
- ightharpoonup Delete x in all lists in actually appears in.

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete:

- You get all predecessors via backward pointers.
- ightharpoonup Delete x in all lists in actually appears in.

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

Delete:

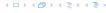
- You get all predecessors via backward pointers.
- Delete x in all lists in actually appears in.

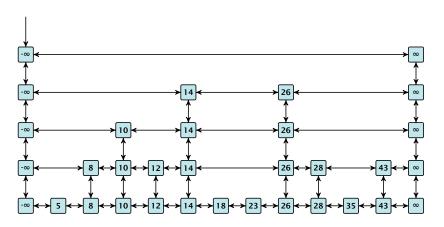
Insert:

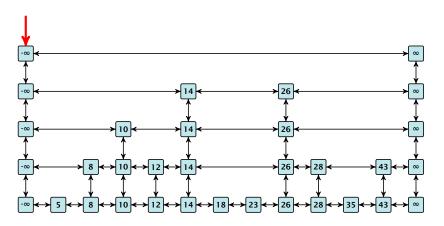
- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, ...\}$ of trials needed.
- ▶ Insert x into lists L_0, \ldots, L_{t-1} .

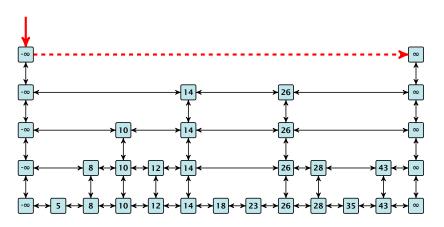
Delete:

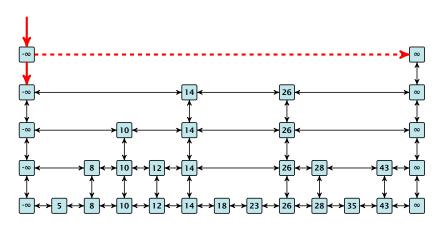
- You get all predecessors via backward pointers.
- Delete x in all lists in actually appears in.

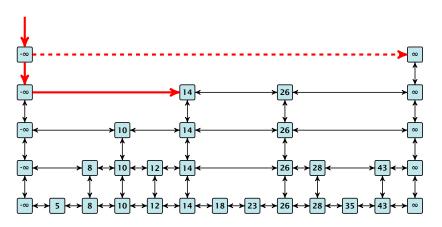


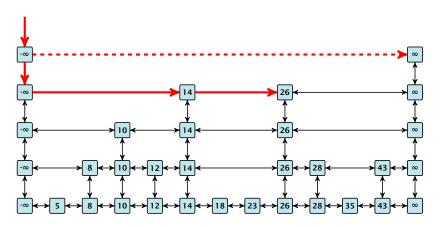


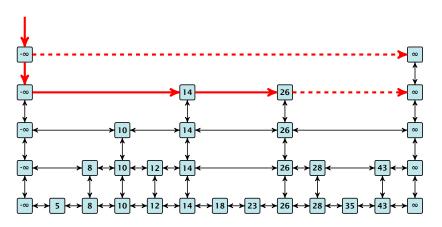


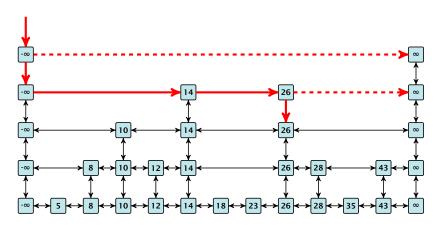


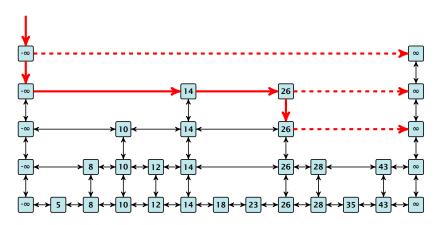


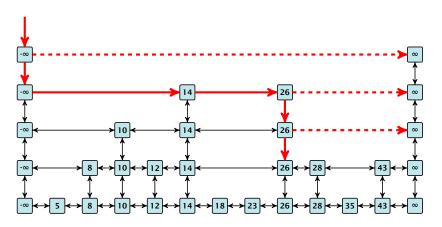


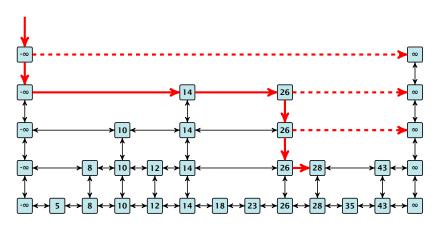


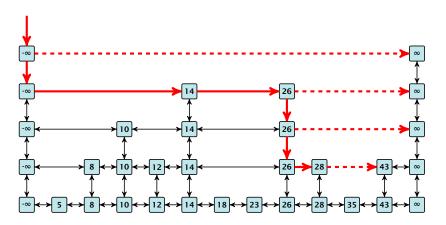


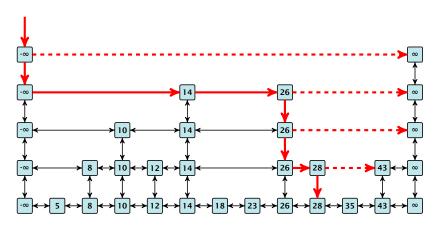


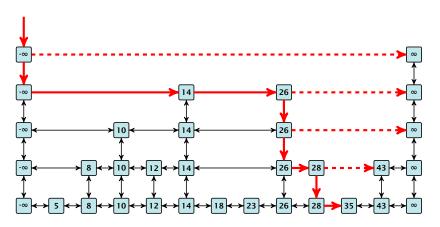


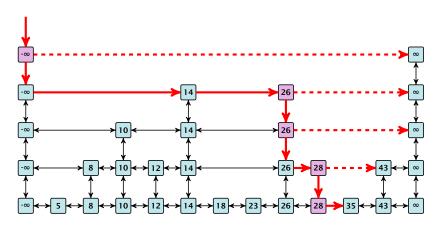












Lemma 20

A search (and, hence, also insert and delete) in a skip list with n elements takes time $O(\log n)$ with high probability (w. h. p.).

This means for any constant α the search takes time $\mathcal{O}(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Note that the constant in the O-notation may depend on α .

Lemma 20

A search (and, hence, also insert and delete) in a skip list with n elements takes time $O(\log n)$ with high probability (w. h. p.).

This means for any constant α the search takes time $O(\log n)$ with probability at least $1 - \frac{1}{n^{\alpha}}$.

Note that the constant in the O-notation may depend on α .

Suppose there are a polynomially many events $E_1, E_2, ..., E_\ell$, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Suppose there are a polynomially many events $E_1, E_2, ..., E_\ell$, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}]$$

Suppose there are a polynomially many events $E_1, E_2, ..., E_\ell$, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

Suppose there are a polynomially many events $E_1, E_2, ..., E_\ell$, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

$$\leq 1 - n^c \cdot n^{-\alpha}$$

Suppose there are a polynomially many events $E_1, E_2, ..., E_\ell$, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

$$\leq 1 - n^c \cdot n^{-\alpha}$$

$$= 1 - n^{c - \alpha}.$$

Suppose there are a polynomially many events $E_1, E_2, ..., E_\ell$, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

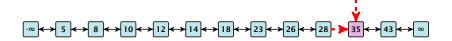
Then the probabilityx that all E_i hold is at least

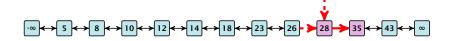
$$\Pr[E_1 \wedge \cdots \wedge E_{\ell}] = 1 - \Pr[\bar{E}_1 \vee \cdots \vee \bar{E}_{\ell}]$$

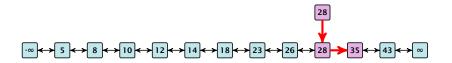
$$\leq 1 - n^c \cdot n^{-\alpha}$$

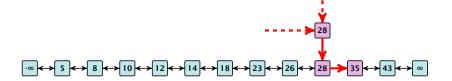
$$= 1 - n^{c-\alpha}.$$

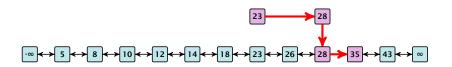
This means $\Pr[E_1 \wedge \cdots \wedge E_{\ell}]$ holds with high probability.

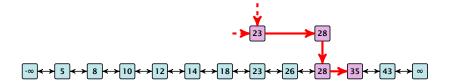


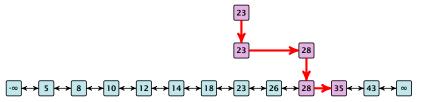


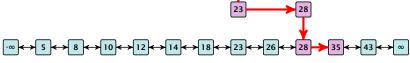


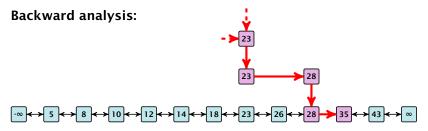




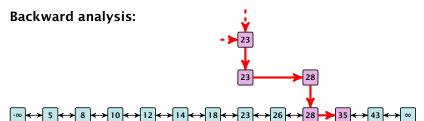








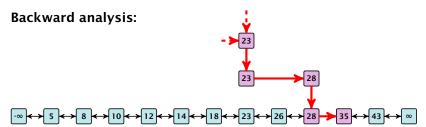
At each point the path goes up with probability 1/2 and left with probability 1/2.



At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

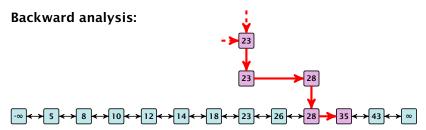
► A "long" search path must also go very high.



At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

- A "long" search path must also go very high.
- ► There are no elements in high lists.



At each point the path goes up with probability 1/2 and left with probability 1/2.

We show that w.h.p:

- A "long" search path must also go very high.
- ► There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

◆□▶◆圖▶◆蓮▶◆蓮▶

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k .

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

 $Pr[E_{z,k}]$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

イロトイプトイミトイミト

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)}$$

イロトイプトイミトイミト

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

4 - 4 - 4 - 4 - 5 + 4 - 5 +

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k (2^{-\beta})^k \cdot n^{-\alpha}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k (2^{-\beta})^k \cdot n^{-\alpha} \leq \left(\frac{2e(\beta+\alpha)}{2^{\beta}}\right)^k n^{-\alpha}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k (2^{-\beta})^k \cdot n^{-\alpha} \leq \left(\frac{2e(\beta+\alpha)}{2^{\beta}}\right)^k n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k (2^{-\beta})^k \cdot n^{-\alpha} \leq \left(\frac{2e(\beta+\alpha)}{2^{\beta}}\right)^k n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha}$$

 $\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k (2^{-\beta})^k \cdot n^{-\alpha} \leq \left(\frac{2e(\beta+\alpha)}{2^{\beta}}\right)^k n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

 $Pr[E_{z,k}] \leq Pr[at most k heads in z trials]$

$$\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$$

choosing $k = \gamma \log n$ with $\gamma \ge 1$ and $z = (\beta + \alpha)\gamma \log n$

$$\leq \left(\frac{2ez}{k}\right)^k (2^{-\beta})^k \cdot n^{-\alpha} \leq \left(\frac{2e(\beta+\alpha)}{2^{\beta}}\right)^k n^{-\alpha}$$

now choosing $\beta = 6\alpha$ gives

$$\leq \left(\frac{42\alpha}{64^{\alpha}}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

for $\alpha \geq 1$.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

イロトイプトイミトイミト

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

4 - 1 4 - 4 - 5 4 - 5 4 - 5 4

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z = 7\alpha y \log n$ steps either the event $E_{z,k}$ or the even A_{k+1} must hold.

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

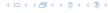
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z=7\alpha y\log n$ steps either the event $E_{z,k}$ or the even A_{k+1} must hold. Hence,

Pr[search requires z steps]



So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z = 7\alpha y \log n$ steps either the event $E_{z,k}$ or the even A_{k+1} must hold. Hence,

 $\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}]$

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z = 7\alpha y \log n$ steps either the event $E_{z,k}$ or the even A_{k+1} must hold. Hence,

$$\Pr[\text{search requires } z \text{ steps}] \le \Pr[E_{z,k}] + \Pr[A_{k+1}]$$

 $< n^{-\alpha} + n^{-(\gamma-1)}$

So far we fixed $k = y \log n$, $y \ge 1$, and $z = 7\alpha y \log n$, $\alpha \ge 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \le n2^{-(k+1)} \le n^{-(\gamma-1)}$$
.

For the search to take at least $z=7\alpha y\log n$ steps either the event $E_{z,k}$ or the even A_{k+1} must hold. Hence,

$$\Pr[\text{search requires } z \text{ steps}] \le \Pr[E_{z,k}] + \Pr[A_{k+1}]$$

 $\le n^{-\alpha} + n^{-(\gamma-1)}$

This means, the search requires at most z steps, w. h. p.

Suppose you want to develop a data structure with:

- ▶ **Insert**(x): insert element x.
- Search(k): search for element with key k.
- **Delete**(x): delete element referenced by pointer x.
- ▶ find-by-rank(ℓ): return the k-th element; return "error" if the data-structure contains less than k elements.

Augment an existing data-structure instead of developing a new one.

Suppose you want to develop a data structure with:

- ► Insert(x): insert element x.
- Search(k): search for element with key k.
- **Delete**(x): delete element referenced by pointer x.
- ▶ find-by-rank(ℓ): return the k-th element; return "error" if the data-structure contains less than k elements.

Augment an existing data-structure instead of developing a new one.

- 1. choose an underlying data-structure
- determine additional information to be stored in the underlying structure
- verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
- 4. develop the new operations

- choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure
- verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
- 4. develop the new operations

- 1. choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure
- verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
- 4. develop the new operations

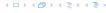
- choose an underlying data-structure
- 2. determine additional information to be stored in the underlying structure
- 3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
- 4. develop the new operations

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

- 1. We choose a red-black tree as the underlying data-structure.
- 2. We store in each node v the size of the sub-tree rooted at v.
- We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

- 1. We choose a red-black tree as the underlying data-structure.
- 2. We store in each node v the size of the sub-tree rooted at v.
- 3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...



Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

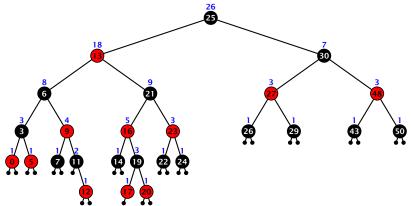
- 1. We choose a red-black tree as the underlying data-structure.
- 2. We store in each node v the size of the sub-tree rooted at v.
- 3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

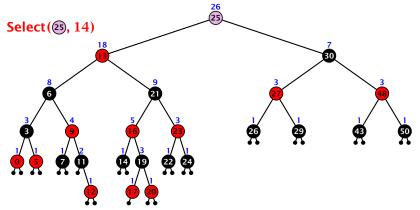
4. How does find-by-rank work? Find-by-rank(k) = Select(root, k) with

Algorithm 15 Select(x, i)

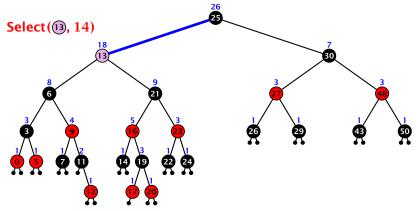
- 1: **if** x = null **then return** error
- 2: **if** left[x] \neq null **then** $r \leftarrow$ left[x]. size +1 **else** $r \leftarrow$ 1
- 3: **if** i = r **then return** x
- 4: if i < r then
- 5: **return** Select(left[x], i)
- 6: else
- 7: **return** Select(right[x], i r)



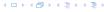
- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

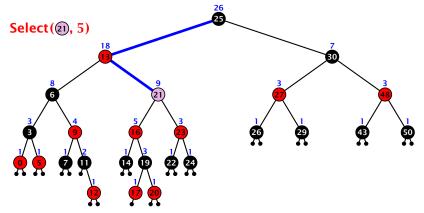


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

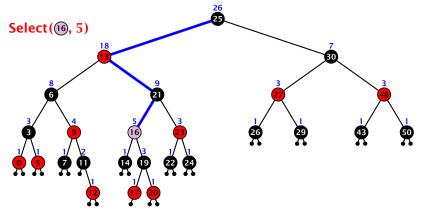


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

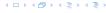


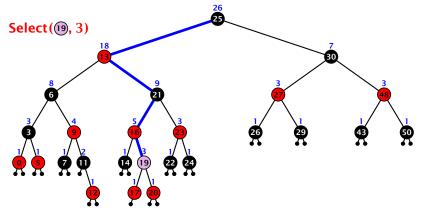


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

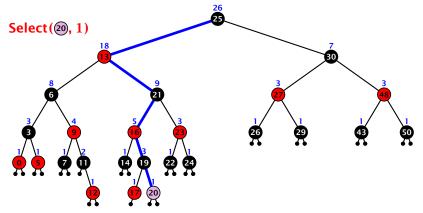


- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

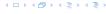




- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right



Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

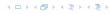
Delete(x): Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.



Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $O(\log n)$.

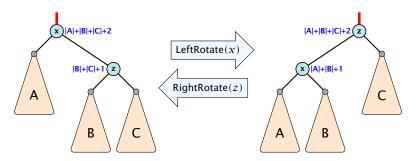
3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:



The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields of the children.

Dictionary:

- S.insert(x): Insert an element x.
- S.delete(x): Delete the element pointed to by x.
- ▶ S.search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Dictionary:

- S.insert(x): Insert an element x.
- S.delete(x): Delete the element pointed to by x.
- ▶ S.search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Dictionary:

- S.insert(x): Insert an element x.
- S.delete(x): Delete the element pointed to by x.
- ▶ S.search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Dictionary:

- S.insert(x): Insert an element x.
- S.delete(x): Delete the element pointed to by x.
- ▶ S.search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le n$.
- Array T[0, ..., n-1] hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

- Fast to evaluate...
- Small storage requirement.
- Good distribution of elements over the whole table

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le n$.
- ▶ Array T[0,...,n-1] hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

- Fast to evaluate a
- Small storage requirement.
 - Good distribution of elements over the whole table

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le n$.
- Array T[0, ..., n-1] hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

- hast to evaluate
- Small storage requirements
 - Good distribution of elements over the whole table

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le n$.
- Array $T[0, \ldots, n-1]$ hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le n$.
- Array T[0, ..., n-1] hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le n$.
- Array $T[0, \ldots, n-1]$ hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

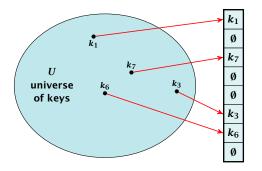
- Fast to evaluate.
- Small storage requirement.
- ▶ Good distribution of elements over the whole table

Definitions:

- ▶ Universe U of keys, e.g., $U \subseteq \mathbb{N}_0$. U very large.
- ▶ Set $S \subseteq U$ of keys, $|S| = m \le n$.
- Array $T[0, \ldots, n-1]$ hash-table.
- ► Hash function $h: U \rightarrow [0, ..., n-1]$.

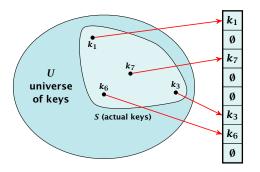
- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.

Ideally the hash function maps all keys to different memory locations.



This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.



Such a hash function h is called a perfect hash function for set S.

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe \emph{U} is much larger than the table-size \emph{n}

Hence, there may be two elements k_1 , k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1 , k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_1, k_2 from the set S that map to the same memory location (i.e., $h(k_1) = h(k_2)$). This is called a collision.

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already once $|S| \ge \omega(\sqrt{n})$.

Lemma 21

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2}} \approx 1 - e^{-\frac{m^2}{2n}}$$

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \rightarrow [0, ..., n-1]$.

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already once $|S| \ge \omega(\sqrt{n})$.

Lemma 21

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2}} \approx 1 - e^{-\frac{m^2}{2n}}$$
.

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \rightarrow [0, ..., n-1]$.

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already once $|S| \ge \omega(\sqrt{n})$.

Lemma 21

The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$1 - e^{-\frac{m(m-1)}{2}} \approx 1 - e^{-\frac{m^2}{2n}}$$
.

Uniform hashing:

Choose a hash function uniformly at random from all functions $f: U \rightarrow [0, ..., n-1]$.

Proof.

Proof.

$$Pr[A_{m,n}]$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n}$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n}$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}}$$

Proof.

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}.$$

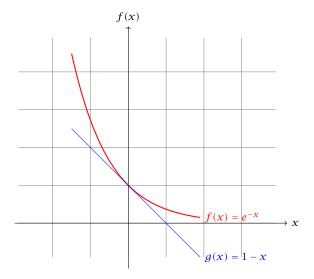
Proof.

Let $A_{m,n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$\Pr[A_{m,n}] = \prod_{\ell=1}^{m} \frac{n-\ell+1}{n} = \prod_{j=0}^{m-1} \left(1 - \frac{j}{n}\right)$$

$$\leq \prod_{j=0}^{m-1} e^{-j/n} = e^{-\sum_{j=0}^{m-1} \frac{j}{n}} = e^{-\frac{m(m-1)}{2n}}.$$

Here the first equality follows since the ℓ -th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.



The inequality $1 - x \le e^{-x}$ is derived by stopping the tayler-expansion of e^{-x} after the second term.

Resolving Collisions

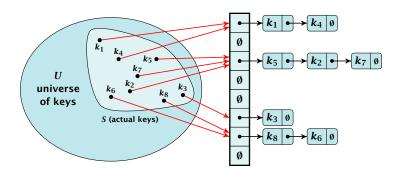
The methods for dealing with collisions can be classified into the two main types

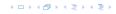
- open addressing, aka. closed hashing
- hashing with chaining. aka. closed addressing, open hashing.

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

- Access: compute h(x) and search list for key[x].
- Insert: insert at the front of the list.





Let A denote a strategy for resolving collisions. We use the following notation:

- A⁺ denotes the average time for a successful search when using A;
- A⁻ denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

Let A denote a strategy for resolving collisions. We use the following notation:

- ► A⁺ denotes the average time for a successful search when using A;
- A⁻ denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

Let A denote a strategy for resolving collisions. We use the following notation:

- ▶ A⁺ denotes the average time for a successful search when using A;
- ▶ A⁻ denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

Let $\cal A$ denote a strategy for resolving collisions. We use the following notation:

- ▶ A⁺ denotes the average time for a successful search when using A;
- ▶ A⁻ denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

Let A denote a strategy for resolving collisions. We use the following notation:

- ▶ A^+ denotes the average time for a successful search when using A;
- A⁻ denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha := \frac{m}{n}$, the so-called fill factor of the hash-table.

The time required for an unsuccessful search is 1 plus the length of the list that is examined.

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha = \frac{m}{n}$.

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha=\frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

$$A^- = 1 + \alpha .$$

The time required for an unsuccessful search is 1 plus the length of the list that is examined. The average length of a list is $\alpha=\frac{m}{n}$. Hence, if A is the collision resolving strategy "Hashing with Chaining" we have

$$A^- = 1 + \alpha .$$

Note that this result does not depend on the hash-function that is used.

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before *k* in *k*'s list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the event that i and j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the event that i and j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

$$\mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the event that i and j hash to the same position. Clearly, $\Pr[X_{ij} = 1] = 1/n$ for uniform hashing.

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the event that i and j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

$$\mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the event that i and j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the event that i and j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

$$\mathrm{E}\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k's list.

Let k_{ℓ} denote the ℓ -th key inserted into the table.

Let for two keys k_i and k_j , X_{ij} denote the event that i and j hash to the same position. Clearly, $\Pr[X_{ij}=1]=1/n$ for uniform hashing.

$$\mathbb{E}\left[rac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}
ight)
ight]$$
 cost for key k_i

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right]$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{i=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{i=i+1}^{m}E\left[X_{ij}\right]\right)$$

イロトイプトイミトイミト

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$=\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$
$$=\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$
$$=1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$=\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$=1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$=1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

$$E\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{ij}\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}E\left[X_{ij}\right]\right)$$

$$= \frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}\frac{1}{n}\right)$$

$$= 1+\frac{1}{mn}\sum_{i=1}^{m}(m-i)$$

$$= 1+\frac{1}{mn}\left(m^{2}-\frac{m(m+1)}{2}\right)$$

$$= 1+\frac{m-1}{2m}=1+\frac{\alpha}{2}-\frac{\alpha}{2m}.$$

$$\begin{split} \mathbf{E} \left[\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij} \right) \right] &= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \mathbf{E} \left[X_{ij} \right] \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} \frac{1}{n} \right) \\ &= 1 + \frac{1}{mn} \sum_{i=1}^{m} (m-i) \\ &= 1 + \frac{1}{mn} \left(m^2 - \frac{m(m+1)}{2} \right) \\ &= 1 + \frac{m-1}{2n} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2m} \end{split} .$$

Hence, the expected cost for a successful search is $A^+ \leq 1 + \frac{\alpha}{2}$.

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Search(k): Try position h(k,0); if it is empty your search fails; otw. continue with $h(k,1), h(k,2), \ldots$

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Search(k): Try position h(k,0); if it is empty your search fails; otw. continue with h(k,1), h(k,2),

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Search(k): Try position h(k,0); if it is empty your search fails; otw. continue with h(k,1), h(k,2),

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Search(k): Try position h(k,0); if it is empty your search fails; otw. continue with h(k,1), h(k,2),

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ form a permutation of $0, \ldots, n-1$.

Search(k): Try position h(k,0); if it is empty your search fails; otw. continue with h(k,1), h(k,2),

Choices for h(k, j):

- ▶ $h(k, i) = h(k) + i \mod n$. Linear probing.
- ▶ $h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n$. Quadratic probing.
- ► $h(k, i) = h_1(k) + ih_2(k) \mod n$. Double hashing.

Choices for h(k, j):

- ► $h(k, i) = h(k) + i \mod n$. Linear probing.
- ▶ $h(k,i) = h(k) + c_1i + c_2i^2 \mod n$. Quadratic probing.
- ▶ $h(k,i) = h_1(k) + ih_2(k) \mod n$. Double hashing.

Choices for h(k, j):

- ► $h(k, i) = h(k) + i \mod n$. Linear probing.
- ► $h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n$. Quadratic probing.
- ► $h(k,i) = h_1(k) + ih_2(k) \mod n$. Double hashing.

Choices for h(k, j):

- ► $h(k, i) = h(k) + i \mod n$. Linear probing.
- ► $h(k, i) = h(k) + c_1 i + c_2 i^2 \mod n$. Quadratic probing.
- ► $h(k,i) = h_1(k) + ih_2(k) \mod n$. Double hashing.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- ▶ Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 22

Let L be the method of linear probing for resolving collisions.

$$L^{+} \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$
$$L^{-} \approx \frac{1}{2} \left(1 + \frac{1}{4 + \alpha^{2}} \right)$$

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 22

Let L be the method of linear probing for resolving collisions:

$$L^+ \approx \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$$

$$L^- \approx \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 23

Let Q be the method of quadratic probing for resolving collisions.

$$Q^+ \approx 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{\alpha}{2}$$

$$Q^- \approx \frac{1}{1-\alpha} + \ln\left(\frac{1}{1-\alpha}\right) - \alpha$$

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 23

Let Q be the method of quadratic probing for resolving collisions:

$$Q^+ \approx 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{\alpha}{2}$$

$$Q^{-} \approx \frac{1}{1-\alpha} + \ln\left(\frac{1}{1-\alpha}\right) - \alpha$$

Double Hashing

Any probe into the hash-table usually creates a cash-miss.

Lemma 24

Let A be the method of double hashing for resolving collisions

$$D^+ \approx \frac{1}{\alpha} \ln \left(\frac{1}{1 - \alpha} \right)$$

$$D^- \approx \frac{1}{1-\alpha}$$

Double Hashing

► Any probe into the hash-table usually creates a cash-miss.

Lemma 24

Let A be the method of double hashing for resolving collisions:

$$D^+ \approx \frac{1}{\alpha} \ln \left(\frac{1}{1 - \alpha} \right)$$

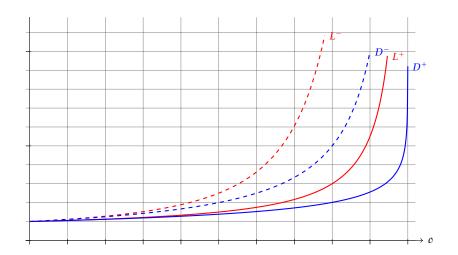
$$D^- \approx \frac{1}{1-\alpha}$$

7.7 Hashing

Some values:

α	Linear Probing		Quadratic Probing		Double Hashing	
	L^+	L^-	Q^+	Q^-	D^+	D^-
0.5	1.5	2.5	1.44	2.19	1.39	2
0.9	5.5	50.5	2.85	11.40	2.55	10
0.95	10.5	200.5	3.52	22.05	3.15	20

7.7 Hashing



イロトイプトイミトイミト

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$\Pr[A_1 \cap A_2 \cap \cdots \cap A_{i_1}]$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i_1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot Pr[A_{i_1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i_1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot Pr[A_{i_1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \geq i]$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i_1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot Pr[A_{i_1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i_1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \dots \cdot Pr[A_{i_1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$
$$\le \left(\frac{m}{n}\right)^{i-1}$$

Let X denote a random variable describing the number of probes in an unsuccessful search.

$$Pr[A_1 \cap A_2 \cap \cdots \cap A_{i_1}]$$

$$= Pr[A_1] \cdot Pr[A_2 \mid A_1] \cdot Pr[A_3 \mid A_1 \cap A_2] \cdot \cdots \cdot Pr[A_{i_1} \mid A_1 \cap \cdots \cap A_{i-2}]$$

$$\Pr[X \ge i] = \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \dots \cdot \frac{m-i+2}{n-i+2}$$
$$\le \left(\frac{m}{n}\right)^{i-1} = \alpha^{i-1} .$$

E[X]

イロトイプトイミトイミト

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i]$$

イロトイプトイミトイミト

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1}$$

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i}$$

イロトイプトイミトイミト

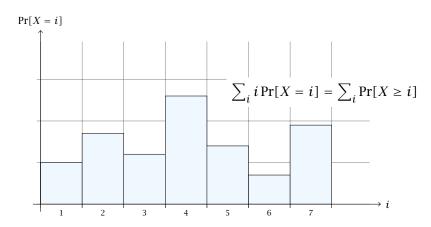
$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}.$$

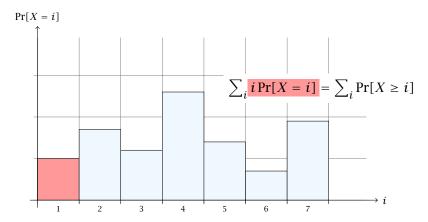
$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}.$$

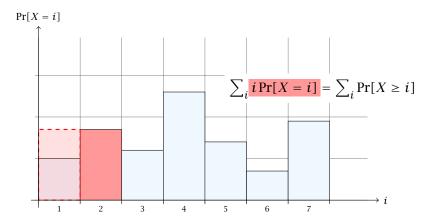
$$E[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}.$$

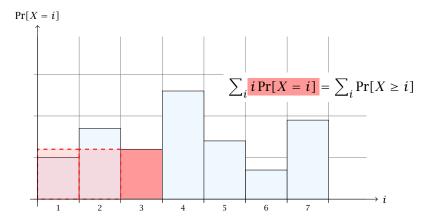
$$\frac{1}{1-\alpha}=1+\alpha+\alpha^2+\alpha^3+\dots$$

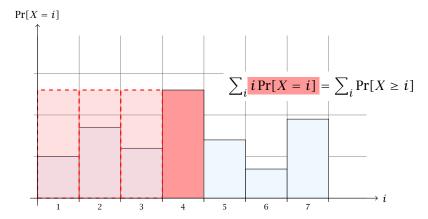
4 ロトイ部トイミトイミト

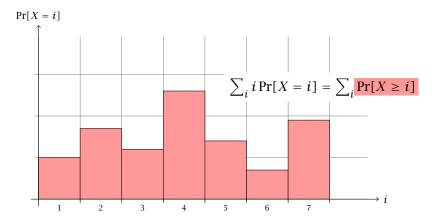


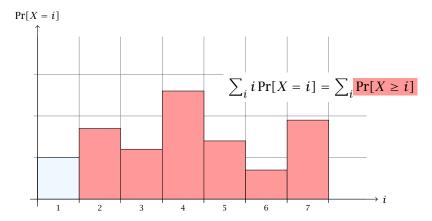


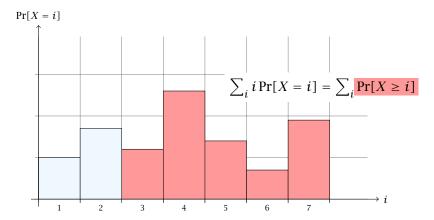


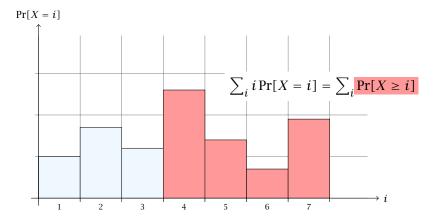


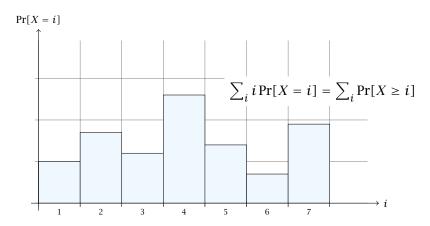


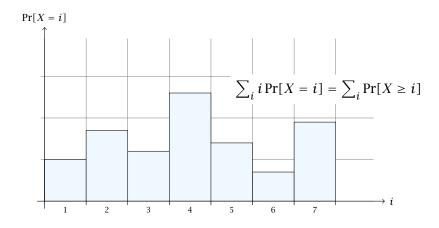












The j-th rectangle appears in both sums j times. (j times in the first due to multiplication with j; and j times in the second for summands i = 1, 2, ..., j)

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i}$$

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}$$

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx$$

Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx = \frac{1}{\alpha} \ln \frac{n}{n-m}$$

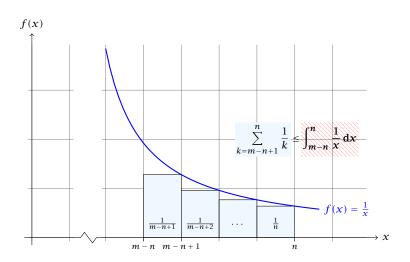
Analysis of Idealized Open Address Hashing

The number of probes in a successful for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the i+1-st element. The expected time for a search for k is at most $\frac{1}{1-i/n}=\frac{n}{n-i}$.

$$\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} = \frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i} = \frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k}$$

$$\leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} dx = \frac{1}{\alpha} \ln \frac{n}{n-m} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha} .$$



How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- ► For open addressing this is difficult

How do we delete in a hash-table?

- For hashing with chaining this is not a problem. Simply search for the key, and delete the item in the corresponding list.
- For open addressing this is difficult.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f:U\to [0,\ldots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U|\log n$ bits.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f:U\to [0,\ldots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U|\log n$ bits.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f:U\to [0,\ldots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U|\log n$ bits.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f:U\to [0,\dots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U|\log n$ bits.

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f:U\to [0,\dots,n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U|\log n$ bits.

Definition 25

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called universal if for all $u_1,u_2\in U$ with $u_1\neq u_2$

$$\Pr[h(u_1) = h(u_2)] \le \frac{1}{n} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Note that this means that $\Pr[h(u_1) = h(u_2)] = \frac{1}{n}$

Definition 25

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\dots,n-1\}$ is called universal if for all $u_1,u_2\in U$ with $u_1\neq u_2$

$$\Pr[h(u_1) = h(u_2)] \le \frac{1}{n} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Note that this means that $Pr[h(u_1) = h(u_2)] = \frac{1}{n}$.

Definition 26

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, ..., n-1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_1, u_2 \in U$ with $u_1 \neq u_2$, and for any two hash-positions t_1, t_2 :

$$\Pr[h(u_1) = t_1 \land h(u_2) = t_2] \le \frac{1}{n^2} .$$

Note that the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

This requirement clearly implies a universal hash-function.

Definition 26

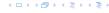
A class \mathcal{H} of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called 2-independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in \{0, ..., n-1\}$ $\Pr[h(u) = t] = \frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_1, u_2 \in U$ with $u_1 \neq u_2$, and for any two hash-positions t_1, t_2 :

$$\Pr[h(u_1) = t_1 \land h(u_2) = t_2] \le \frac{1}{n^2} .$$

Note that the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

This requirement clearly implies a universal hash-function.



Definition 27

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called k-independent if for any choice of $\ell \le k$ distinct keys $u_1,\ldots,u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1,\ldots,t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \leq \frac{1}{n^\ell} ,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

Definition 28

A class $\mathcal H$ of hash-functions from the universe U into the set $\{0,\ldots,n-1\}$ is called (μ,k) -independent if for any choice of $\ell \leq k$ distinct keys $u_1,\ldots,u_\ell \in U$, and for any set of ℓ not necessarily distinct hash-positions t_1,\ldots,t_ℓ :

$$\Pr[h(u_1) = t_1 \wedge \cdots \wedge h(u_\ell) = t_\ell] \leq \left(\frac{\mu}{n}\right)^\ell,$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H} .

$$h_{a,b}(x) := (ax + b \bmod p) \bmod n$$

$$\mathcal{H} = \{ h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p \}$$

Let
$$U:=\{0,\ldots,p-1\}$$
 for a prime p . Let $\mathbb{Z}_p:=\{0,\ldots,p-1\}$, and let $\mathbb{Z}_p^*:=\{1,\ldots,p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

$$h_{a,b}(x) := (ax + b \bmod p) \bmod n$$

$$\mathcal{H} = \{ h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p \}$$

Let $U := \{0, ..., p-1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, ..., p-1\}$, and let $\mathbb{Z}_{p}^{*} := \{1, \dots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p} .

Define

$$h_{a,b}(x) := (ax + b \bmod p) \bmod n$$

$$\mathcal{H} = \{ h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p \}$$

Let $U := \{0, ..., p-1\}$ for a prime p. Let $\mathbb{Z}_p := \{0, ..., p-1\}$, and let $\mathbb{Z}_p^* := \{1, \dots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_p .

Define

$$h_{a,b}(x) := (ax + b \mod p) \mod n$$

Lemma 29

The class

$$\mathcal{H} = \{h_{a,b} \mid a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p\}$$

is a universal class of hash-functions from U to $\{0, ..., n-1\}$.

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

$$ax + b \not\equiv ay + b \pmod{p}$$

Proof.

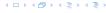
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

If
$$x \neq y$$
 then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x-y) \not\equiv 0 \pmod{p}$$



Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

If
$$x \neq y$$
 then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x-y) \not\equiv 0 \pmod{p}$$

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

If
$$x \neq y$$
 then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

Proof.

Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only 1/n.

 $ax + b \not\equiv ay + b \pmod{p}$

If
$$x \neq y$$
 then $(x - y) \not\equiv 0 \pmod{p}$.

Multiplying with $a \not\equiv 0 \pmod{p}$ gives

$$a(x - y) \not\equiv 0 \pmod{p}$$

► The hash-function does not generate collisions before the (mod n)-operation. Furthermore, every choice (a,b) is mapped to different hash-values $t_X := h_{a,b}(x)$ and $t_Y := h_{a,b}(y)$.

▶ The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to different hash-values $t_x := h_{a,b}(x)$ and $t_y := h_{a,b}(y)$.

This holds because we can compute a and b when given t_x and t_y :

▶ The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a, b) is mapped to different hash-values $t_x := h_{a,b}(x)$ and $t_{\nu} := h_{a,h}(\nu)$.

This holds because we can compute a and b when given t_x and t_{ν} :

$$t_x \equiv ax + b \pmod{p}$$

$$t_{\mathcal{V}} \equiv a\mathcal{V} + b \tag{mod } p)$$

▶ The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a, b) is mapped to different hash-values $t_x := h_{a,h}(x)$ and $t_{\nu} := h_{a,b}(\nu)$.

This holds because we can compute a and b when given t_x and t_{ν} :

$$t_x \equiv ax + b \pmod{p}$$

$$t_{\mathcal{V}} \equiv ay + b \pmod{p}$$

$$t_X - t_Y \equiv a(X - Y) \tag{mod } p)$$

$$t_{\mathcal{V}} \equiv a\mathcal{V} + b \pmod{p}$$

▶ The hash-function does not generate collisions before the \pmod{n} -operation. Furthermore, every choice (a,b) is mapped to different hash-values $t_x := h_{a,b}(x)$ and $t_y := h_{a,b}(y)$.

This holds because we can compute a and b when given t_x and t_y :

$$t_{x} \equiv ax + b \qquad (\text{mod } p)$$

$$t_{y} \equiv ay + b \qquad (\text{mod } p)$$

$$t_{x} - t_{y} \equiv a(x - y) \qquad (\text{mod } p)$$

$$t_{y} \equiv ay + b \qquad (\text{mod } p)$$

$$a \equiv (t_{x} - t_{y})(x - y)^{-1} \qquad (\text{mod } p)$$

$$b \equiv ay - t_{y} \qquad (\text{mod } p)$$

There is a one-to-one correspondence between hash-functions (pairs (a,b), $a \neq 0$) and pairs (t_x,t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the (mod n)-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the (mod n) operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the $(\text{mod}\,n)$ -operation) as choosing a pair (t_x,t_y) , $t_x\neq t_y$ uniformly at random.

What happens when we do the (mod n) operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the (mod n)-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the (mod n) operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \ne 0$) and pairs (t_x, t_y) , $t_x \ne t_y$.

Therefore, we can view the first step (before the (mod n)-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the (mod n) operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \ne 0$) and pairs (t_x, t_y) , $t_x \ne t_y$.

Therefore, we can view the first step (before the (mod n)-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the (mod n) operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

There is a one-to-one correspondence between hash-functions (pairs (a, b), $a \neq 0$) and pairs (t_x, t_y) , $t_x \neq t_y$.

Therefore, we can view the first step (before the (mod n)-operation) as choosing a pair (t_x, t_y) , $t_x \neq t_y$ uniformly at random.

What happens when we do the (mod n) operation?

Fix a value t_x . There are p-1 possible values for choosing t_y .

From the range 0, ..., p-1 the values $t_x, t_x + n, t_x + 2n, ...$ map to t_x after the modulo-operation. These are at most $\lceil p/n \rceil$ values.

As $t_{\mathcal{V}} \neq t_{\mathcal{X}}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 < \frac{p}{n} + \frac{n-1}{n} - 1 < \frac{p-1}{n}$$

possibilities for choosing t_y such that the final hash-value creates a collision.

This happens with probability at most $rac{1}{n}$

As $t_{\mathcal{V}} \neq t_{\mathcal{X}}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

As $t_{\mathcal{V}} \neq t_{\mathcal{X}}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

As $t_{\mathcal{V}} \neq t_{\mathcal{X}}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

4 ロトイ部トイミトイミト

As $t_y \neq t_x$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

possibilities for choosing t_y such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$

As $t_{\mathcal{V}} \neq t_{\mathcal{X}}$ there are

$$\left\lceil \frac{p}{n} \right\rceil - 1 \le \frac{p}{n} + \frac{n-1}{n} - 1 \le \frac{p-1}{n}$$

possibilities for choosing t_{ν} such that the final hash-value creates a collision.

This happens with probability at most $\frac{1}{n}$.

It is also possible to show that $\boldsymbol{\mathcal{H}}$ is an (almost) pairwise independent class of hash-functions.

$$\Pr_{t_X \neq t_{\mathcal{Y}} \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_X \bmod n = h_1 \\ & \land \\ t_{\mathcal{Y}} \bmod n = h_2 \end{array} \right]$$

It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

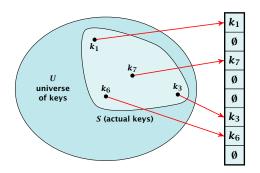
$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \le \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \bmod n = h_1 \\ & \land \\ t_y \bmod n = h_2 \end{array} \right] \le \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

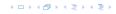
It is also possible to show that $\mathcal H$ is an (almost) pairwise independent class of hash-functions.

$$\frac{\left\lfloor \frac{p}{n} \right\rfloor^2}{p(p-1)} \le \Pr_{t_x \neq t_y \in \mathbb{Z}_p^2} \left[\begin{array}{c} t_x \bmod n = h_1 \\ & \land \\ t_y \bmod n = h_2 \end{array} \right] \le \frac{\left\lceil \frac{p}{n} \right\rceil^2}{p(p-1)}$$

Note that the middle is the probability that $h(x)=h_1$ and $h(y)=h_2$. The total number of choices for (t_x,t_y) is p(p-1). The number of choices for t_x (t_y) such that $t_x \bmod n = h_1$ $(t_y \bmod n = h_2)$ lies between $\lfloor \frac{p}{n} \rfloor$ and $\lceil \frac{p}{n} \rceil$.

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.





$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $rac{1}{2}.$

Can we get an upper bound on the probability of having collisions?

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $rac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

Let m = |S|. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$E[\#Collisions] = \binom{m}{2} \cdot \frac{1}{n} .$$

If we choose $n=m^2$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having collisions?

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

We can find such a hash-function by a few trials.

However, a hash-table size of $n = m^2$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

The total memory that is required by all hash-tables is $\sum_j m_j^2$.

$$E\left[\sum_{j}m_{j}^{2}\right]$$

The total memory that is required by all hash-tables is $\sum_{i} m_{i}^{2}$.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$

イロトイプトイミトイミト

The total memory that is required by all hash-tables is $\sum_j m_j^2$.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} {m_{j} \choose 2}\right] + E\left[\sum_{j} m_{j}\right]$$

The total memory that is required by all hash-tables is $\sum_{i} m_{i}^{2}$.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} {m_{j} \choose 2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level.

The total memory that is required by all hash-tables is $\sum_j m_j^2$.

$$E\left[\sum_{j} m_{j}^{2}\right] = E\left[2\sum_{j} {m_{j} \choose 2} + \sum_{j} m_{j}\right]$$
$$= 2E\left[\sum_{j} {m_{j} \choose 2}\right] + E\left[\sum_{j} m_{j}\right]$$

The first expectation is simply the expected number of collisions, for the first level.

$$= 2\binom{m}{2} \frac{1}{m} + m = 2m - 1$$

We need only $\mathcal{O}(m)$ time to construct a hash-function h with $\sum_j m_j^2 = \mathcal{O}(4m)$.

Then we construct a hash-table h_j for every bucket. This takes expected time $\mathcal{O}(m_j)$ for every bucket.

We only need that the hash-function is universal!!!

Goal:

- = Two hash-tables $T_1[0,\ldots,n-1]$ and $T_2[0,\ldots,n-1]$, with hash-functions by and by
- An object x is either stored at location T₁[h₁(x)] or T₂[h₂(x)]
- A search clearly takes constant time if the above constraint is met.

Goal:

- ▶ Two hash-tables $T_1[0,...,n-1]$ and $T_2[0,...,n-1]$, with hash-functions h_1 , and h_2 .
- An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.

Goal:

- ▶ Two hash-tables $T_1[0,...,n-1]$ and $T_2[0,...,n-1]$, with hash-functions h_1 , and h_2 .
- ▶ An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.

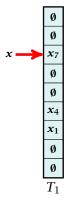
Goal:

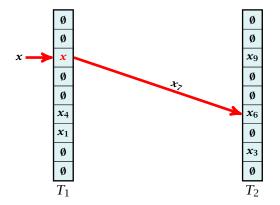
- ▶ Two hash-tables $T_1[0,...,n-1]$ and $T_2[0,...,n-1]$, with hash-functions h_1 , and h_2 .
- ▶ An object x is either stored at location $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
- A search clearly takes constant time if the above constraint is met.

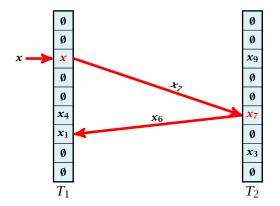
Insert:

Ø **x**9 Ø Ø x_6 x_3 T_2

Insert:











Algorithm 16 Cuckoo-Insert(x)

```
1: if T_1[h_1(x)] = x \vee T_2[h_2(x)] = x then return
```

- 2: steps ← 1
- 3: **while** steps ≤ maxsteps **do**
- 4: exchange x and $T_1[h_1(x)]$
- 5: **if** x = null then return
- 6: exchange x and $T_2[h_2(x)]$
- 7: **if** x = null then return
- 8: rehash() // change table-size and rehash everything
- 9: Cuckoo-Insert(x)

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

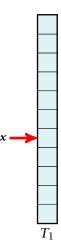
What is the expected time for an insert-operation?

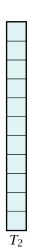
We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

What is the expected time for an insert-operation?

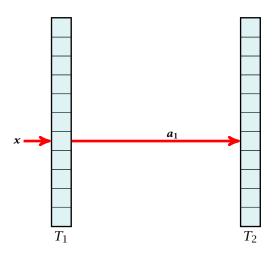
We first analyze the probability that we end-up in an infinite loop (that is then terminated after maxsteps steps).

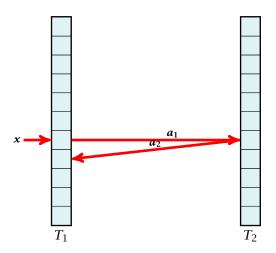
Insert:

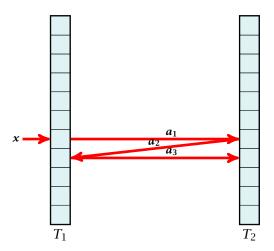


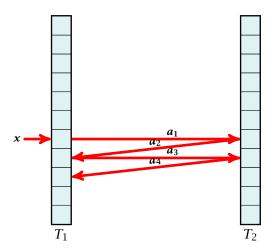


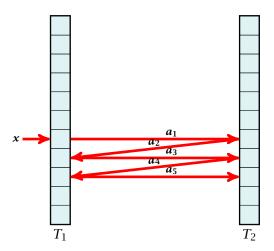
7.7 Hashing

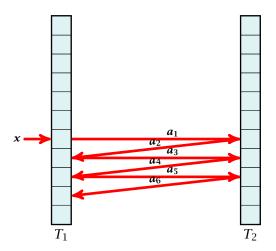


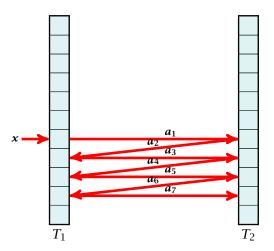


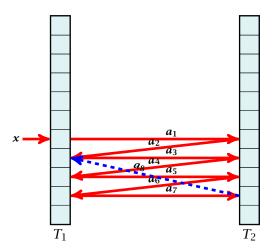


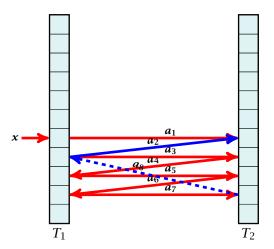


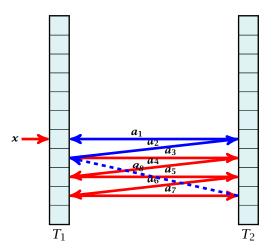


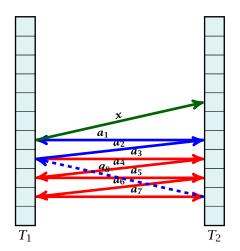


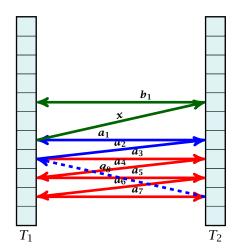


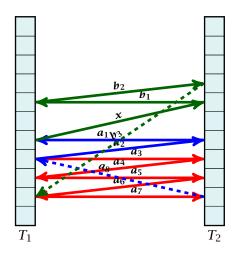












A cycle-structure is defined by

- ℓ_a keys $a_1, a_2, \dots a_{\ell_a}, \ell_a \ge 2$,
- An index $j_a \in \{1..., \ell_a 1\}$ that defines how much the last item a_{ℓ_a} "jumps back" in the sequence.
- ℓ_b keys $b_1, b_2, \dots b_{\ell_b}$. $b \ge 0$.
- An index $j_b \in \{1 \dots, \ell_a + \ell_b\}$ that defines how much the last item b_{ℓ_b} "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions p_1, \ldots, p_{ℓ_a} , and $p_1', \ldots, p_{\ell_b}'$.
- ▶ The size of a cycle-structure is defined as $\ell_a + \ell_b$.

- ℓ_a keys $a_1, a_2, \dots a_{\ell_a}, \ell_a \ge 2$,
- ▶ An index $j_a \in \{1..., \ell_a 1\}$ that defines how much the last item a_{ℓ_a} "jumps back" in the sequence.
- ℓ_b keys $b_1, b_2, \dots b_{\ell_b}$. $b \ge 0$.
- An index $j_b \in \{1..., \ell_a + \ell_b\}$ that defines how much the last item b_{ℓ_b} "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions p_1, \ldots, p_{ℓ_a} , and $p_1', \ldots, p_{\ell_b}'$.
- ▶ The size of a cycle-structure is defined as $\ell_a + \ell_b$.

- ℓ_a keys $a_1, a_2, \dots a_{\ell_a}, \ell_a \ge 2$,
- ▶ An index $j_a \in \{1..., \ell_a 1\}$ that defines how much the last item a_{ℓ_a} "jumps back" in the sequence.
- ℓ_b keys $b_1, b_2, \dots b_{\ell_b}$. $b \ge 0$.
- An index $j_b \in \{1..., \ell_a + \ell_b\}$ that defines how much the last item b_{ℓ_b} "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions p_1, \ldots, p_{ℓ_a} , and $p_1', \ldots, p_{\ell_b}'$.
- ▶ The size of a cycle-structure is defined as $\ell_a + \ell_b$.

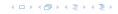
- ℓ_a keys $a_1, a_2, \dots a_{\ell_a}, \ell_a \ge 2$,
- ▶ An index $j_a \in \{1..., \ell_a 1\}$ that defines how much the last item a_{ℓ_a} "jumps back" in the sequence.
- ℓ_b keys $b_1, b_2, \dots b_{\ell_b}$. $b \ge 0$.
- ▶ An index $j_b \in \{1..., \ell_a + \ell_b\}$ that defines how much the last item b_{ℓ_b} "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions p_1, \ldots, p_{ℓ_a} , and $p_1', \ldots, p_{\ell_b}'$
- ▶ The size of a cycle-structure is defined as $\ell_a + \ell_b$.

- ℓ_a keys $a_1, a_2, \dots a_{\ell_a}, \ell_a \ge 2$,
- ▶ An index $j_a \in \{1..., \ell_a 1\}$ that defines how much the last item a_{ℓ_a} "jumps back" in the sequence.
- ℓ_b keys $b_1, b_2, \dots b_{\ell_b}$. $b \ge 0$.
- ▶ An index $j_b \in \{1..., \ell_a + \ell_b\}$ that defines how much the last item b_{ℓ_b} "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions p_1, \ldots, p_{ℓ_a} , and $p'_1, \ldots, p'_{\ell_b}$.
- ▶ The size of a cycle-structure is defined as $\ell_a + \ell_b$.

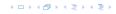
- ℓ_a keys $a_1, a_2, \dots a_{\ell_a}, \ell_a \ge 2$,
- ▶ An index $j_a \in \{1..., \ell_a 1\}$ that defines how much the last item a_{ℓ_a} "jumps back" in the sequence.
- ℓ_b keys $b_1, b_2, \dots b_{\ell_b}$. $b \ge 0$.
- ▶ An index $j_b \in \{1..., \ell_a + \ell_b\}$ that defines how much the last item b_{ℓ_b} "jumps back" in the sequence.
- An assignment of positions for the keys in both tables. Formally we have positions p_1, \ldots, p_{ℓ_a} , and $p_1', \ldots, p_{\ell_b}'$.
- ▶ The size of a cycle-structure is defined as $\ell_a + \ell_b$.

- $h_1(x) = h_1(a_1) = p_1$
- $= h_2(u_1) = h_2(u_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- \succ if ℓ_a is even them.
- $p_{s_{a}}$ is even then $m_1(a_p) = p_{s_{a}}$, our, $n_2(a_p) = p_{s_{a}}$
- $n_2(x) = n_2(v_1) = p_1$
- $h_1(b_1) = h_1(b_2) = p_2$

- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- ▶ ...
- if ℓ_a is even then $h_1(a_\ell)=p_{s_a}$, otw. $h_2(a_\ell)=p_{s_a}$
- $h_2(x) = h_2(b_1) = p'_1(b_1)$
- $h_1(b_1) = h_1(b_2) = p_2'$
- **>** ...

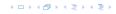


- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- **>** ...
- if ℓ_a is even then $h_1(a_\ell) = p_{s_a}$, otw. $h_2(a_\ell) = p_{s_a}$
- $h_2(x) = h_2(b_1) = p'_1$
- $h_1(b_1) = h_1(b_2) = p_2'$
- **.** . . .



- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- **>** ...
- if ℓ_a is even then $h_1(a_\ell) = p_{s_a}$, otw. $h_2(a_\ell) = p_{s_a}$
- $h_2(x) = h_2(b_1) = p'_1$
- $h_1(b_1) = h_1(b_2) = p_2'$
- ▶ ...

- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- **.**...
- ▶ if ℓ_a is even then $h_1(a_\ell) = p_{s_a}$, otw. $h_2(a_\ell) = p_{s_a}$
- $h_2(x) = h_2(b_1) = p_1'$
- $h_1(b_1) = h_1(b_2) = p_2'$
- **.** . . .



- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- **.** . . .
- if ℓ_a is even then $h_1(a_\ell) = p_{s_a}$, otw. $h_2(a_\ell) = p_{s_a}$
- $h_2(x) = h_2(b_1) = p'_1$
- $h_1(b_1) = h_1(b_2) = p_2'$
- **>** ...

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- **.** . . .
- if ℓ_a is even then $h_1(a_\ell) = p_{s_a}$, otw. $h_2(a_\ell) = p_{s_a}$
- $h_2(x) = h_2(b_1) = p_1'$
- $h_1(b_1) = h_1(b_2) = p_2'$
- **>** ...

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- **•** ...
- if ℓ_a is even then $h_1(a_\ell)=p_{s_a}$, otw. $h_2(a_\ell)=p_{s_a}$
- $h_2(x) = h_2(b_1) = p_1'$
- $h_1(b_1) = h_1(b_2) = p_2'$

We say a cycle-structure is active for key x if the hash-functions are chosen in such a way that the hash-function results match the pre-defined key-positions.

- $h_1(x) = h_1(a_1) = p_1$
- $h_2(a_1) = h_2(a_2) = p_2$
- $h_1(a_2) = h_1(a_3) = p_3$
- if ℓ_a is even then $h_1(a_\ell) = p_{s_a}$, otw. $h_2(a_\ell) = p_{s_a}$
- $h_2(x) = h_2(b_1) = p_1'$
- $h_1(b_1) = h_1(b_2) = p_2'$
- **>**

Observation If we end up in an infinite loop there must exist a cycle-structure that is active for x.

A cycle-structure is defined without knowing the hash-functions.

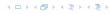
Whether a cycle-structure is active for key $oldsymbol{x}$ depends on the hash-functions.

Lemma 30

A given cycle-structure of size s is active for key x with probability at most

$$\left(\frac{\mu}{n}\right)^{2(s+1)}$$
,

if we use $(\mu, s + 1)$ -independent hash-functions.



A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key \boldsymbol{x} depends on the hash-functions.

Lemma 30

A given cycle-structure of size s is active for key x with probability at most

$$\left(\frac{\mu}{n}\right)^{2(s+1)}$$
,

if we use $(\mu, s + 1)$ -independent hash-functions.

A cycle-structure is defined without knowing the hash-functions.

Whether a cycle-structure is active for key \boldsymbol{x} depends on the hash-functions.

Lemma 30

A given cycle-structure of size s is active for key x with probability at most

$$\left(\frac{\mu}{n}\right)^{2(s+1)}$$
 ,

if we use $(\mu, s + 1)$ -independent hash-functions.

Proof.

All positions are fixed by the cycle-structure. Therefore we ask for the probability of mapping s+1 keys (the a-keys, the b-keys and x) to pre-specified positions in T_1 , and to pre-specified positions in T_2 .

The probability is

$$\left(\frac{\mu}{n}\right)^{s+1} \cdot \left(\frac{\mu}{n}\right)^{s+1}$$
,

since h_1 and h_2 are chosen independently.

Proof.

All positions are fixed by the cycle-structure. Therefore we ask for the probability of mapping s+1 keys (the a-keys, the b-keys and x) to pre-specified positions in T_1 , and to pre-specified positions in T_2 .

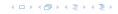
The probability is

$$\left(\frac{\mu}{n}\right)^{s+1}\cdot\left(\frac{\mu}{n}\right)^{s+1}$$
 ,

since h_1 and h_2 are chosen independently.

- ▶ There are at most s ways to choose ℓ_a . This fixes ℓ_b .
- ▶ There are at most s^2 ways to choose j_a , and j_b .
- ▶ There are at most m^s possibilities to choose the keys a_1, \ldots, a_{ℓ_a} and b_1, \ldots, b_{ℓ_b} .
- ▶ There are at most n^s choices for choosing the positions p_1, \ldots, p_{ℓ_a} and $p_1', \ldots, p_{\ell_a}'$.

- ▶ There are at most s ways to choose ℓ_a . This fixes ℓ_b .
- ▶ There are at most s^2 ways to choose j_a , and j_b .
- ▶ There are at most m^s possibilities to choose the keys a_1, \ldots, a_{ℓ_n} and b_1, \ldots, b_{ℓ_k} .
- ▶ There are at most n^s choices for choosing the positions p_1, \ldots, p_{ℓ_a} and $p'_1, \ldots, p'_{\ell_a}$.



- ▶ There are at most s ways to choose ℓ_a . This fixes ℓ_b .
- ▶ There are at most s^2 ways to choose j_a , and j_b .
- ▶ There are at most m^s possibilities to choose the keys a_1, \ldots, a_{ℓ_a} and b_1, \ldots, b_{ℓ_b} .
- ▶ There are at most n^s choices for choosing the positions p_1, \ldots, p_{ℓ_a} and $p'_1, \ldots, p'_{\ell_a}$.

- ▶ There are at most s ways to choose ℓ_a . This fixes ℓ_b .
- ▶ There are at most s^2 ways to choose j_a , and j_b .
- ▶ There are at most m^s possibilities to choose the keys a_1, \ldots, a_{ℓ_a} and b_1, \ldots, b_{ℓ_b} .
- ▶ There are at most n^s choices for choosing the positions p_1, \ldots, p_{ℓ_a} and $p'_1, \ldots, p'_{\ell_a}$.

Hence, there are at most $s^3(mn)^2$ cycle-structures of size s.

4 - 1 4 - 4 - 5 4 - 5 4 - 5 4

Hence, there are at most $s^3(mn)^2$ cycle-structures of size s.

The probability that there is an active cycle-structure of size s is at most

$$s^3(mn)^s \cdot \left(\frac{\mu}{n}\right)^{2(s+1)}$$

Hence, there are at most $s^3(mn)^2$ cycle-structures of size s.

The probability that there is an active cycle-structure of size s is at most

$$s^{3}(mn)^{s} \cdot \left(\frac{\mu}{n}\right)^{2(s+1)} = \frac{s^{3}}{mn} (mn)^{s+1} \left(\frac{\mu^{2}}{n^{2}}\right)^{s+1}$$

Hence, there are at most $s^3(mn)^2$ cycle-structures of size s.

The probability that there is an active cycle-structure of size s is at most

$$s^{3}(mn)^{s} \cdot \left(\frac{\mu}{n}\right)^{2(s+1)} = \frac{s^{3}}{mn} \left(mn\right)^{s+1} \left(\frac{\mu^{2}}{n^{2}}\right)^{s+1}$$
$$= \frac{s^{3}}{mn} \left(\frac{\mu^{2}m}{n}\right)^{s+1}$$

If we make sure that $n \ge (1+\delta)\mu^2 m$ for a constant δ (i.e., the hash-table is not too full) we obtain

If we make sure that $n \ge (1+\delta)\mu^2 m$ for a constant δ (i.e., the hash-table is not too full) we obtain

$$\leq \sum_{s=2}^{\infty} \Pr[\text{there exists an act. cycle-structure of size } s]$$

If we make sure that $n \ge (1+\delta)\mu^2 m$ for a constant δ (i.e., the hash-table is not too full) we obtain

$$\leq \sum_{s=2}^{\infty} \Pr[\text{there exists an act. cycle-structure of size } s]$$

$$\leq \sum_{s=2}^{\infty} \frac{s^3}{mn} \left(\frac{\mu^2 m}{n}\right)^{s+1}$$

If we make sure that $n \geq (1+\delta)\mu^2 m$ for a constant δ (i.e., the hash-table is not too full) we obtain

$$\leq \sum_{s=2}^{\infty} \Pr[\text{there exists an act. cycle-structure of size } s]$$

$$\leq \sum_{s=2}^{\infty} \frac{s^3}{mn} \left(\frac{\mu^2 m}{n}\right)^{s+1}$$

$$\leq \frac{1}{mn} \sum_{s=0}^{\infty} s^3 \left(\frac{1}{1+\delta} \right)^s$$

If we make sure that $n \ge (1+\delta)\mu^2 m$ for a constant δ (i.e., the hash-table is not too full) we obtain

$$\leq \sum_{s=2}^{\infty} \Pr[\text{there exists an act. cycle-structure of size } s]$$

$$\leq \sum_{s=2}^{\infty} \frac{s^3}{mn} \Big(\frac{\mu^2 m}{n} \Big)^{s+1}$$

$$\leq \frac{1}{mn} \sum_{s=0}^{\infty} s^3 \Big(\frac{1}{1+\delta} \Big)^s$$

$$\leq \frac{1}{m^2} \cdot \mathcal{O}(1) \ .$$

Consider the sequences $x, a_1, a_2, \ldots, a_{\ell_a}$ and $x, b_1, b_2, \ldots, b_{\ell_b}$ where the a_i 's and b_i 's are defined as before (but for the construction we only use keys examined during the while loop)

If the insert operation takes t steps then

$$t \le 2\ell_a + 2\ell_b + 2$$

as no key is examined more than twice.

Consider the sequences $x, a_1, a_2, \ldots, a_{\ell_a}$ and $x, b_1, b_2, \ldots, b_{\ell_b}$ where the a_i 's and b_i 's are defined as before (but for the construction we only use keys examined during the while loop)

If the insert operation takes t steps then

$$t \le 2\ell_a + 2\ell_b + 2$$

as no key is examined more than twice.

Consider the sequences $x, a_1, a_2, \ldots, a_{\ell_a}$ and $x, b_1, b_2, \ldots, b_{\ell_b}$ where the a_i 's and b_i 's are defined as before (but for the construction we only use keys examined during the while loop)

If the insert operation takes t steps then

$$t \le 2\ell_a + 2\ell_b + 2$$

as no key is examined more than twice.

Consider the sequences $x, a_1, a_2, \ldots, a_{\ell_a}$ and $x, b_1, b_2, \ldots, b_{\ell_b}$ where the a_i 's and b_i 's are defined as before (but for the construction we only use keys examined during the while loop)

If the insert operation takes t steps then

$$t \le 2\ell_a + 2\ell_b + 2$$

as no key is examined more than twice.

Consider the sequences $x, a_1, a_2, \ldots, a_{\ell_a}$ and $x, b_1, b_2, \ldots, b_{\ell_b}$ where the a_i 's and b_i 's are defined as before (but for the construction we only use keys examined during the while loop)

If the insert operation takes t steps then

$$t \le 2\ell_a + 2\ell_b + 2$$

as no key is examined more than twice.

We say a sub-sequence is left-active for
$$h_1$$
 and h_2 if $h_2(x_1) = p_0$
 $h_1(x_1) = h_1(x_2) = p_1$, $h_2(x_2) = h_2(x_3) = p_2$, $h_1(x_3) = h_1(x_4) = p_3$,....

We say a sub-sequence is right-active for h_1 and h_2 if $h_1(x) = h_1(x_1) = p_0$, $h_2(x_1) = h_2(x_2) = p_1$, $h_1(x_2) = h_1(x_3) = p_2$, $h_2(x_3) = h_2(x_4) = p_3$,....

We say a sub-sequence is left-active for h_1 and h_2 if $h_2(x_1) = p_0$ $h_1(x_1) = h_1(x_2) = p_1$, $h_2(x_2) = h_2(x_3) = p_2$, $h_1(x_3) = h_1(x_4) = p_3$,....

For an active sequence starting with x the key x is supposed to have a collision with the second element in the sequence. This collision could either be in the table T_1 (left) or in the table T_2 (right). Therefore the above definitions differentiate between left-active and right-active

We say a sub-sequence is right-active for h_1 and h_2 if $h_1(x) = h_1(x_1) = p_0$, $h_2(x_1) = h_2(x_2) = p_1$, $h_1(x_2) = h_1(x_3) = p_2$, $h_2(x_3) = h_2(x_4) = p_3$,....

We say a sub-sequence is left-active for h_1 and h_2 if $h_2(x_1) = p_0$ $h_1(x_1) = h_1(x_2) = p_1$, $h_2(x_2) = h_2(x_3) = p_2$, $h_1(x_3) = h_1(x_4) = p_3$,....

For an active sequence starting with x the key x is supposed to have a collision with the second element in the sequence. This collision could either be in the table T_1 (left) or in the table T_2 (right). Therefore the above definitions differentiate between left-active and right-active

We say a sub-sequence is right-active for h_1 and h_2 if $h_1(x) = h_1(x_1) = p_0$, $h_2(x_1) = h_2(x_2) = p_1$, $h_1(x_2) = h_1(x_3) = p_2$, $h_2(x_3) = h_2(x_4) = p_3$,....

We say a sub-sequence is left-active for
$$h_1$$
 and h_2 if $h_2(x_1) = p_0$, $h_1(x_1) = h_1(x_2) = p_1$, $h_2(x_2) = h_2(x_3) = p_2$, $h_1(x_3) = h_1(x_4) = p_3$,....

For an active sequence starting with x the key x is supposed to have a collision with the second element in the sequence. This collision could either be in the table T_1 (left) or in the table T_2 (right). Therefore the above definitions differentiate between left-active and right-active.

We say a sub-sequence is right-active for h_1 and h_2 if $h_1(x) = h_1(x_1) = p_0$, $h_2(x_1) = h_2(x_2) = p_1$, $h_1(x_2) = h_1(x_3) = p_2$, $h_2(x_3) = h_2(x_4) = p_3$,....

We say a sub-sequence is left-active for
$$h_1$$
 and h_2 if $h_2(x_1) = p_0$, $h_1(x_1) = h_1(x_2) = p_1$, $h_2(x_2) = h_2(x_3) = p_2$, $h_1(x_3) = h_1(x_4) = p_3$,....

For an active sequence starting with x the key x is supposed to have a collision with the second element in the sequence. This collision could either be in the table T_1 (left) or in the table T_2 (right). Therefore the above definitions differentiate between left-active and right-active.

Observation:

If the insert takes $t \geq 4\ell$ steps there must either be a left-active or a right-active sub-sequence of length ℓ starting with x.

The probability that a given sub-sequence is left-active (right-active) is at most

$$\left(\frac{\mu}{n}\right)^{2\ell}$$
 ,

if we use (μ,ℓ) -independent hash-functions. This holds since there are ℓ keys whose hash-values (two values per key) have to map to pre-specified positions.

The number of sequences is at most $m^{\ell-1}p^{\ell+1}$ as we can choose $\ell-1$ keys (apart from x) and we can choose $\ell+1$ positions p_0,\ldots,p_ℓ .

The probability that there exists a left-active ${\bf or}$ right-active sequence of length ℓ is at most

 $\Pr[\mathsf{there}\;\mathsf{exists}\;\mathsf{active}\;\mathsf{sequ.}\;\mathsf{of}\;\mathsf{length}\;\ell]$

$$\leq 2 \cdot m^{\ell-1} \cdot n^{\ell+1} \cdot \left(\frac{\mu}{n}\right)^{2\ell}$$

$$\leq 2\left(\frac{1}{1+\delta}\right)^{\ell}$$

If the search does not run into an infinite loop the probability that it takes more than 4ℓ steps is at most

$$2\left(\frac{1}{1+\delta}\right)^{\ell}$$

We choose massteps = $4(1+2\log m)/\log(1+\delta)$. Then the probability of terminating the while-loop because of reaching massteps is only $\mathcal{O}(\frac{1}{m^2})$ ($\mathcal{O}(1/m^2)$) because of reaching an infinite loop and $1/m^2$ because the search takes massteps steps without running into a loop).

The expected time for an insert under the condition that maxsteps is not reached is

 $\sum_{\ell \geq 0} \Pr[\mathsf{search} \; \mathsf{takes} \; \mathsf{at} \; \mathsf{least} \; \ell \; \mathsf{steps} \; | \; \mathsf{iteration} \; \mathsf{successful}]$

$$\leq \sum_{\ell \geq 0} 8 \Big(\frac{1}{1+\delta} \Big)^\ell = \mathcal{O}(1) \ .$$

More generally, the above expression gives a bound on the cost in the successful iteration of an insert-operation (there is exactly one successful iteration).

An iteration that is not successful induces cost $\mathcal{O}(m)$ for doing a complete rehash.

The expected number of unsuccessful operations is $\mathcal{O}(\frac{1}{m^2})$. Hence, the expected cost in unsuccessful iterations is only $\mathcal{O}(\frac{1}{m})$.

Hence, the total expected cost for an insert-operation is constant.

What kind of hash-functions do we need? Since maxsteps is $\Theta(\log m)$ it is sufficient to have $(\mu,\Theta(\log m))$ -independent hash-functions.

How do we make sure that $n \ge \mu^2(1 + \delta)m$?

- Let $\alpha := 1/(\mu^2(1+\delta))$.
- ► Keep track of the number of elements in the table. Whenever $m \ge \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\frac{\alpha}{4}n$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\frac{\alpha}{2}n$. In order for a table-expand to occur at least $\frac{\alpha}{2}n$ insertions are required. Similar, for a table-shrink at least $\frac{\alpha}{4}$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Definition 31

Let $d \in \mathbb{N}$; $q \ge n$ be a prime; and let $\vec{a} \in \{0, \dots, q-1\}^{d+1}$. Define for $x \in \{0, \dots, q\}$

$$h_{\vec{a}}(x) := \left(\sum_{i=0}^{d} a_i x^i \bmod q\right) \bmod n$$
.

Let $\mathcal{H}_n^d:=\{h_{\vec{a}}\mid \vec{a}\in\{0,\ldots,q\}^{d+1}\}$. The class \mathcal{H}_n^d is (2,d+1)-independent.

$$f_{\tilde{a}}(x) = \Big(\sum_{i=0}^{a} a_i x^i\Big) \bmod q$$

イロトイプトイミトイミト

For the coefficients $\bar{a} \in \{0, \dots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i\right) \bmod q$$

イロトイプトイミトイミト

For the coefficients $\bar{a} \in \{0, \dots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$f_{\bar{a}}(x) = \left(\sum_{i=0}^{d} a_i x^i\right) \bmod q$$

The polynomial is defined by d + 1 distinct points.

4 - 1 4 - 4 - 5 4 - 5 4 - 5 4

Let
$$A^{\ell}=\{h_{\bar{a}}\in\mathcal{H}\mid h_{\bar{a}}(x_i)=t_i \text{ for all } i\in\{1,\ldots,\ell\}\}$$

Then

$$h_{ar{a}} \in A^{\ell} \Leftrightarrow h_{ar{a}} = f_{ar{a}} mod n$$
 and

$$f_{\bar{a}}(x_i) \in \{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}$$

$$|B_1| \cdot \ldots \cdot |B_{\ell}| \cdot q^{d-\ell+1} \le \lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}$$

Fix $\ell \leq d+1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q-1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell}=\{h_{\bar{a}}\in\mathcal{H}\mid h_{\bar{a}}(x_i)=t_i \text{ for all } i\in\{1,\ldots,\ell\}\}$$

Then

$$h_{ar{a}} \in A^{\ell} \Leftrightarrow h_{ar{a}} = f_{ar{a}} mod n$$
 and

$$f_{\bar{a}}(x_i) \in \{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}$$

Therefore I have

$$|B_1| \cdot \ldots \cdot |B_{\ell}| \cdot q^{d-\ell+1} \le \lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}$$

possibilities to choose $ar{a}$ such that $h_{ar{a}} \in A_\ell$

Fix $\ell \leq d+1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q-1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell}=\{h_{\tilde{a}}\in\mathcal{H}\mid h_{\tilde{a}}(x_i)=t_i \text{ for all } i\in\{1,\ldots,\ell\}\}$$
 Then

$$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}} = f_{\bar{a}} \bmod n$$
 and

$$f_{\tilde{a}}(x_i) \in \{t_i + \alpha \cdot n \mid \alpha \in \{0, \dots, \lceil \frac{q}{n} \rceil - 1\}\}$$

Therefore I have

$$|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \le \lceil \frac{q}{n} \rceil^\ell \cdot q^{d-\ell+1}$$

possibilities to choose $ar{a}$ such that $h_{ar{a}} \in A_\ell$

Fix $\ell \leq d+1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q-1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell}=\{h_{\bar{a}}\in\mathcal{H}\mid h_{\bar{a}}(x_i)=t_i \text{ for all } i\in\{1,\ldots,\ell\}\}$$

Then

$$h_{\tilde{a}}\in A^{\ell}\Leftrightarrow h_{\tilde{a}}=f_{\tilde{a}} mod n$$
 and
$$f_{\tilde{a}}(x_i)\in\{t_i+\alpha\cdot n\mid \alpha\in\{0,\ldots,\lceil\frac{q}{n}\rceil-1\}\}$$

Therefore I have

$$|B_1| \cdot \ldots \cdot |B_\ell| \cdot q^{d-\ell+1} \le \lceil \frac{q}{n} \rceil^\ell \cdot q^{d-\ell+1}$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

Fix $\ell \leq d+1$; let $x_1, \ldots, x_\ell \in \{0, \ldots, q-1\}$ be keys, and let t_1, \ldots, t_ℓ denote the corresponding hash-function values.

Let
$$A^{\ell} = \{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}(x_i) = t_i \text{ for all } i \in \{1, \dots, \ell\}\}$$

Then

$$h_{ar{a}} \in A^{\ell} \Leftrightarrow h_{ar{a}} = f_{ar{a}} mod n \ ext{and}$$

$$f_{ar{a}}(x_i) \in \{t_i + lpha \cdot n \mid lpha \in \{0, \dots, \lceil rac{q}{n} \rceil - 1\}\}$$

Therefore I have

$$|B_1| \cdot \ldots \cdot |B_{\ell}| \cdot q^{d-\ell+1} \leq \lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$\frac{\lceil \frac{q}{n} \rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} \leq \left(\frac{2}{n}\right)^{\ell}$$

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S.build (x_1, \ldots, x_n) : Creates a data-structure that contains just the elements x_1, \ldots, x_n .
- S.insert(x): Adds element x to the data-structure.
- ▶ **Element S.minimum()**: Returns an element $x \in S$ with minimum key-value key[x].
- S.delete-min(): Deletes the element with minimum key-value from S and returns it.
- Boolean S.empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ S.build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S.insert(x): Adds element x to the data-structure.
- ▶ **Element S.minimum()**: Returns an element $x \in S$ with minimum key-value key[x].
- S.delete-min(): Deletes the element with minimum key-value from S and returns it.
- Boolean S.empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ S.build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S.insert(x): Adds element x to the data-structure.
- ▶ **Element S.minimum()**: Returns an element $x \in S$ with minimum key-value key[x].
- S.delete-min(): Deletes the element with minimum key-value from S and returns it.
- Boolean S.empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ *S.*build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S.insert(x): Adds element x to the data-structure.
- ► Element S.minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- S.delete-min(): Deletes the element with minimum key-value from S and returns it.
- Boolean S.empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ S.build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S.insert(x): Adds element x to the data-structure.
- ► Element S.minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- S.delete-min(): Deletes the element with minimum key-value from S and returns it.
- Boolean S.empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ S.build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S.insert(x): Adds element x to the data-structure.
- ▶ **Element S.minimum()**: Returns an element $x \in S$ with minimum key-value key[x].
- S.delete-min(): Deletes the element with minimum key-value from S and returns it.
- ▶ **Boolean S.empty()**: Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

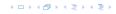
A Priority Queue S is a dynamic set data structure that supports the following operations:

- ▶ S.build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- S.insert(x): Adds element x to the data-structure.
- ► Element S.minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- S.delete-min(): Deletes the element with minimum key-value from S and returns it.
- Boolean S.empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

- Handle S.insert(x): Adds element x to the data-structure and returns a handle to the object for future reference.
- S.delete(h): Deletes element specified through handle h.
- S.decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

- ► Handle S.insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- S.delete(h): Deletes element specified through handle h.
- S.decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.



- ► Handle S.insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- ► *S*.delete(*h*): Deletes element specified through handle *h*.
- ► S.decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.



- ► Handle S.insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- ► *S*.delete(*h*): Deletes element specified through handle *h*.
- S.decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

Dijkstra's Shortest Path Algorithm

```
Algorithm 17 Shortest-Path(G = (V, E, d), s \in V)
 1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue
4: for all v \in V \setminus \{s\} do
 5: v \cdot \text{key} \leftarrow \infty;
6: h_v \leftarrow S.insert(v);
 7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
8: while S.empty() = false do
     v \leftarrow S. delete-min():
9:
         for all x \in V s.t. (v,x) \in E do
10:
               if x. key > v. key +d(v,x) then
11.
12.
                     S.decrease-key(h_x, v. \text{key} + d(v, x));
                     x. key \leftarrow v. key +d(v,x);
13:
```


Prim's Minimum Spanning Tree Algorithm

```
Algorithm 18 Prim-MST(G = (V, E, d), s \in V)
 1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: pred-fields encode MST;
 3: S.build(); // build empty priority queue
 4: for all v \in V \setminus \{s\} do
 5: v \cdot \text{kev} \leftarrow \infty:
 6: h_v \leftarrow S.insert(v);
 7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
 8: while S.empty() = false do
 9.
     v \leftarrow S. delete-min():
10: for all x \in V s.t. \{v, x\} \in E do
11:
                if x. key > d(v, x) then
                      S.decrease-key(h_x,d(v,x));
12:
13:
                      x. key \leftarrow d(v,x);
                      x. pred \leftarrow v:
14:
```


Analysis of Dijkstra and Prim

Both algorithms require:

- ▶ 1 build() operation
- ightharpoonup |V| insert() operations
- ▶ |V| delete-min() operations
- ▶ |V| is-empty() operations
- ▶ |*E*| decrease-key() operations

How good a running time can we obtain?

Analysis of Dijkstra and Prim

Both algorithms require:

- ▶ 1 build() operation
- ightharpoonup |V| insert() operations
- ▶ |V| delete-min() operations
- ▶ |V| is-empty() operations
- ▶ |*E*| decrease-key() operations

How good a running time can we obtain?

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

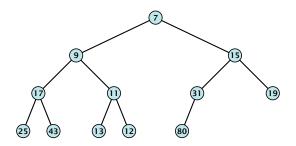
The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

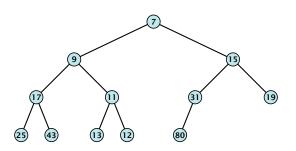
8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V|+|E|)\log |V|)$.

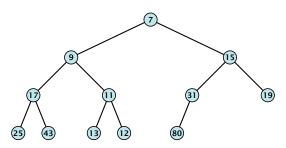
Using Fibonacci Heaps, Prim and Dijkstra run in time $O(|V| \log |V| + |E|)$.



Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.



- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.



- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time $\mathcal{O}(1)$.

- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time $\mathcal{O}(1)$.

- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time $\mathcal{O}(1)$.

Maintain a pointer to the last element x.

We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$

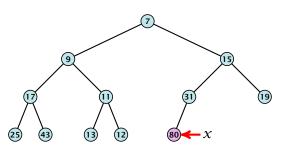
go up until the last edge used was a right edge. go left; go right until you reach a leaf

Maintain a pointer to the last element x.

• We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

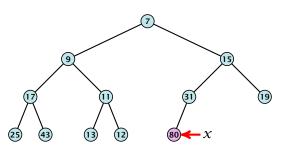


Maintain a pointer to the last element x.

• We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

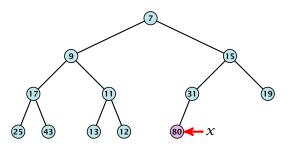


Maintain a pointer to the last element x.

• We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

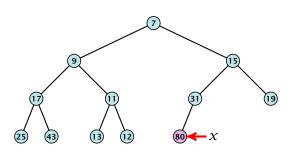
go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element



Maintain a pointer to the last element x.

• We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$

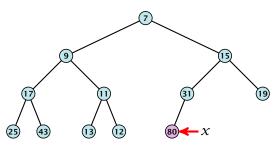


Maintain a pointer to the last element x.

• We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

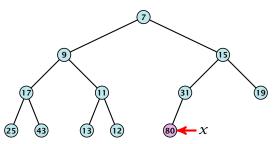
if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



Maintain a pointer to the last element x.

• We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$. go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;

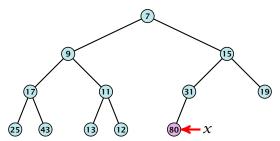


Maintain a pointer to the last element x.

• We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.

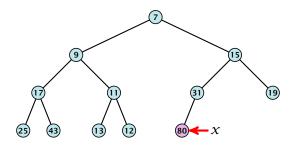
go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

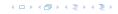
if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



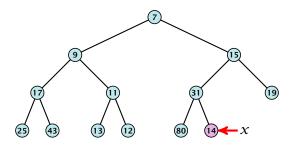
1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

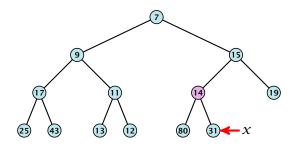




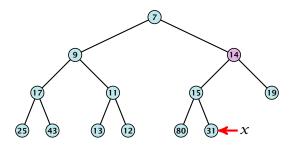
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



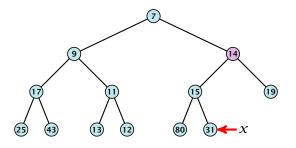
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



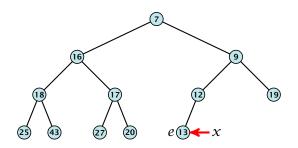
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



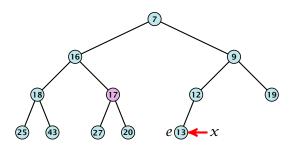
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



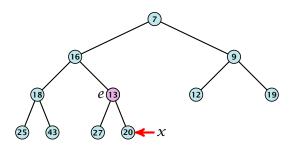
- 1. Exchange the element to be deleted with the element e pointed to by x.
- 2. Restore the heap-property for the element e



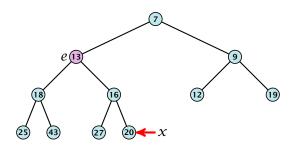
- 1. Exchange the element to be deleted with the element e pointed to by x.
- 2. Restore the heap-property for the element e.



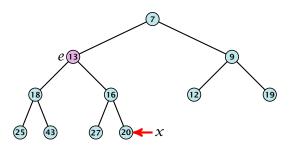
- 1. Exchange the element to be deleted with the element e pointed to by x.
- 2. Restore the heap-property for the element e.



- 1. Exchange the element to be deleted with the element e pointed to by x.
- 2. Restore the heap-property for the element e.

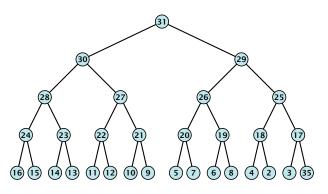


- 1. Exchange the element to be deleted with the element e pointed to by x.
- 2. Restore the heap-property for the element e.

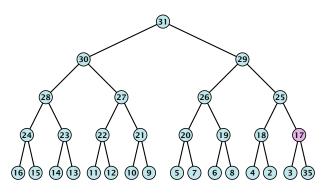




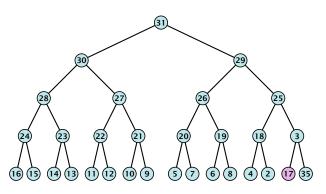
- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time $\mathcal{O}(1)$.
- ▶ **insert**(k): insert at x and bubble up. Time $O(\log n)$.
- ▶ **delete**(h): swap with x and bubble up or sift-down. Time $O(\log n)$.



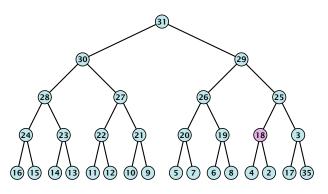
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



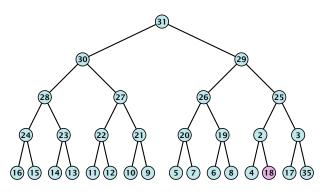
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



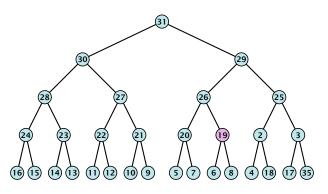
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



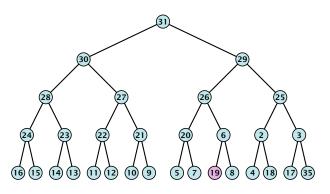
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



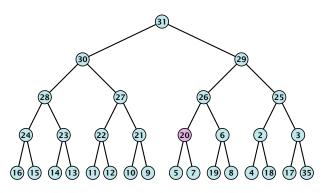
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



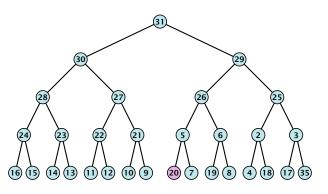
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



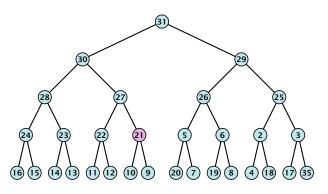
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



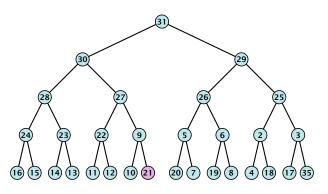
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



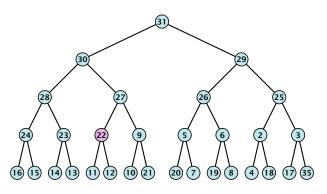
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



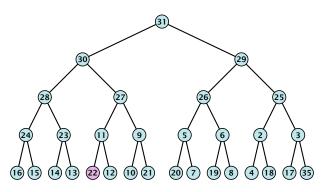
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



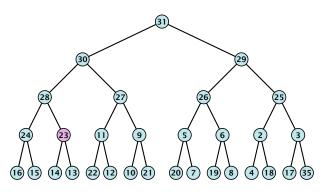
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



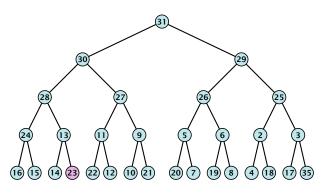
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



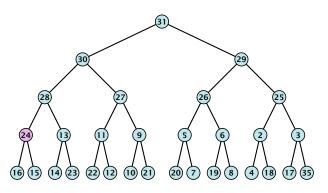
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



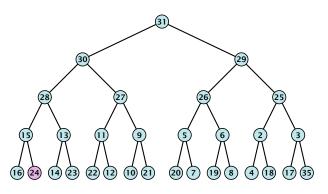
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



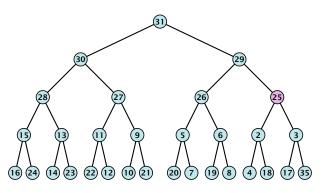
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



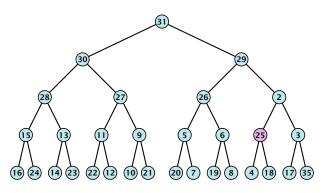
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



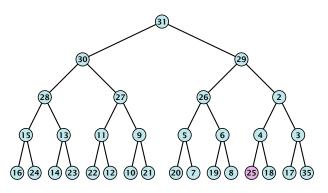
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



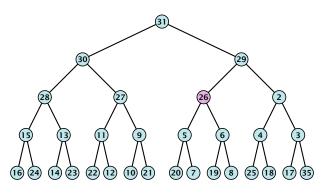
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



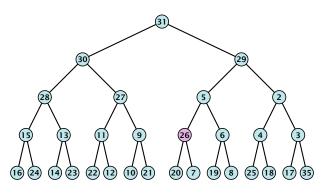
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



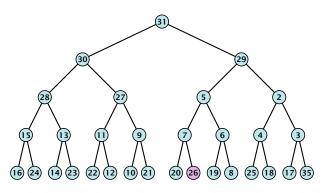
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



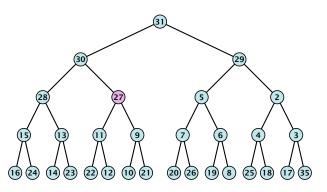
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



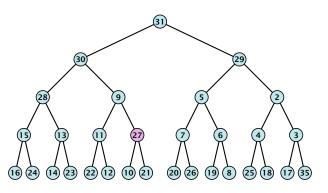
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



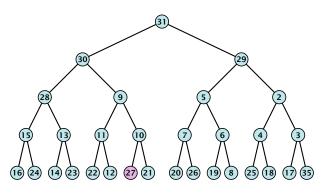
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



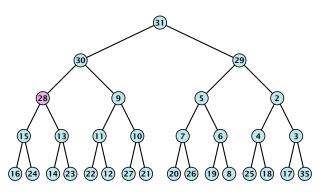
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



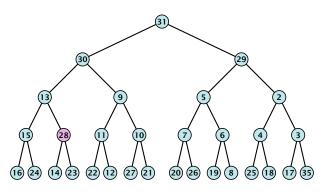
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



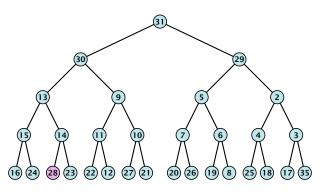
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



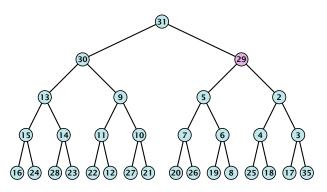
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



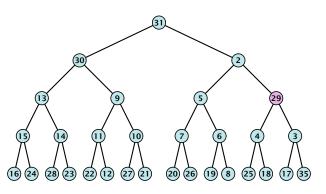
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



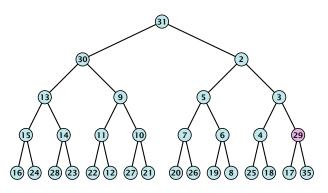
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



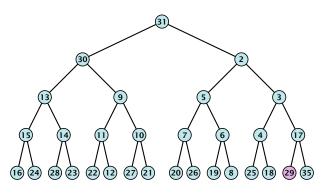
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



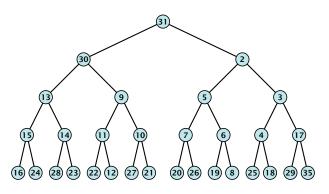
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



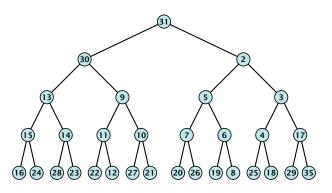
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



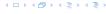
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

Operations:

- **minimum()**: Return the root-element. Time $\mathcal{O}(1)$.
- ▶ **is-empty():** Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- ▶ **insert**(k): Insert at x and bubble up. Time $O(\log n)$.
- ▶ **delete**(h): Swap with x and bubble up or sift-down. Time $O(\log n)$.
- **build** (x_1, \ldots, x_n) : Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.



The standard implementation of binary heaps is via arrays. Let $A[0,\ldots,n-1]$ be an array

- ► The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of *i*-th element is at position 2i + 1.
- ▶ The right child of i-th element is at position 2i + 2i

Finding the successor of \boldsymbol{x} is much easier than in the description on the previous slide. Simply increase or decrease \boldsymbol{x} .

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

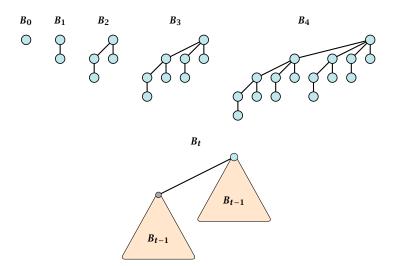
The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

8.2 Binomial Heaps

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1



- ▶ B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- $ightharpoonup B_k$ has $\binom{k}{\ell}$ nodes on level ℓ .
- ightharpoonup Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

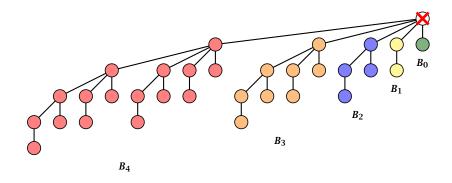
- ▶ B_k has 2^k nodes.
- \triangleright B_k has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

- ▶ B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- $ightharpoonup B_k$ has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

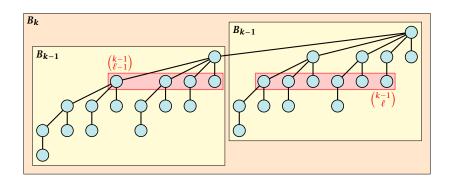
- ▶ B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

Properties of Binomial Trees

- ▶ B_k has 2^k nodes.
- $ightharpoonup B_k$ has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.

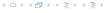


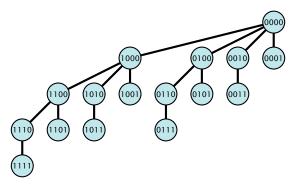
Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , and B_1 .



The number of nodes on level ℓ in tree B_k is therefore

$$\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}$$

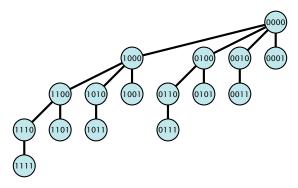




The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label $b_n, ..., b_1, b_0$ is obtained by setting the least significant 1-bit to 0.

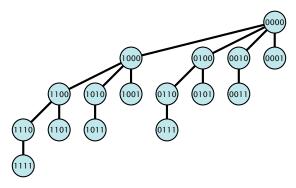
The ℓ -th level contains nodes that have ℓ 1's in their label.



The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label $b_n, ..., b_1, b_0$ is obtained by setting the least significant 1-bit to 0.

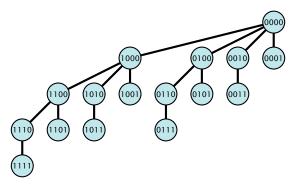
The ℓ -th level contains nodes that have ℓ 1's in their label



The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label $b_n, ..., b_1, b_0$ is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label

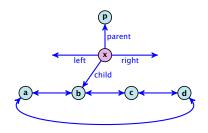


The binomial tree B_k is a sub-graph of the hypercube H_k .

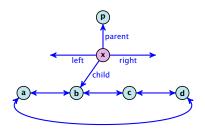
The parent of a node with label $b_n, ..., b_1, b_0$ is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

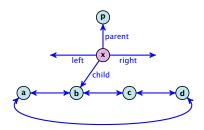
- The children of a node are arranged in a circular linked list.
- ▶ A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have children then x. left = x. right = x).



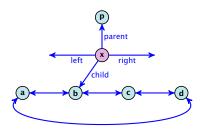
- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have children then x. left = x. right = x).

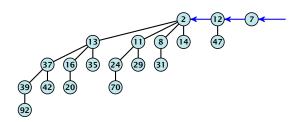


- The children of a node are arranged in a circular linked list.
- ► A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have children then x. left = x. right = x).



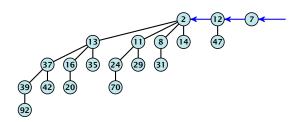
- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- ► A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have children then x.left = x.right = x).





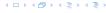
In a binomial heap the keys are arranged in a collection of binomial trees.

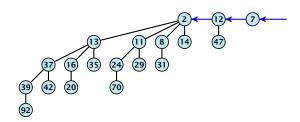
Every tree fulfills the heap-property



In a binomial heap the keys are arranged in a collection of binomial trees.

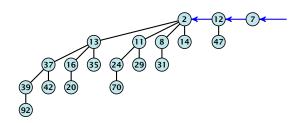
Every tree fulfills the heap-property





In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

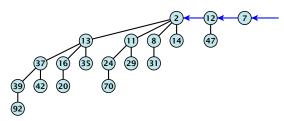
Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

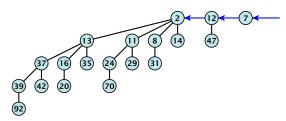
Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

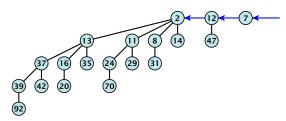
- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



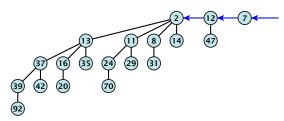
- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



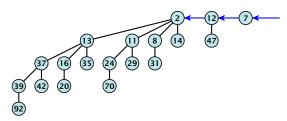
- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



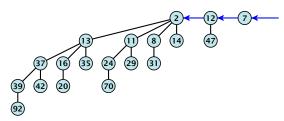
- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



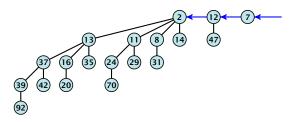
- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote the dual representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ▶ Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



The merge-operation is instrumental for binomial heaps.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous are hinary addition

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous

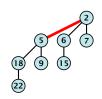
The merge-operation is instrumental for binomial heaps.

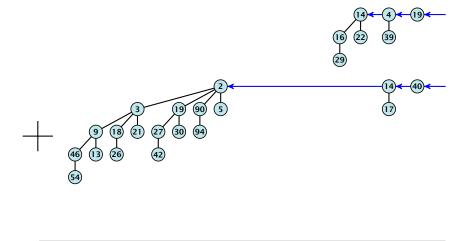
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

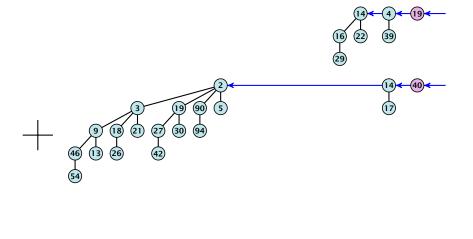
Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

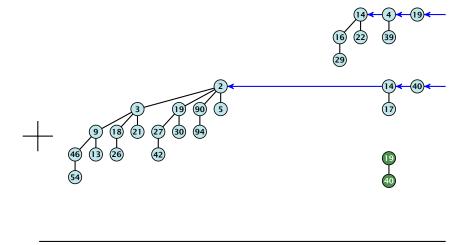
Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

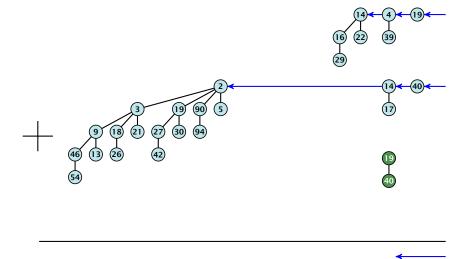
For more trees the technique is analogous to binary addition.

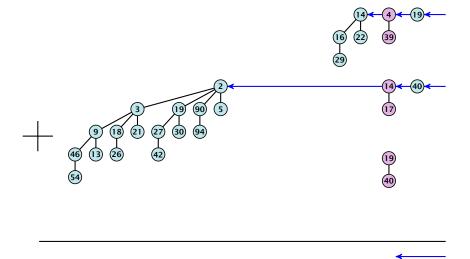


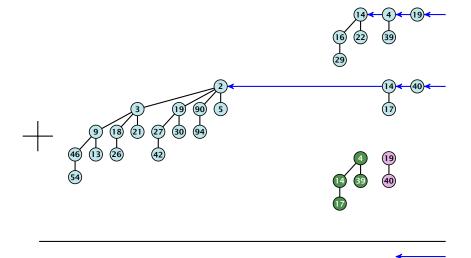


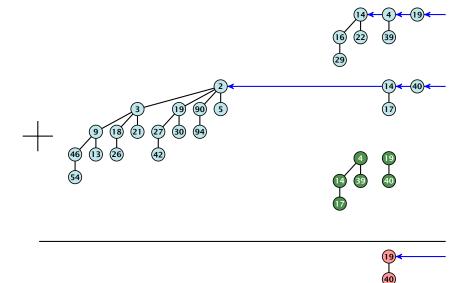


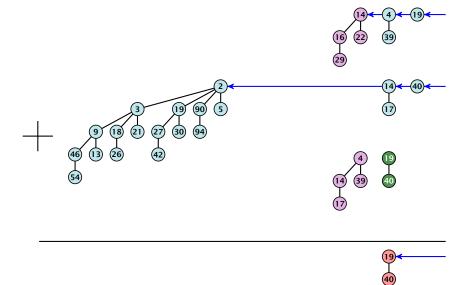


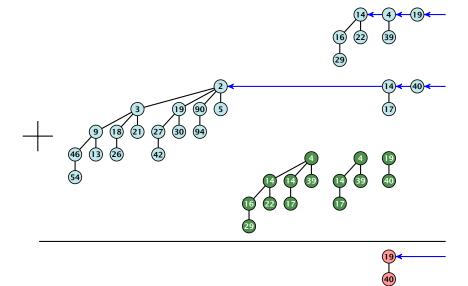


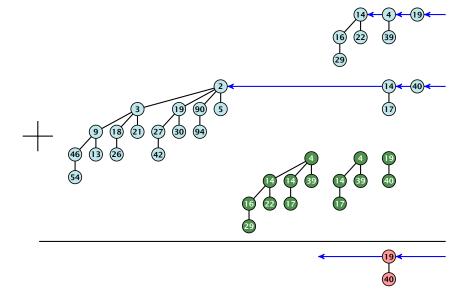


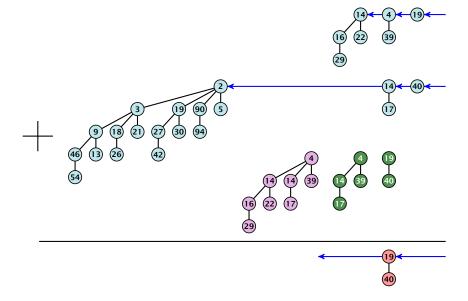


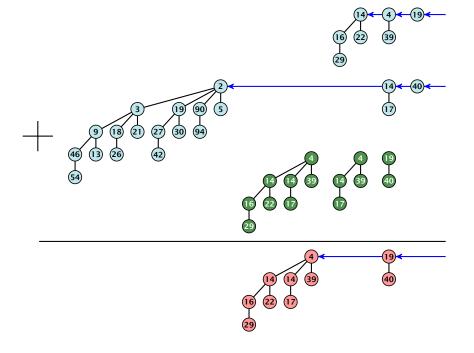


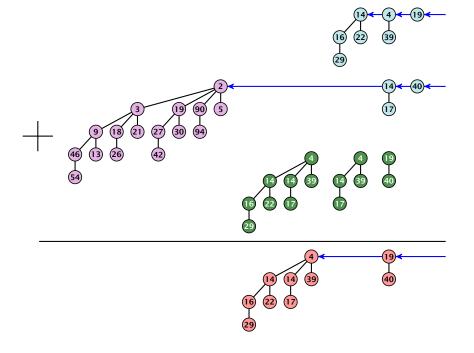


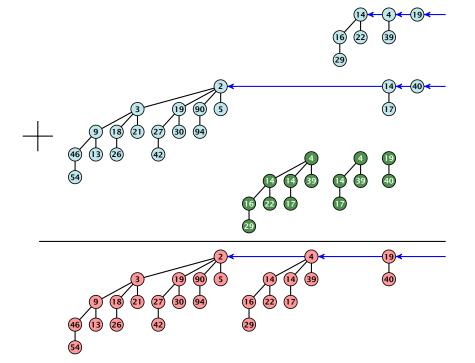


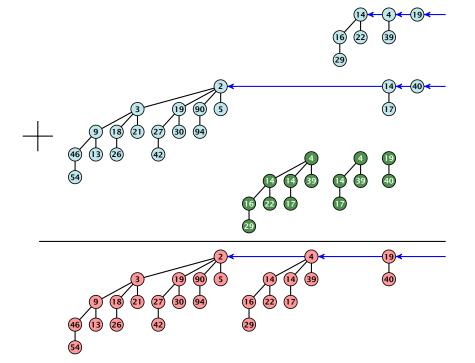












S_1 .merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps
- ▶ Time: $O(\log n)$.

S_1 .merge(S_2):

- Analogous to binary addition.
- ▶ Time is proportional to the number of trees in both heaps.
- ▶ Time: $\mathcal{O}(\log n)$.

S_1 .merge(S_2):

- Analogous to binary addition.
- ▶ Time is proportional to the number of trees in both heaps.
- ▶ Time: $\mathcal{O}(\log n)$.

All other operations can be reduced to merge().

S.insert(x):

- Create a new heap S' that contains just the element x.
- ► Execute S.merge(S').
- ▶ Time: $O(\log n)$.

All other operations can be reduced to merge().

S.insert(x):

- Create a new heap S' that contains just the element x.
- Execute S.merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

All other operations can be reduced to merge().

S.insert(x):

- Create a new heap S' that contains just the element x.
- Execute S.merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

S.minimum():

- Find the minimum key-value among all roots.
- ▶ Time: $O(\log n)$.

- Find the minimum key-value among all roots
- \blacktriangleright Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ► Compute S.merge(S').
- ► Time: $\mathcal{O}(\log n)$.

- Find the minimum key-value among all roots.
- ightharpoonup Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ► Compute S.merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

- Find the minimum key-value among all roots.
- ▶ Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- Compute S.merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

- Find the minimum key-value among all roots.
- ▶ Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ► Compute S.merge(S').
- ▶ Time: $\mathcal{O}(\log n)$

- Find the minimum key-value among all roots.
- ▶ Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- Compute S.merge(S').
- ▶ Time: $\mathcal{O}(\log n)$

- Find the minimum key-value among all roots.
- ▶ Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- Compute S.merge(S').
- ▶ Time: $\mathcal{O}(\log n)$.

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$.

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$.

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$.

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$.

- ► Execute *S*.decrease-key $(h, -\infty)$
- Execute S.delete-min().
- ▶ Time: $O(\log n)$.

- ► Execute S.decrease-key $(h, -\infty)$.
- Execute S.delete-min().
- ▶ Time: $O(\log n)$.

- ► Execute S.decrease-key $(h, -\infty)$.
- ► Execute *S*.delete-min().
- ▶ Time: $\mathcal{O}(\log n)$.

- ► Execute S.decrease-key $(h, -\infty)$.
- Execute S.delete-min().
- ▶ Time: $\mathcal{O}(\log n)$.

Amortized Analysis

Definition 32

A data structure with operations $op_1(), ..., op_k()$ has amortized running times $t_1, ..., t_k$ for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structre) that operate on at most n elements, and let k_i denote the number of occurences of $\operatorname{op}_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i t_i(n)$.

Amortized Analysis

Definition 32

A data structure with operations $op_1(), ..., op_k()$ has amortized running times $t_1, ..., t_k$ for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structre) that operate on at most n elements, and let k_i denote the number of occurences of $\operatorname{op}_i()$ within this sequence. Then the actual running time must be at most $\sum_i k_i t_i(n)$.

Introduce a potential for the data structure.

 \succ Show that $\Phi(D_2) > \Phi(D_n)$

Then

$$\sum_{i=1}^k c_i \le \sum_{i=1}^k c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^k \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- \triangleright Amortized cost of the *i*-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:constraint}$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Ther

$$\sum_{i=1}^{k} c_i \le \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:constraint}$$

Show that $\Phi(D_i) \ge \Phi(D_0)$.

Ther

$$\sum_{i=1}^k c_i \le \sum_{i=1}^k c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^k \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.



Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:constraint}$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Ther

$$\sum_{i=1}^k c_i \leq \sum_{i+1}^k c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^k \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:constraint}$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^k c_i \leq \sum_{i=1}^k c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^k \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ . \label{eq:constraint}$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^k c_i \leq \sum_{i+1}^k c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^k \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the *i*-th operation.
- Amortized cost of the i-th operation is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \ .$$

▶ Show that $\Phi(D_i) \ge \Phi(D_0)$.

Then

$$\sum_{i=1}^k c_i \leq \sum_{i+1}^k c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^k \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Stack

- ► S. push()
- ► S. pop()
- ► *S.* multipop(*k*): removes *k* items from the stack. If the stack currently contains less than *k* items it empties the stack.

- S. push(): cost 1.
- **S.** pop(): cost 1.
- ▶ *S.* multipop(k): cost min{size, k}.

Stack

- ► S. push()
- ► S. pop()
- ► *S.* multipop(*k*): removes *k* items from the stack. If the stack currently contains less than *k* items it empties the stack.

- **▶** *S.* **push()**: cost 1.
- **▶** *S*. pop(): cost 1.
- *S.* multipop(k): cost min{size, k}.

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

- S. push(): cost:
 - $C_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \le 1$
- S. pop(): cost
 - $\hat{C}_{pop} = C_{pop} + \Delta \Phi = 1 1 \le 0$
- S. multipop(k): cost
 - $\hat{C}_{nm} = C_{nm} + \Delta \Phi = \min\{\text{size}_i k\} \min\{\text{size}_i k\} \le 0$

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

► S. push(): cost

$$\hat{C}_{\mathrm{push}} = C_{\mathrm{push}} + \Delta \Phi = 1 + 1 \leq 2$$
 .

► S. pop(): cost

$$\hat{C}_{pop} = C_{pop} + \Delta \Phi = 1 - 1 \le 0.$$

 \triangleright S. multipop(k): cost

$$\hat{C}_{mp} = C_{mp} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$$

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

▶ *S.* **push()**: cost

$$\hat{C}_{\mathrm{push}} = C_{\mathrm{push}} + \Delta \Phi = 1 + 1 \leq 2 \ .$$

► S. pop(): cost

$$\hat{C}_{\mathrm{pop}} = C_{\mathrm{pop}} + \Delta \Phi = 1 - 1 \leq 0 \ . \label{eq:constraint}$$

S. multipop(k): cost

$$\hat{C}_{\text{mp}} = C_{\text{mp}} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$$

Use potential function $\Phi(S)$ = number of elements on the stack.

Amortized cost:

► S. push(): cost

$$\hat{C}_{\mathrm{push}} = C_{\mathrm{push}} + \Delta \Phi = 1 + 1 \leq 2 \ .$$

► *S.* pop(): cost

$$\hat{C}_{\mathrm{pop}} = C_{\mathrm{pop}} + \Delta \Phi = 1 - 1 \leq 0 \ . \label{eq:constraint}$$

• S. multipop(k): cost

$$\hat{C}_{\text{mp}} = C_{\text{mp}} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \le 0$$
.

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- ▶ Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- ▶ Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- ▶ Increment: cost is k + 1, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has k = 1).

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

```
Changing bit from 0 to 1: cost
```

$$C_{0-1} = C_{0-1} + \Delta \Phi = 1 + 1$$

$$\hat{C}_{1\rightarrow 0} = C_{1\rightarrow 0} + \Delta \Phi = 1 - 1$$

$$\ast$$
 increment. Let k denotes the number of consecutive ones \ast

 $^{(1 \}rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

▶ Changing bit from 0 to 1: cost

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 .$$

▶ Changing bit from 1 to 0: cost 0.

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0 .$$

▶ Increment. Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation.

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

► Changing bit from 0 to 1: cost

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 \ .$$

▶ Changing bit from 1 to 0: cost 0.

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0 .$$

▶ Increment. Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation.

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

► Changing bit from 0 to 1: cost

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 \ .$$

▶ Changing bit from 1 to 0: cost 0.

$$\hat{C}_{1 \to 0} = C_{1 \to 0} + \Delta \Phi = 1 - 1 \le 0 \ .$$

Increment. Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation.

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

► Changing bit from 0 to 1: cost

$$\hat{C}_{0\to 1} = C_{0\to 1} + \Delta \Phi = 1 + 1 \le 2 \ .$$

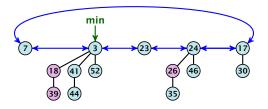
▶ Changing bit from 1 to 0: cost 0.

$$\hat{C}_{1\to 0} = C_{1\to 0} + \Delta \Phi = 1 - 1 \le 0 \ .$$

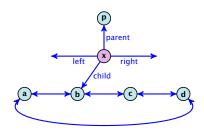
▶ Increment. Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$ -operations, and one $(0 \rightarrow 1)$ -operation.

Collection of trees that fulfill the heap property.

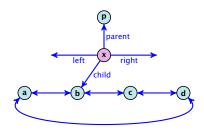
Structure is much more relaxed than binomial heaps.



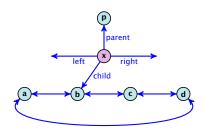
- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).

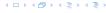


- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).

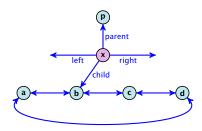


- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- ► A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).





- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- ► A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have siblings then x.left = x.right = x).



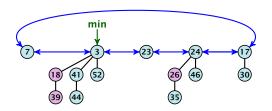
- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- ▶ We can add a child-tree *T* to a node *x* in constant time if we are given a pointer to *x* and a pointer to the root of *T*.

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x. marked that specifies whether x is marked or not.

The potential function:

- t(S) denotes the number of trees in the heap.
- ightharpoonup m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

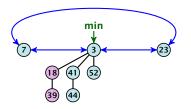
To make this more explicit we use c to denote the amount of work that a unit of potential can pay for.

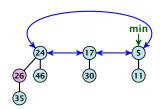
S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Amortized cost $\mathcal{O}(1)$.

S. merge(S')

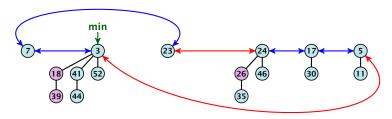
- Merge the root lists.
- Adjust the min-pointer





S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

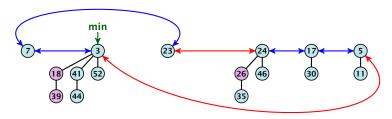


Running time:

▶ Actual cost $\mathcal{O}(1)$.

S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

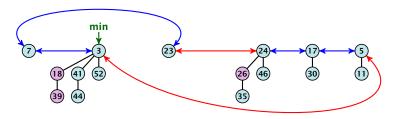


Running time:

- ▶ Actual cost $\mathcal{O}(1)$.
- ▶ No change in potential.

S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

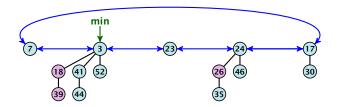


Running time:

- ▶ Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Hence, amortized cost is $\mathcal{O}(1)$.

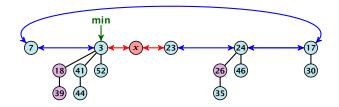
S.insert(x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.



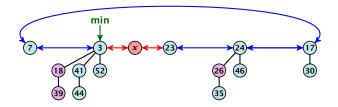
S.insert(x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.



S. insert(x)

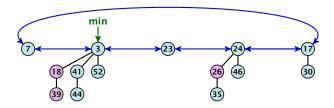
- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.



Running time:

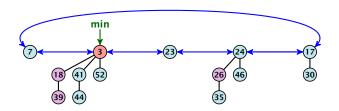
- Actual cost $\mathcal{O}(1)$.
- ► Change in potential is +1.
- Amortized cost is c + O(1) = O(1).

S. delete-min(x)



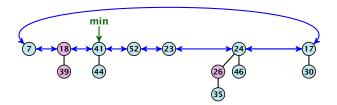
S. delete-min(x)

▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot O(1)$.



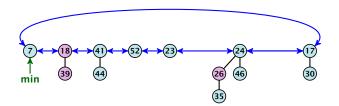
S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot O(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.



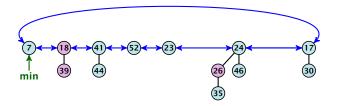
S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot O(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

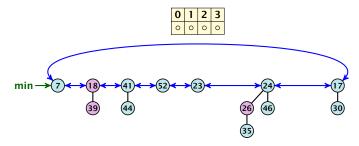


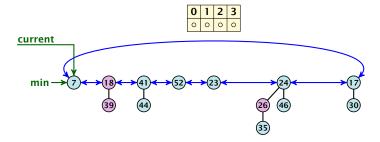
S. delete-min(x)

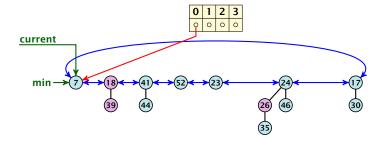
- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

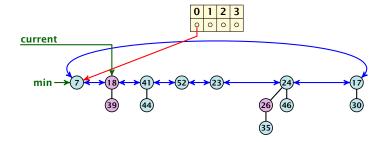


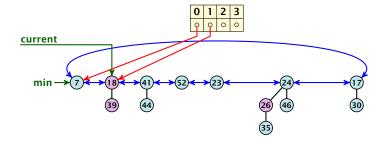
► Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

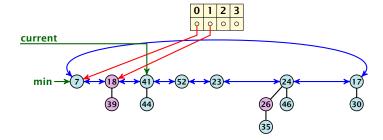


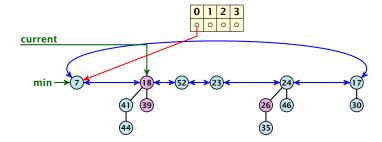


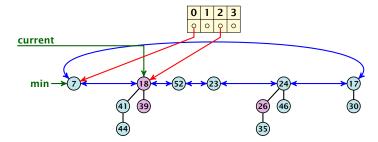


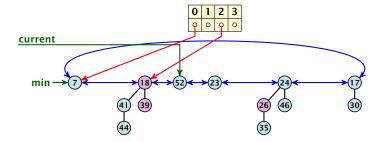


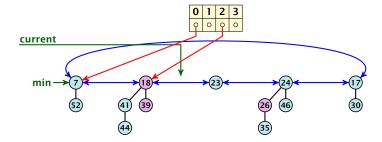


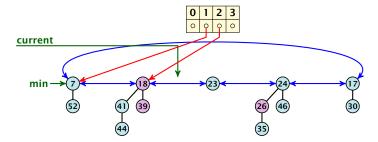


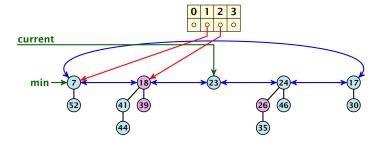


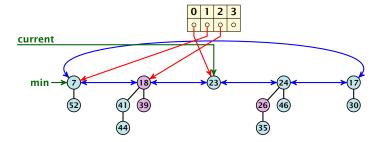


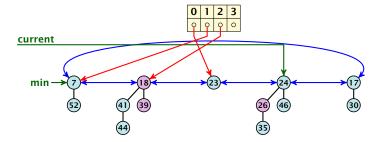


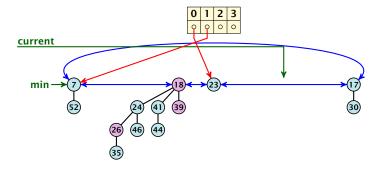


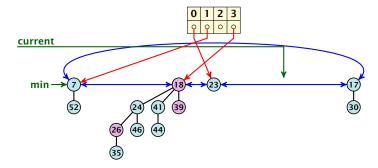


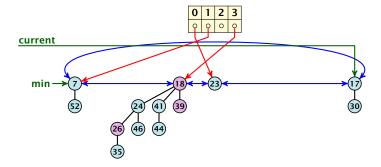


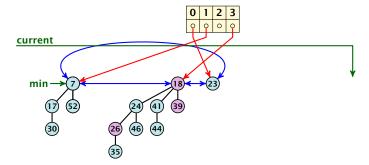


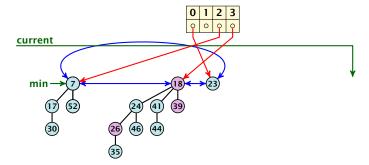


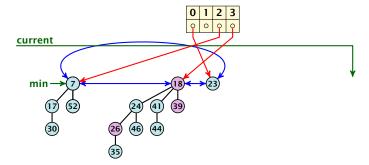












Actual cost for delete-min()

At most $D_n + t$ elements in root-list before consolidate.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ▶ Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \le D_n + 1$ as degrees are different after consolidating.
- ▶ Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - \mathbf{c} \cdot (t - D_n - 1)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \le D_n + 1$ as degrees are different after consolidating.
- ▶ Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

 $\leq (c_1 + c)D_n + (c_1 - c)t + c$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \le D_n + 1$ as degrees are different after consolidating.
- ▶ Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

 $\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1)$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $t' \le D_n + 1$ as degrees are different after consolidating.
- ▶ Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - \frac{c}{c} \cdot (t - D_n - 1)$$

$$\leq (c_1 + \frac{c}{c})D_n + (c_1 - c)t + c \leq 2\frac{c}{c}(D_n + 1) \leq \mathcal{O}(D_n)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - \frac{c}{c} \cdot (t - D_n - 1)$$

$$\leq (c_1 + \frac{c}{c})D_n + (c_1 - c)t + c \leq 2\frac{c}{c}(D_n + 1) \leq \mathcal{O}(D_n)$$

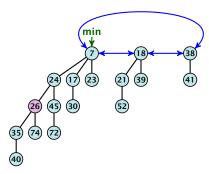
for $c \ge c_1$.

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

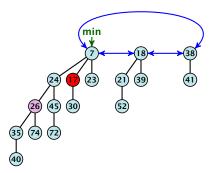
If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.



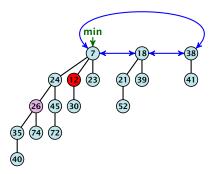
Case 1: decrease-key does not violate heap-property

Just decrease the key-value of element referenced by h. Nothing else to do.



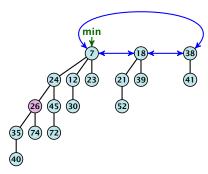
Case 1: decrease-key does not violate heap-property

▶ Just decrease the key-value of element referenced by *h*. Nothing else to do.



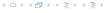
Case 1: decrease-key does not violate heap-property

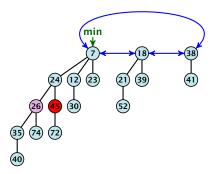
▶ Just decrease the key-value of element referenced by *h*. Nothing else to do.



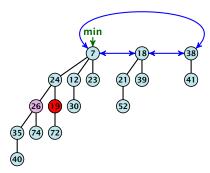
Case 1: decrease-key does not violate heap-property

Just decrease the key-value of element referenced by h. Nothing else to do.

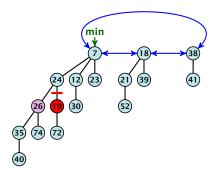




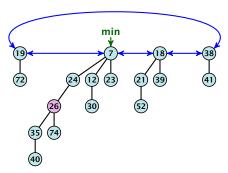
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x.



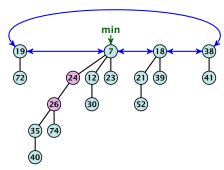
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- \blacktriangleright Mark the (previous) parent of x.



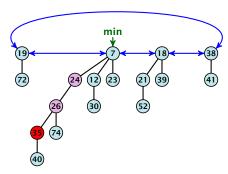
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x.



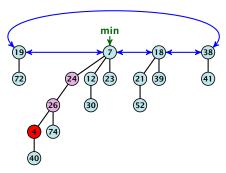
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- ▶ Mark the (previous) parent of *x*.



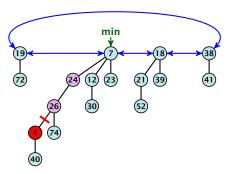
- Decrease key-value of element x reference by h.
- ► If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- ▶ Mark the (previous) parent of *x*.



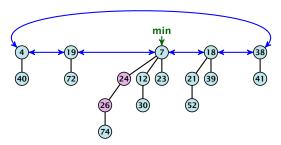
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



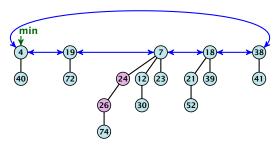
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



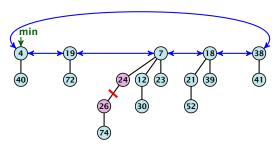
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



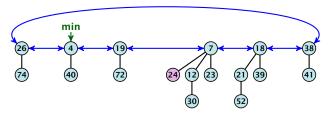
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



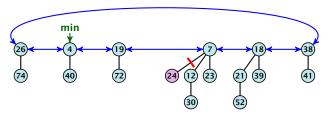
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



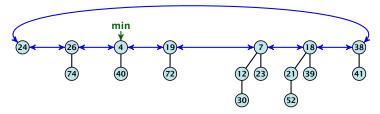
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

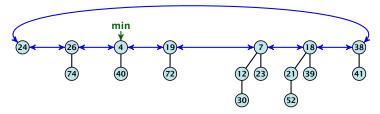


- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.





- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

```
p ← parent[x];
while (p is marked)
    pp ← parent[p];
    cut of p; make it into a root; unmark it;
    p ← pp;
if p is unmarked and not a root mark it;
```


Actual cost:

- Constant cost for decreasing the value
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t'=t+\ell$, as every cut creates one new rootty
 - $=m'\leq m-(\ell-1)+1=m-\ell+2,$ since all but the first curve
 - marks a node; the last cut may mark a node.
 - $> \Delta 0 \le \ell + 2(-\ell + 2) = 4 \ell$
 - Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut marks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut marks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut marks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut marks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = \mathcal{O}(1)$$
,

if $c \ge c_2$.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut marks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = O(1)$$
,

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut marks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = O(1)$$

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut marks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c = O(1)$$
,

if $c \ge c_2$.

Delete node

H. delete(x):

- ▶ decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D(n))$

- O(1) for decrease-key.
- $\mathcal{O}(D(n))$ for delete-min.

Lemma 33

Let x be a node with degree k and let $y_1, ..., y_k$ denote the children of x in the order that they were linked to x. Then

$$degree(y_i) \ge \begin{cases} 0 & if i = 1\\ i - 2 & if i \ge 1 \end{cases}$$

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- \triangleright Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- ▶ Therefore, degree(γ_i) ≥ i 2.

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.

- ► Let *s*_k be the minimum possible size of a sub-tree rooted at a node of degree *k* that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k

- ► Let *s*_k be the minimum possible size of a sub-tree rooted at a node of degree *k* that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$
$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$= 2 + \sum_{i=2}^{k-2} s_i$$

Definition 34

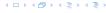
Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

- 1. $F_k \geq \phi^k$.
- 2. For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.



9 van Emde Boas Trees

Dynamic Set Data Structure *S***:**

- \triangleright S. insert(x)
- \triangleright S. delete(x)
- \triangleright S. search(x)
- ► *S*.min()
- ► *S*. max()
- ► *S*. succ(*x*)
- ▶ *S*.pred(*x*)

9 van Emde Boas Trees

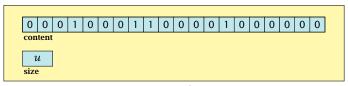
For this chapter we ignore the problem of storing satellite data:

- S. insert(x): Inserts x into S.
- ▶ S. delete(x): Deletes x from S. Usually assumes that $x \in S$.
- ▶ S. member(x): Returns 1 if $x \in S$ and 0 otw.
- $S. \min()$: Returns the value of the minimum element in S.
- ► *S.* max(): Returns the value of the maximum element in *S*.
- S. succ(x): Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- ► S. pred(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

9 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from a restricted set?

In the following we assume that the keys are from $\{0, 1, \dots, u-1\}$, where u denotes the size of the universe.



one array of u bits

Use an array that encodes the indicator function of the dynamic set.


```
Algorithm 19 array.insert(x)
1: content[x] \leftarrow 1;
```

```
Algorithm 20 array.delete(x)
1: content[x] \leftarrow 0;
```

```
Algorithm 21 array.member(x)
1: return content[x];
```

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant.

Algorithm 22 array.max()

```
1: for (i = \text{size} - 1; i \ge 0; i - -) do
```

2: **if** content[i] = 1 **then return** i;

3: **return** null;

```
Algorithm 23 array.min()
```

```
1: for (i = 0; i < \text{size}; i++) do
```

2: **if** content[i] = 1 **then return** i;

3: return null:

Running time is O(u) in the worst case

Algorithm 22 array.max()

```
1: for (i = \text{size} - 1; i \ge 0; i--) do
2: if content[i] = 1 then return i;
```

3: **return** null;

Algorithm 23 array.min()

```
1: for (i = 0; i < \text{size}; i++) do
```

- 2: **if** content[i] = 1 **then return** i;
- 3: return null;
- ▶ Running time is O(u) in the worst case.

Algorithm 22 array.max()

```
1: for (i = \text{size} - 1; i \ge 0; i--) do
2: if content[i] = 1 then return i;
3: return null;
```

Algorithm 23 array.min()

```
1: for (i = 0; i < \text{size}; i++) do

2: if content[i] = 1 then return i;

3: return null;
```

• Running time is $\mathcal{O}(u)$ in the worst case.

Algorithm 24 array.succ(x)

```
1: for (i = x + 1; i < \text{size}; i++) do
2: if content[i] = 1 then return i;
```

3: **return** null;

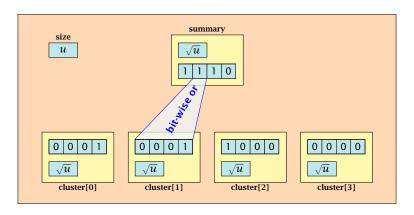
Algorithm 25 array.pred(x)

```
1: for (i = x - 1; i \ge 0; i--) do
```

2: **if** content[i] = 1 **then return** i;

3: return null;

• Running time is O(u) in the worst case.



- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The *i*-th bit in the summary array stores the bit-wise or of the bits in the *i*-th cluster.

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u=2^{2k}$ for some $k \ge 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u=2^{2k}$ for some $k\geq 1$. Then we can compute the cluster-number for an entry x as high(x) (the upper half of the dual representation of x) and the position of x within its cluster as low(x) (the lower half of the dual representation).

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u=2^{2k}$ for some $k\geq 1$. Then we can compute the cluster-number for an entry x as $\mathrm{high}(x)$ (the upper half of the dual representation of x) and the position of x within its cluster as $\mathrm{low}(x)$ (the lower half of the dual representation).

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u=2^{2k}$ for some $k\geq 1$. Then we can compute the cluster-number for an entry x as $\mathrm{high}(x)$ (the upper half of the dual representation of x) and the position of x within its cluster as $\mathrm{low}(x)$ (the lower half of the dual representation).

Algorithm 26 member(x)

1: **return** cluster[high(x)]. member(low(x));

Algorithm 27 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));

The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 26 member(x)

1: **return** cluster[high(x)]. member(low(x));

Algorithm 27 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));
- The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 26 member(x) 1: return cluster[high(x)]. member(low(x));

```
Algorithm 27 insert(x)

1: cluster[high(x)].insert(low(x));

2: summary.insert(high(x));
```

► The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 28 delete(x)

- 1: $\operatorname{cluster}[\operatorname{high}(x)]$. $\operatorname{delete}(\operatorname{low}(x))$;
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary . delete(high(x));

▶ The running time is dominated by the cost of a minimum computation, which will turn out to be $\mathcal{O}(\sqrt{u})$.

Algorithm 28 delete(x)

- 1: cluster[high(x)]. delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary . delete(high(x));

▶ The running time is dominated by the cost of a minimum computation, which will turn out to be $\mathcal{O}(\sqrt{u})$.

Algorithm 29 max()

- 1: *maxcluster* ← summary.max();
- 2: **if** *maxcluster* = null **return** null;
- 3: $offs \leftarrow cluster[maxcluster].max()$
- 4: **return** *maxcluster offs*;

Algorithm 30 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: $offs \leftarrow cluster[mincluster].min();$
- 4: **return** *mincluster* ∘ *offs*;
- ▶ Running time is roughly $2\sqrt{u} = \mathcal{O}(u)$ in the worst case

Algorithm 29 max()

- 1: *maxcluster* ← summary.max();
- 2: **if** *maxcluster* = null **return** null;
- 3: $offs \leftarrow cluster[maxcluster].max()$
- 4: **return** *maxcluster offs*;

Algorithm 30 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: $offs \leftarrow cluster[mincluster].min();$
- 4: **return** *mincluster* ∘ *offs*;
- ▶ Running time is roughly $2\sqrt{u} = \mathcal{O}(u)$ in the worst case

Algorithm 29 max()

- 1: *maxcluster* ← summary.max();
- 2: **if** *maxcluster* = null **return** null;
- 3: $offs \leftarrow cluster[maxcluster].max()$
- 4: **return** *maxcluster offs*;

Algorithm 30 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: $offs \leftarrow cluster[mincluster].min();$
- 4: **return** *mincluster* ∘ *offs*;
- ▶ Running time is roughly $2\sqrt{u} = \mathcal{O}(u)$ in the worst case.


```
Algorithm 31 \operatorname{succ}(x)

1: m \leftarrow \operatorname{cluster}[\operatorname{high}(x)].\operatorname{succ}(\operatorname{low}(x))

2: if m \neq \operatorname{null} then return \operatorname{high}(x) \circ m;

3: \operatorname{succcluster} \leftarrow \operatorname{summary}.\operatorname{succ}(\operatorname{high}(x));

4: if \operatorname{succcluster} \neq \operatorname{null} then

5: \operatorname{offs} \leftarrow \operatorname{cluster}[\operatorname{succcluster}].\operatorname{min}();

6: \operatorname{return} \operatorname{succcluster} \circ \operatorname{offs};

7: \operatorname{return} \operatorname{null};
```

Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case


```
Algorithm 31 \operatorname{succ}(x)

1: m \leftarrow \operatorname{cluster}[\operatorname{high}(x)].\operatorname{succ}(\operatorname{low}(x))

2: if m \neq \operatorname{null} then return \operatorname{high}(x) \circ m;

3: \operatorname{succcluster} \leftarrow \operatorname{summary}.\operatorname{succ}(\operatorname{high}(x));

4: if \operatorname{succcluster} \neq \operatorname{null} then

5: \operatorname{offs} \leftarrow \operatorname{cluster}[\operatorname{succcluster}].\operatorname{min}();

6: \operatorname{return} \operatorname{succcluster} \circ \operatorname{offs};

7: \operatorname{return} \operatorname{null};
```

• Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.


```
Algorithm 32 \operatorname{pred}(x)

1: m \leftarrow \operatorname{cluster}[\operatorname{high}(x)].\operatorname{pred}(\operatorname{low}(x))

2: if m \neq \operatorname{null} then return \operatorname{high}(x) \circ m;

3: \operatorname{predcluster} \leftarrow \operatorname{summary}.\operatorname{pred}(\operatorname{high}(x));

4: if \operatorname{predcluster} \neq \operatorname{null} then

5: \operatorname{offs} \leftarrow \operatorname{cluster}[\operatorname{predcluster}].\operatorname{max}();

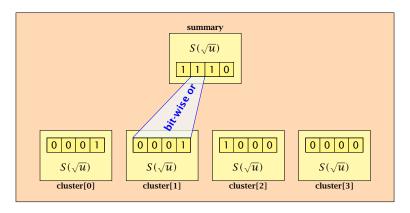
6: \operatorname{return} \operatorname{predcluster} \circ \operatorname{offs};

7: \operatorname{return} \operatorname{null};
```

• Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:



We assume that $u = 2^{2^k}$ for some k.

The data-structure S(2) is defined as an array of 2-bits (end of the recursion).

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure S(4) is not a recursive call as it will call the function array. min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure S(4) is not a recursive call as it will call the function array. min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure S(4) is not a recursive call as it will call the function array. min().

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure S(4) is not a recursive call as it will call the function array. min().

Algorithm 33 member(x)

1: **return** cluster[high(x)].member(low(x));

► $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$.

Algorithm 34 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));

► $T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$.

Algorithm 35 delete(x)

- 1: $\operatorname{cluster}[\operatorname{high}(x)]$. $\operatorname{delete}(\operatorname{low}(x))$;
- 2: **if** cluster[high(x)]. min() = null **then**
- 3: summary . delete(high(x));

 $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$

Algorithm 36 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: *offs* ← cluster[*mincluster*].min();
- 4: **return** *mincluster* ∘ *offs*;

 $T_{\min}(u) = 2T_{\min}(\sqrt{u}) + 1.$

Algorithm 37 $\operatorname{succ}(x)$

```
1: m \leftarrow \text{cluster}[\text{high}(x)]. \text{succ}(\text{low}(x))
```

2: **if** $m \neq \text{null then return high}(x) \circ m$;

3: $succeluster \leftarrow summary.succ(high(x))$;

4: **if** *succcluster* ≠ null **then**

5: $offs \leftarrow cluster[succeluster].min();$

6: **return** *succeluster* ∘ *offs*;

7: **return** null;

 $T_{\text{succ}}(u) = 2T_{\text{succ}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$.

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$T_{\mathrm{mem}}(u) = T_{\mathrm{mem}}(\sqrt{u}) + 1$$
: Set $\ell := \log u$ and $X(\ell) := T_{\mathrm{mem}}(2^\ell)$. Then $X(\ell)$

$$T_{\mathrm{mem}}(u) = T_{\mathrm{mem}}(\sqrt{u}) + 1$$
: Set $\ell := \log u$ and $X(\ell) := T_{\mathrm{mem}}(2^{\ell})$. Then $X(\ell) = T_{\mathrm{mem}}(2^{\ell})$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u)$$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$

$$T_{\mathrm{mem}}(u) = T_{\mathrm{mem}}(\sqrt{u}) + 1$$
:
Set $\ell := \log u$ and $X(\ell) := T_{\mathrm{mem}}(2^{\ell})$. Then
$$X(\ell) = T_{\mathrm{mem}}(2^{\ell}) = T_{\mathrm{mem}}(u) = T_{\mathrm{mem}}(\sqrt{u}) + 1$$
$$= T_{\mathrm{mem}}(2^{\frac{\ell}{2}}) + 1$$

$$T_{\mathrm{mem}}(u) = T_{\mathrm{mem}}(\sqrt{u}) + 1$$
: Set $\ell := \log u$ and $X(\ell) := T_{\mathrm{mem}}(2^{\ell})$. Then
$$X(\ell) = T_{\mathrm{mem}}(2^{\ell}) = T_{\mathrm{mem}}(u) = T_{\mathrm{mem}}(\sqrt{u}) + 1$$

$$= T_{\mathrm{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1 \ .$$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$

= $T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1$.

Using Master theorem gives $X(\ell) = \mathcal{O}(\log \ell)$, and hence $T_{\text{mem}}(u) = \mathcal{O}(\log \log u).$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$T_{
m ins}(u)=2T_{
m ins}(\sqrt{u})+1.$$
 Set $\ell:=\log u$ and $X(\ell):=T_{
m ins}(2^\ell).$ Then $X(\ell)$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\rm ins}(2^{\ell})$$

4 - 1 4 - 4 - 5 4 - 5 4 - 5 4

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u)$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set
$$\ell := \log u$$
 and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

= $2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1$

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

= $2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1$$

= $2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1$.

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\rm ins}(u) = \mathcal{O}(\log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$\begin{split} X(\ell) &= T_{\text{ins}}(2^{\ell}) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1 \\ &= 2T_{\text{ins}}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1 \ . \end{split}$$

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\mathrm{ins}}(u) = \mathcal{O}(\log u)$.

The same holds for $T_{\text{max}}(u)$ and $T_{\text{min}}(u)$.

$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 = 2T_{\text{del}}(\sqrt{u}) + \Theta(\log(u)).$$

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 = 2T_{\rm del}(\sqrt{u}) + \Theta(\log(u)).$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$.

$$T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 = 2T_{\rm del}(\sqrt{u}) + \Theta(\log(u)).$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$T_{
m del}(u)=2T_{
m del}(\sqrt{u})+T_{
m min}(\sqrt{u})+1=2T_{
m del}(\sqrt{u})+\Theta(\log(u)).$$
 Set $\ell:=\log u$ and $X(\ell):=T_{
m del}(2^\ell).$ Then
$$X(\ell)$$

$$T_{
m del}(u)=2T_{
m del}(\sqrt{u})+T_{
m min}(\sqrt{u})+1=2T_{
m del}(\sqrt{u})+\Theta(\log(u)).$$
 Set $\ell:=\log u$ and $X(\ell):=T_{
m del}(2^\ell)$. Then
$$X(\ell)=T_{
m del}(2^\ell)$$



$$T_{
m del}(u)=2T_{
m del}(\sqrt{u})+T_{
m min}(\sqrt{u})+1=2T_{
m del}(\sqrt{u})+\Theta(\log(u)).$$
 Set $\ell:=\log u$ and $X(\ell):=T_{
m del}(2^\ell)$. Then
$$X(\ell)=T_{
m del}(2^\ell)=T_{
m del}(u)$$

$$T_{
m del}(u)=2T_{
m del}(\sqrt{u})+T_{
m min}(\sqrt{u})+1=2T_{
m del}(\sqrt{u})+\Theta(\log(u)).$$
 Set $\ell:=\log u$ and $X(\ell):=T_{
m del}(2^\ell)$. Then
$$X(\ell)=T_{
m del}(2^\ell)=T_{
m del}(u)=2T_{
m del}(\sqrt{u})+\Theta(\log u)$$

$$T_{
m del}(u) = 2T_{
m del}(\sqrt{u}) + T_{
m min}(\sqrt{u}) + 1 = 2T_{
m del}(\sqrt{u}) + \Theta(\log(u)).$$
 Set $\ell := \log u$ and $X(\ell) := T_{
m del}(2^{\ell})$. Then
$$X(\ell) = T_{
m del}(2^{\ell}) = T_{
m del}(u) = 2T_{
m del}(\sqrt{u}) + \Theta(\log u)$$

$$= 2T_{
m del}(2^{\frac{\ell}{2}}) + \Theta(\ell)$$

$$\begin{split} T_{\rm del}(u) &= 2T_{\rm del}(\sqrt{u}) + T_{\rm min}(\sqrt{u}) + 1 = 2T_{\rm del}(\sqrt{u}) + \Theta(\log(u)). \\ \text{Set } \ell := \log u \text{ and } X(\ell) := T_{\rm del}(2^\ell). \text{ Then} \\ X(\ell) &= T_{\rm del}(2^\ell) = T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + \Theta(\log u) \\ &= 2T_{\rm del}(2^\frac{\ell}{2}) + \Theta(\ell) = 2X(\frac{\ell}{2}) + \Theta(\ell) \; . \end{split}$$

$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 = 2T_{\text{del}}(\sqrt{u}) + \Theta(\log(u)).$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$\begin{split} X(\ell) &= T_{\rm del}(2^{\ell}) = T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + \Theta(\log u) \\ &= 2T_{\rm del}(2^{\frac{\ell}{2}}) + \Theta(\ell) = 2X(\frac{\ell}{2}) + \Theta(\ell) \ . \end{split}$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{\text{del}}(u) = \mathcal{O}(\log u \log \log u)$.

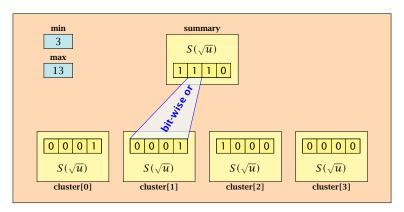
$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 = 2T_{\text{del}}(\sqrt{u}) + \Theta(\log(u)).$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$\begin{split} X(\ell) &= T_{\rm del}(2^{\ell}) = T_{\rm del}(u) = 2T_{\rm del}(\sqrt{u}) + \Theta(\log u) \\ &= 2T_{\rm del}(2^{\frac{\ell}{2}}) + \Theta(\ell) = 2X(\frac{\ell}{2}) + \Theta(\ell) \ . \end{split}$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{\text{del}}(u) = \mathcal{O}(\log u \log \log u)$.

The same holds for $T_{\text{pred}}(u)$ and $T_{\text{succ}}(u)$.



- The bit referenced by min is not set within sub-datastructures.
- The bit referenced by max is set within sub-datastructures (if max ≠ min).

- ▶ Recursive calls for min and max are constant time.
- ▶ min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- ▶ We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- ▶ We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Algorithm 38 max()
1: return max;

Algorithm 39 min()

1: **return** min;

Constant time.

Algorithm 40 member(x)

- 1: **if** $x = \min$ **then return** 1; // TRUE
- 2: **return** cluster[high(x)].member(low(x));

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1 \Longrightarrow T(u) = \mathcal{O}(\log \log u).$


```
Algorithm 41 succ(x)
 1: if min \neq null \wedge x < \min then return min:
2: maxincluster \leftarrow cluster[high(x)].max();
 3: if maxincluster \neq null \land low(x) < maxincluster then
         offs \leftarrow cluster[high(x)]. succ(low(x));
4.
         return high(x) \circ offs;
 5:
6: else
7:
         succeluster \leftarrow summary.succ(high(x));
         if succeluster = null then return null;
8.
         offs \leftarrow cluster[succeluster].min();
9:
         return succeluster • offs;
10:
```

 $T_{\text{succ}}(u) = T_{\text{succ}}(\sqrt{u}) + 1 \Longrightarrow T_{\text{succ}}(u) = \mathcal{O}(\log \log u).$


```
Algorithm 42 insert(x)
1: if min = null then
        \min = x; \max = x;
2:
3: else
        if x < \min then exchange x and \min;
4:
        if cluster[high(x)]. min = null; then
5:
             summary insert(high(x));
6:
7:
             cluster[high(x)].insert(low(x));
        else
8:
             cluster[high(x)].insert(low(x));
9:
10:
        if x > \max then \max = x;
```

 $T_{ins}(u) = T_{ins}(\sqrt{u}) + 1 \Longrightarrow T_{ins}(u) = \mathcal{O}(\log \log u).$

Note that the recusive call in Line 7 takes constant time as the if-condition in Line 5 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 6 and in Line 9. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{\text{ins}}(u) = T_{\text{ins}}(\sqrt{u}) + 1$.

Assumes that x is contained in the structure.

```
Algorithm 43 delete(x)
 1: if min = max then
         min = null; max = null;
 3: else
         if x = \min then
4:
 5:
               firstcluster \leftarrow summary.min();
               offs \leftarrow cluster[firstcluster].min();
6:
               x \leftarrow firstcluster \circ offs;
 7:
 8:
               \min \leftarrow x:
 9:
         cluster[high(x)]. delete(low(x));
                           continued...
```


Assumes that x is contained in the structure.

```
Algorithm 43 delete(x)
 1: if min = max then
         min = null; max = null;
 3: else
         if x = \min then
4:
                                                find new minimum
 5:
               firstcluster \leftarrow summary.min();
               offs \leftarrow cluster[firstcluster].min();
6:
               x \leftarrow firstcluster \circ offs;
 7:
 8:
               \min \leftarrow x:
 9:
         cluster[high(x)]. delete(low(x));
                           continued...
```


Assumes that x is contained in the structure.

```
Algorithm 43 delete(x)
 1: if min = max then
         min = null; max = null;
 3: else
         if x = \min then
4:
 5:
               firstcluster \leftarrow summary.min();
               offs \leftarrow cluster[firstcluster].min();
6:
               x \leftarrow firstcluster \circ offs;
 7:
 8:
               \min \leftarrow x:
 9:
         cluster[high(x)]. delete(low(x));
                                                           delete
                           continued...
```



```
Algorithm 43 delete(x)
                           ...continued
         if cluster[high(x)]. min() = null then
10:
              summary . delete(high(x));
11:
              if x = \max then
12:
13:
                    summax \leftarrow summary.max();
                   if summax = null then max \leftarrow min:
14:
                   else
15:
                         offs \leftarrow cluster[summax]. max();
16:
17:
                        max \leftarrow summax \circ offs
         else
18:
              if x = \max then
19:
                    offs \leftarrow cluster[high(x)]. max();
20:
21:
                    \max \leftarrow \text{high}(x) \circ \textit{offs};
```



```
Algorithm 43 delete(x)
                           ...continued
         if cluster[high(x)]. min() = null then
10:
              summary . delete(high(x));
11:
              if x = \max then
12:
13:
                    summax \leftarrow summary.max();
                   if summax = null then max \leftarrow min:
14:
                   else
15:
                         offs \leftarrow cluster[summax]. max();
16:
17:
                        max \leftarrow summax \circ offs
         else
18:
              if x = \max then
19:
                    offs \leftarrow cluster[high(x)]. max();
20:
21:
                    \max \leftarrow \text{high}(x) \circ \textit{offs};
```



```
Algorithm 43 delete(x)
                           ...continued
         if cluster[high(x)]. min() = null then
10:
              summary . delete(high(x));
11:
              if x = \max then
12:
13:
                    summax \leftarrow summary.max();
                   if summax = null then max \leftarrow min:
14:
                   else
15:
                         offs \leftarrow cluster[summax]. max();
16:
17:
                        max \leftarrow summax \circ offs
         else
18:
              if x = \max then
19:
                    offs \leftarrow cluster[high(x)]. max();
20:
21:
                    \max \leftarrow \text{high}(x) \circ \textit{offs};
```



```
Algorithm 43 delete(x)
                           ...continued
                                                      fix maximum
         if cluster[high(x)]. min() = null then
10:
              summary . delete(high(x));
11:
              if x = \max then
12:
13:
                    summax \leftarrow summary.max();
                   if summax = null then max \leftarrow min:
14:
                   else
15:
                         offs \leftarrow cluster[summax]. max();
16:
17:
                        max \leftarrow summax \circ offs
         else
18:
              if x = \max then
19:
                    offs \leftarrow cluster[high(x)]. max();
20:
21:
                    \max \leftarrow \text{high}(x) \circ \textit{offs};
```


Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high(x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

$$T_{\text{del}}(u) = T_{\text{del}}(\sqrt{u}) + c$$
.

This gives $T_{del}(u) = \mathcal{O}(\log \log u)$.

9 van Emde Boas Trees

Space requirements:

The space requirement fulfills the recurrence

$$S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \mathcal{O}(\sqrt{u}).$$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is $S(u) = \mathcal{O}(u)$. Exercise.

- P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ P. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

- ▶ **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ P. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

- **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- ▶ \mathcal{P} . find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ P. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

- **P.** makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ P. union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

Applications:

- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

Algorithm 44 Kruskal-MST(G = (V, E), w)

```
1: A \leftarrow \emptyset;
```

2: for all $v \in V$ do

3:
$$v. set \leftarrow P. makeset(v. label)$$

4: sort edges in non-decreasing order of weight w

5: **for all** $(u, v) \in E$ in non-decreasing order **do**

6: **if**
$$\mathcal{P}$$
. find(u . set) $\neq \mathcal{P}$. find(v . set) **then**

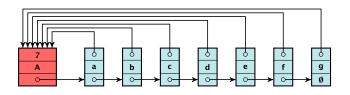
7:
$$A \leftarrow A \cup \{(u, v)\}$$

8:
$$\mathcal{P}.union(u.set, v.set)$$

- ► The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

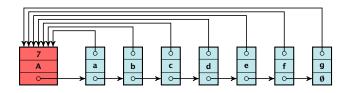
- ightharpoonup makeset(x) can be performed in constant time.
- ightharpoonup find(x) can be performed in constant time.

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



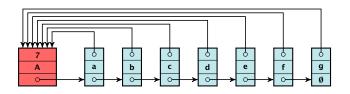
- ightharpoonup makeset(x) can be performed in constant time.
- \blacktriangleright find(x) can be performed in constant time.

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



- makeset(x) can be performed in constant time.
- ightharpoonup find(x) can be performed in constant time.

- ► The elements of a set are stored in a list; each node has a backward pointer to the head.
- ► The head of the list contains the identifier for the set and a field that stores the size of the set.



- ightharpoonup makeset(x) can be performed in constant time.
- find(x) can be performed in constant time.

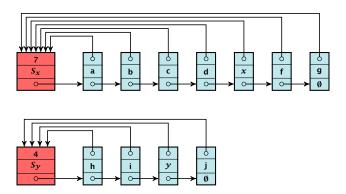
- ▶ Determine sets S_x and S_y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_y .
- ▶ Insert list S_y at the head of S_x .
- ▶ Adjust the size-field of list S_X .
- ► Time: $\min\{|S_x|, |S_y|\}$

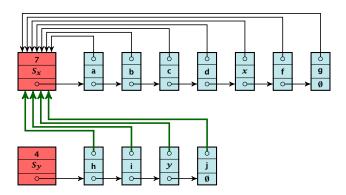
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_y .
- Insert list S_y at the head of S_x .
- ▶ Adjust the size-field of list S_x .
- ▶ Time: $\min\{|S_x|, |S_y|\}$.

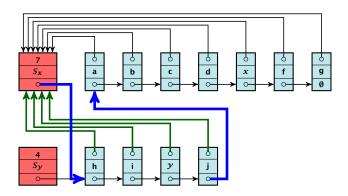
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_y .
- ▶ Insert list S_y at the head of S_x .
- ▶ Adjust the size-field of list S_x .
- ► Time: $\min\{|S_x|, |S_y|\}$.

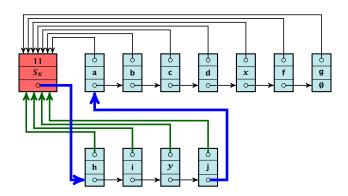
- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_y .
- ▶ Insert list S_y at the head of S_x .
- Adjust the size-field of list S_x .
- ► Time: $\min\{|S_x|, |S_y|\}$

- ▶ Determine sets S_X and S_Y .
- ▶ Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_y .
- ▶ Insert list S_{γ} at the head of S_{χ} .
- Adjust the size-field of list S_x .
- ▶ Time: $\min\{|S_x|, |S_y|\}$.









Running times:

- ightharpoonup find(x): constant
- ▶ makeset(x): constant
- union(x, y): O(n), where n denotes the number of elements contained in the set system.

Lemma 35

The list implementation for the ADT union find fulfills the following amortized time bounds:

- find(x): $\mathcal{O}(1)$.
- ightharpoonup makeset(x): $O(\log n)$.
- union(x, y): $\mathcal{O}(1)$.

- ► There is a bank account for every element in the data structure.
- ▶ Initially the balance on all accounts is zero
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- ▶ If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- ► There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- ► There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- ▶ In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $O(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

```
union(x, y):
```

- \simeq If $S_2=S_2$ the cost is constant; no bank accounts changes
- Otw. the actual cost is $O(\min\{|S_x|, |S_y|\})$
- Assume wlog. that S₂ is the smaller set; let a denote the
- s. Charac a to many element in cot 5
- Charge c to every element in set δ_{x} .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

 $\operatorname{find}(x)$: For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

```
union(x, y):
```


 $\mathbf{makeset}(\mathbf{x})$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_X is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_X|$.
- ▶ Charge c to every element in set S_{γ} .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_X is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_X|$.
- ▶ Charge c to every element in set S_{x} .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- ▶ Charge c to every element in set S_r .

 $\mathbf{makeset}(x)$: The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $\mathcal{O}(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- ▶ Charge c to every element in set S_x .

Lemma 36

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

Lemma 36

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

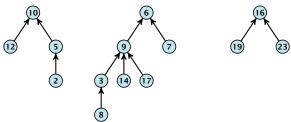
Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $|\log n|$ times.

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example

Set system {2, 5, 10, 12}, {3, 6, 7, 8, 9, 14, 17}, {16, 19, 23}

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:



Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

makeset(x)

Create a singleton tree. Return pointer to the root.

```
▶ Time: 0(1).
```

find(x)

Start at element x in the tree. Go upwards until you reach

```
the root.
```

 \sim Time: $\mathcal{O}(\text{level}(x))$, where level(x) is the distance of element

```
x to the root in its tree. Not constant
```


makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: $\mathcal{O}(1)$.

```
find(x)
```

- Start at element x in the tree. Co upwards until you reached the root.
- Time: $\mathcal{O}(\operatorname{level}(x)),$ where $\operatorname{level}(x)$ is the distance of elements
- imes to the root in its tree. Not constant

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: $\mathcal{O}(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- ▶ Time: $\mathcal{O}(\text{level}(x))$, where level(x) is the distance of element x to the root in its tree. Not constant.

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: $\mathcal{O}(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- ► Time: O(level(x)), where level(x) is the distance of element x to the root in its tree. Not constant.

To support union we store the size of a tree in its root.

To support union we store the size of a tree in its root.

union(x, y)

▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).

To support union we store the size of a tree in its root.

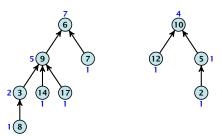
- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ightharpoonup link(a, b) attaches the smaller tree as the child of the larger.

To support union we store the size of a tree in its root.

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ▶ link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

To support union we store the size of a tree in its root.

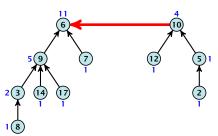
- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ▶ link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



To support union we store the size of a tree in its root.

union(x, y)

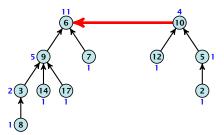
- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \blacktriangleright link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- ▶ link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



▶ Time: constant for link(a, b) plus two find-operations.

Lemma 37

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof

with root p, then size(p) ≥ 2 size(c), where size denotes that value of the size field right after the operation.

• Hence, at any point in time a tree fulfills size(p) ≥ 2 size(p) ≥ 2 size(p) ≥ 2 size(p)

Lemma 37

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p,c), where p is a parent of c.

Lemma 37

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p,c), where p is a parent of c.

Lemma 37

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 \, size(c)$, for any pair of nodes (p, c), where p is a parent of c.

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

find(x):

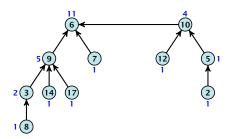
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

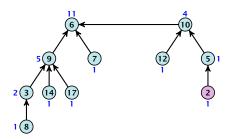
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



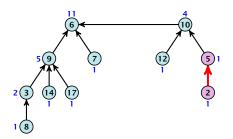
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



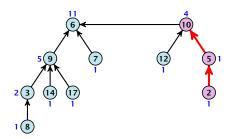
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



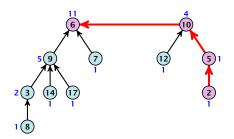
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



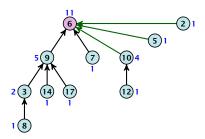
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



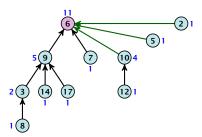
find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Definitions:

* size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node for thee number of nodes if v is the root).

rank(v): [log(size(v))]...

 $rac{}{} \Rightarrow \Rightarrow \operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}$.

Lemma 38

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- $ightharpoonup \operatorname{rank}(v)$: $\lfloor \log(\operatorname{size}(v)) \rfloor$.
- ightharpoonup \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 38

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- ▶ rank(v): $\lfloor log(size(v)) \rfloor$.
- $ightharpoonup \implies \operatorname{size}(v) \ge 2^{\operatorname{rank}(v)}.$

Lemma 38

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- rank(v): $\lfloor \log(\operatorname{size}(v)) \rfloor$.
- ightharpoonup \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 38

Definitions:

- size(v): the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).
- ightharpoonup rank(v): $\lfloor \log(\operatorname{size}(v)) \rfloor$.
- ightharpoonup \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 38

Lemma 39

There are at most $n/2^s$ nodes of rank s.

Lemma 39

There are at most $n/2^s$ nodes of rank s.

- ► Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- ► Hence, every node *sees* at most one rank *s* node, but every rank *s* node is seen by at least 2^s different nodes.

Lemma 39

There are at most $n/2^s$ nodes of rank s.

- ► Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- ▶ Hence, every node *sees* at most one rank s node, but every rank s node is seen by at least 2^s different nodes.

Lemma 39

There are at most $n/2^s$ nodes of rank s.

- ► Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- ► Hence, every node *sees* at most one rank *s* node, but every rank *s* node is seen by at least 2^s different nodes.

Lemma 39

There are at most $n/2^s$ nodes of rank s.

- ► Let's say a node v sees the rank s node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contains v during the running time of the algorithm is a strictly increasing sequence.
- ► Hence, every node *sees* at most one rank *s* node, but every rank *s* node is seen by at least 2^s different nodes.

We define

$$tow(i) := \begin{cases} 1 & \text{if } i = 0 \\ 2^{tow(i-1)} & \text{otw.} \end{cases}$$

イロトイプトイミトイミト

We define

イロトイプトイミトイミト

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

Theorem 40

Union find with path compression fulfills the following amortized running times:

- makeset(x) : $\mathcal{O}(\log^*(n))$
- find(x): $\mathcal{O}(\log^*(n))$
- union(x, y) : $\mathcal{O}(\log^*(n))$

In the following we assume $n \ge 3$.

In the following we assume $n \ge 3$.

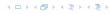
- A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1,...,tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 3$).
- ▶ Hence, the total number of rank-groups is at most $\log^* n$

In the following we assume $n \ge 3$.

- ▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1,...,tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 3$).
- ▶ Hence, the total number of rank-groups is at most $\log^* n$

In the following we assume $n \ge 3$.

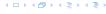
- ▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 3$)
- \triangleright Hence, the total number of rank-groups is at most $\log^* n$.



In the following we assume $n \ge 3$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \leq \log^*(n) 1$ (which holds for $n \geq 3$).
- Hence, the total number of rank-groups is at most $\log^* n$



In the following we assume $n \ge 3$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $\log^*(\operatorname{rank}(v))$.
- ► The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g-1) + 1, ..., tow(g).
- ► The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \leq \log^*(n) 1$ (which holds for $n \geq 3$).
- ▶ Hence, the total number of rank-groups is at most $\log^* n$.

Accounting Scheme

- create an account for every find-operation
- create an account for every node v.

- If parent[v] is the root we charge the cost to the
 - find-account.
- If the group-number of rank(w) is the same as that of
 - charge the cast to the nade account of a
- Otherwise we charge the cost to the find-account;

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

- If parent[v] is the root we charge the cost to the
 - find-account.
- > If the group-number of rank(v) is the same as that of
 - charge the cost to the node-account of p.
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

```
\sim If parent[v] is the root we charge the cost to the
```

- find-account.
- \succ If the group-number of rank(v) is the same as that other
 - that the cost to the state age of the state of the state
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

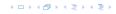
- create an account for every find-operation
- create an account for every node v

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

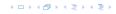
- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.



Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.



Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

- A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ► The total charge made to a node in rank-group g is at most $tow(g) tow(g-1) \le tow(g)$.

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ▶ The total charge made to a node in rank-group g is at most $tow(g) tow(g 1) \le tow(g)$.

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ▶ The total charge made to a node in rank-group g is at most $tow(g) tow(g 1) \le tow(g)$.

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ► The total charge made to a node in rank-group g is at most $tow(g) tow(g 1) \le tow(g)$.

What is the total charge made to nodes?

The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g)$$
,

where n(g) is the number of nodes in group g.

What is the total charge made to nodes?

▶ The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g) ,$$

where n(g) is the number of nodes in group g.

n(g)

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s}$$

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s}$$

$$\begin{split} n(g) & \leq \sum_{s = \mathsf{tow}(g-1)+1}^{\mathsf{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\mathsf{tow}(g)-\mathsf{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \end{split}$$

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s}$$
$$\le \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \le \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$\begin{split} n(g) & \leq \sum_{s = \mathsf{tow}(g-1)+1}^{\mathsf{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\mathsf{tow}(g)-\mathsf{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)}} \end{split}$$

$$n(g) \leq \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^{s}} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^{s}}$$

$$\leq \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}} \leq \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$\leq \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

$$\begin{split} n(g) & \leq \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} \ . \end{split}$$

Hence.

$$\sum_{g} n(g) \text{ tow}(g)$$

$$\begin{split} n(g) & \leq \sum_{s = \mathsf{tow}(g-1)+1}^{\mathsf{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\mathsf{tow}(g)-\mathsf{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\mathsf{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\mathsf{tow}(g-1)}} = \frac{n}{\mathsf{tow}(g)} \ . \end{split}$$

Hence.

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g)$$

$$\begin{split} n(g) & \leq \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\text{tow}(g)-\text{tow}(g-1)-1} \frac{1}{2^s} \\ & \leq \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} \leq \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2 \\ & \leq \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} \ . \end{split}$$

Hence.

$$\sum_{g} n(g) \operatorname{tow}(g) \leq n(0) \operatorname{tow}(0) + \sum_{g \geq 1} n(g) \operatorname{tow}(g) \leq n \log^*(n)$$

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

$$A(x,y) = \begin{cases} y+1 & \text{if } x = 0 \\ A(x-1,1) & \text{if } y = 0 \\ A(x-1,A(x,y-1)) & \text{otw.} \end{cases}$$

$$\alpha(m,n) = \min\{i \ge 1 : A(i,\lfloor m/n \rfloor) \ge \log n\}$$

$$A(0, y) = y + 1$$

$$A(1,y) = y + 2$$

$$A(2, \nu) = 2\nu + 3$$

$$A(3, \gamma) = 2^{\gamma+3} - 3$$

$$A(4, y) = 2^{2^2} -3$$

4 ロトイ部トイミトイミト

$$A(x,y) = \begin{cases} y+1 & \text{if } x=0 \\ A(x-1,1) & \text{if } y=0 \\ A(x-1,A(x,y-1)) & \text{otw.} \end{cases}$$

$$\alpha(m,n) = \min\{i \ge 1 : A(i,\lfloor m/n \rfloor) \ge \log n\}$$

$$A(0, y) = y + 1$$

$$A(1, y) = y + 2$$

$$A(2, y) = 2y + 3$$

$$A(3, y) = 2^{y+3} - 3$$

►
$$A(2, y) = 2y + 3$$

► $A(3, y) = 2^{y+3} - 3$
► $A(4, y) = \underbrace{2^{2^2}}_{y+3 \text{ times}} - 3$

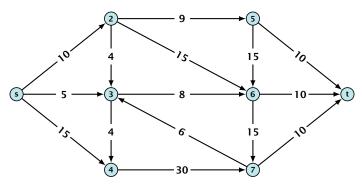
Part IV

Flows and Cuts

11 Introduction

Flow Network

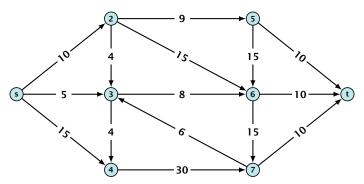
- directed graph G = (V, E); edge capacities c(e)
- ▶ two special nodes: source s; target t;
- ▶ no edges entering *s* or leaving *t*;
- at least for now: no parallel edges;



11 Introduction

Flow Network

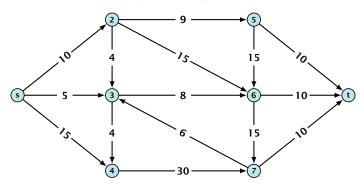
- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- ightharpoonup no edges entering s or leaving t;
- at least for now: no parallel edges;



11 Introduction

Flow Network

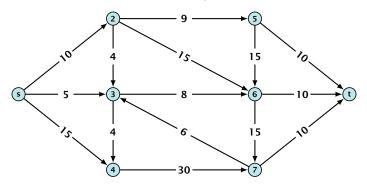
- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;



11 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;



Definition 41

An (s,t)-cut in the graph G is given by a set $A\subset V$ with $s\in A$ and $t\in V\setminus A$.

Definition 41

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 42

The capacity of a cut A is defined as

$$cap(A, V \setminus A) := \sum_{e \in out(A)} c(e) ,$$

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Definition 41

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 42

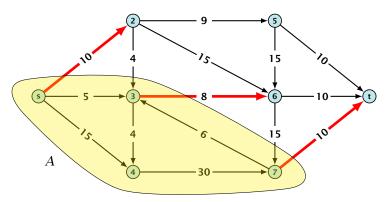
The capacity of a cut A is defined as

$$cap(A, V \setminus A) := \sum_{e \in out(A)} c(e) ,$$

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

Example 43



The capacity of the cut is $cap(A, V \setminus A) = 28$.

Definition 44

An (s,t)-flow is a function $f:E\mapsto \mathbb{R}^+$ that satisfies

1. For each edge e

$$0 \leq f(e) \leq c(e) \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{\text{Eout}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e) .$$

(flow conservation constraints)

Definition 44

An (s,t)-flow is a function $f:E\mapsto \mathbb{R}^+$ that satisfies

1. For each edge e

$$0 \leq f(e) \leq c(e) \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) = \sum_{e \in \text{into}(v)} f(e) .$$

(flow conservation constraints)

Definition 45

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$
.

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

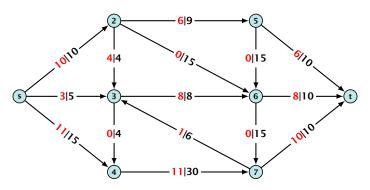
Definition 45

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$
.

Maximum Flow Problem: Find an (s,t)-flow with maximum value.

Example 46



The value of the flow is val(f) = 24.

Lemma 47 (Flow value lemma)

Let f a flow, and let $A \subseteq V$ be an (s,t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
.

val(f)

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$

$$val(f) = \sum_{e \in out(s)} f(e)$$

$$= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$$

イロトイプトイミトイミト

$$val(f) = \sum_{e \in out(s)} f(e)$$

$$= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$$

$$val(f) = \sum_{e \in out(s)} f(e)$$

$$= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$$

$$= \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$

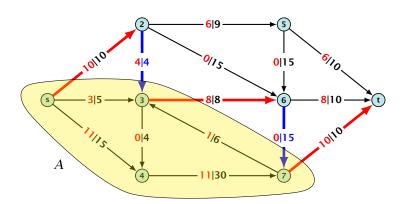
$$val(f) = \sum_{e \in out(s)} f(e)$$

$$= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$$

$$= \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

Example 48



Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$val(f) = cap(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$val(f) = cap(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

$$\leq \sum_{e \in out(A)} f'(e)$$

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

$$val(f) = cap(A, V \setminus A).$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

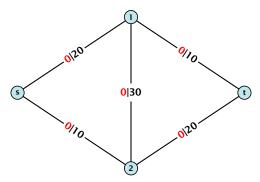
$$cap(A, V \setminus A) < val(f')$$

$$= \sum_{e \in out(A)} f'(e) - \sum_{e \in into(A)} f'(e)$$

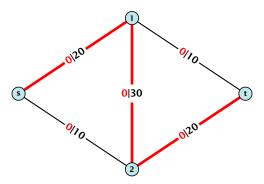
$$\leq \sum_{e \in out(A)} f'(e)$$

$$\leq cap(A, V \setminus A)$$

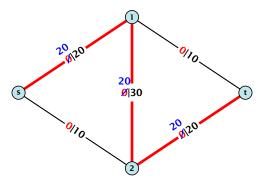
- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



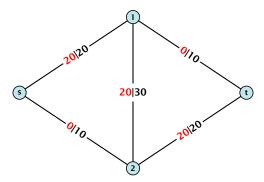
- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

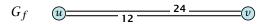
Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e_1' with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e_1' with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.



Definition 50

An augmenting path with respect to flow f, is a path in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 45 FordFulkerson(G = (V, E, c))

- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: **while** ∃ augmenting path p in G_f **do**
- 3: augment as much flow along p as possible.

Definition 50

An augmenting path with respect to flow f, is a path in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 45 FordFulkerson(G = (V, E, c))

1: Initialize $f(e) \leftarrow 0$ for all edges.

2: **while** \exists augmenting path p in G_f **do**

3: augment as much flow along p as possible.

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof

Let f be a flow. The following are equivalent:

- 1. There exists a cut A,B such that val(f) = cap(A,B)
- Flow f is a maximum flow.
- There is no augmenting path w.r.t. f...

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof

```
1. There exists a cut A, B such that val(f) = cap(A, B, B)
```

- Flow f is a maximum flow.
- There is no augmenting path w.r.t. f..

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- 2. Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- 2. Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- 2. Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

$$1. \Rightarrow 2.$$

This we already showed.

$$2. \Rightarrow 3.$$

$$3. \Rightarrow 1.$$

- \sim Let f be a flow with no augmenting paths:
- Let A be the set of vertices reachable from a in the residuality of the companies.
- * Since there is no augmenting both we have $s \in A$ and $t \notin A$

 $1. \Rightarrow 2.$

This we already showed.

$$2. \Rightarrow 3.$$

$$3. \Rightarrow 1.$$

- * Let f be a flow with no augmenting paths.
- Let A be the set of vertices reachable from s in the residuality graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - ▶ Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

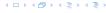
- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - ▶ Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - ▶ Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.



val(f)

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Lemma 53

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(nmC)$.

Theorem 54

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

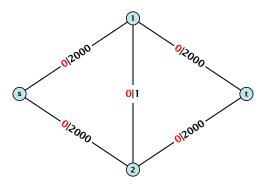
Lemma 53

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(nmC)$.

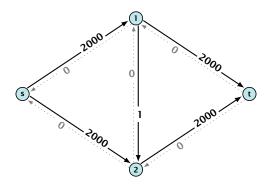
Theorem 54

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

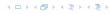
Problem: The running time may not be polynomial.



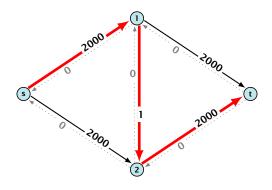
Problem: The running time may not be polynomial.



Question

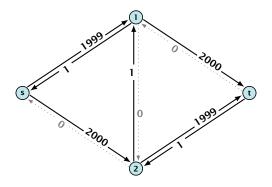


Problem: The running time may not be polynomial.

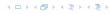


Question

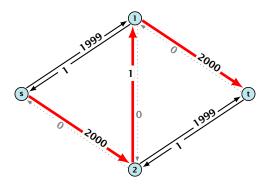
Problem: The running time may not be polynomial.



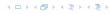
Question



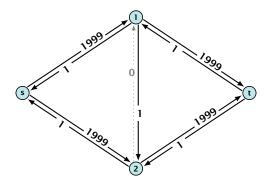
Problem: The running time may not be polynomial.



Question

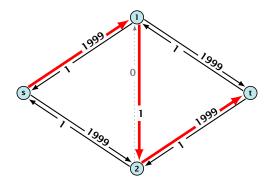


Problem: The running time may not be polynomial.

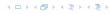


Question

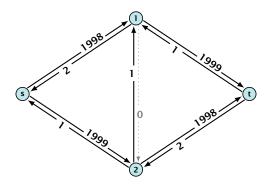
Problem: The running time may not be polynomial.



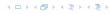
Question



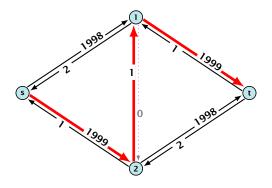
Problem: The running time may not be polynomial.



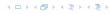
Question



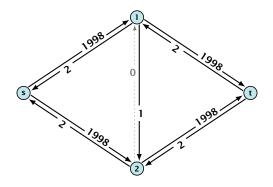
Problem: The running time may not be polynomial.



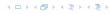
Question



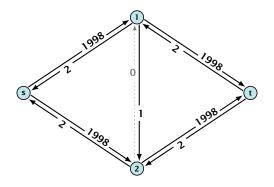
Problem: The running time may not be polynomial.



Question

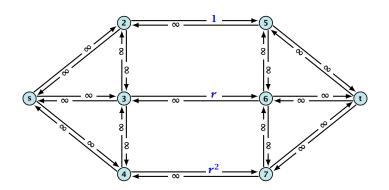


Problem: The running time may not be polynomial.

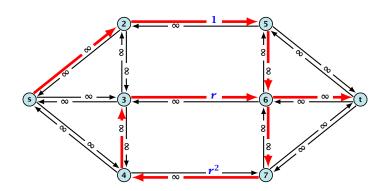


Question:

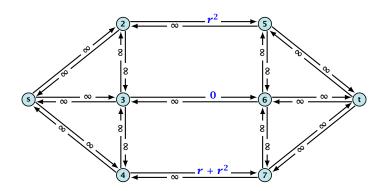
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



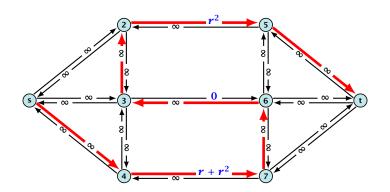
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



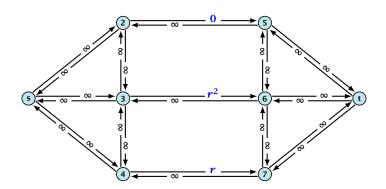
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



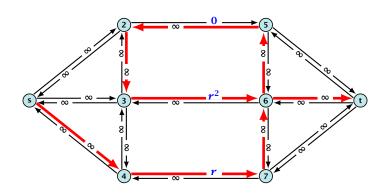
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



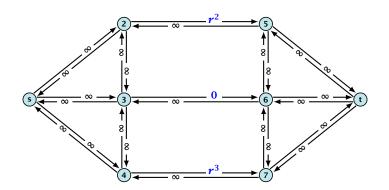
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



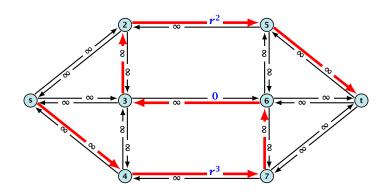
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



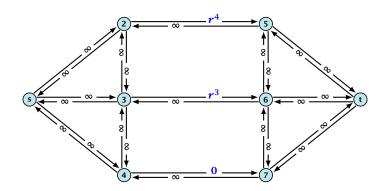
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



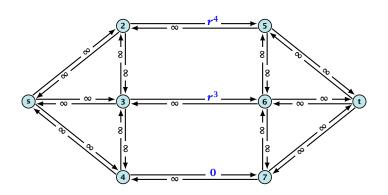
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.



Running time may be infinite!!!

We need to find paths efficiently.



- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

Choose path with maximum bottleneck capacity.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

=[fill=DarkGreen,draw=DarkGreen]

Overview: Shortest Augmenting Paths

Lemma 55

The length of the shortest augmenting path never decreases.

Lemma 56

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

Lemma 55

The length of the shortest augmenting path never decreases.

Lemma 56

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

These two lemmas give the following theorem:

Theorem 57

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.

We can find the shortest augmenting paths in time $\mathcal{O}(m)$ was also shown that the shortest augmenting paths in time $\mathcal{O}(m)$ was also shown in time $\mathcal{O}(m)$ where $\mathcal{O}(m)$ is also shown in time $\mathcal{O}(m)$ where $\mathcal{O}(m)$ is also shown in time $\mathcal{O}(m)$ which is also shown in time $\mathcal{O}(m)$ which is also shown in time $\mathcal{O}(m)$ where $\mathcal{O}(m)$ is also shown in time $\mathcal{O}(m)$ and $\mathcal{O}(m)$ is also shown in time $\mathcal{O}(m)$ where $\mathcal{O}(m)$ is also shown in time $\mathcal{O}(m)$ and $\mathcal{O}($

 $> \mathcal{O}(m)$ augmentations for paths of exactly k < n edgess.

These two lemmas give the following theorem:

Theorem 57

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof

These two lemmas give the following theorem:

Theorem 57

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- $\mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

These two lemmas give the following theorem:

Theorem 57

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- O(m) augmentations for paths of exactly k < n edges.

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

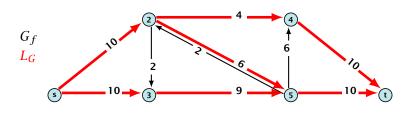
Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G .

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is a an s-u path in L_G .



First Lemma: The length of the shortest augmenting path never decreases.

First Lemma: The length of the shortest augmenting path never decreases.

• After an augmentation the following changes are done in G_f .

First Lemma: The length of the shortest augmenting path never decreases.

- lacktriangle After an augmentation the following changes are done in G_f .
- Some edges of the chosen path may be deleted (bottleneck edges).

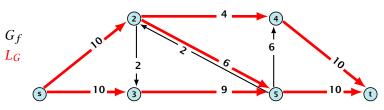
First Lemma: The length of the shortest augmenting path never decreases.

- lacktriangle After an augmentation the following changes are done in G_f .
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

First Lemma: The length of the shortest augmenting path never decreases.

- After an augmentation the following changes are done in G_f .
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

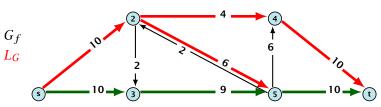
These changes cannot decrease the distance between s and t.



First Lemma: The length of the shortest augmenting path never decreases.

- lacktriangle After an augmentation the following changes are done in G_f .
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

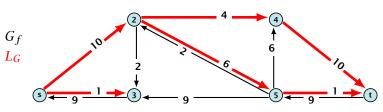
These changes cannot decrease the distance between s and t.



First Lemma: The length of the shortest augmenting path never decreases.

- lacktriangle After an augmentation the following changes are done in G_f .
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.



Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

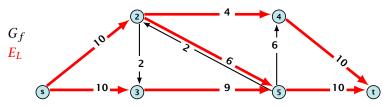
An s-t path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .

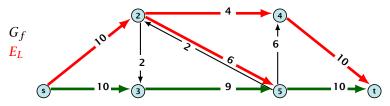


Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .

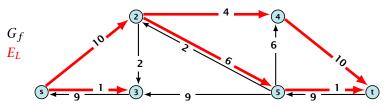


Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .



Theorem 58

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 59 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note

Theorem 58

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 59 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note

Theorem 58

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 59 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note

Theorem 58

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 59 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L .

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L .

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L .

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_T for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_I for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

We need to find paths efficiently.

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- ▶ We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- · Choose the shortest augmenting path.

Intuition:

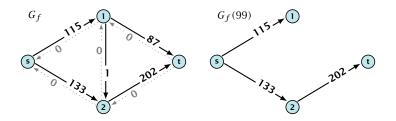
Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- ▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .




```
Algorithm 46 maxflow(G, s, t, c)
 1: foreach e \in E do f_e \leftarrow 0;
 2: \Delta \leftarrow 2^{\lceil \log_2 C \rceil}
 3: while \Delta \geq 1 do
    G_f(\Delta) \leftarrow \Delta-residual graph
 4:
 5: while there is augmenting path P in G_f(\Delta) do
 6: f \leftarrow \operatorname{augment}(f, c, P)
 7: \operatorname{update}(G_f(\Delta))
 8: \Delta \leftarrow \Delta/2
 9: return f
```


Assumption:

All capacities are integers between 1 and \mathcal{C} .

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

▶ because of integrality we have $G_f(1) = G_f$

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f) + 2m\Delta$.

Proof: less obvious, but simple:

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f) + 2m\Delta$.

Proof: less obvious, but simple:

▶ An s-t cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to f.

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f) + 2m\Delta$.

Proof: less obvious, but simple:

- An s-t cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to f.
- ▶ The edges that currently have capacity at most Δ in G_f form an s-t cut with capacity at most $2m\Delta$.

Lemma 62

There are at most 2m augmentations per scaling-phase.

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

Let f be the flow at the end of the previous phase.

Lemma 62

There are at most 2m augmentations per scaling-phase.

- ▶ Let *f* be the flow at the end of the previous phase.
- $ightharpoonup \operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$

Lemma 62

There are at most 2m augmentations per scaling-phase.

- ▶ Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Lemma 62

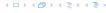
There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Theorem 63

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.



Definition 64 An (s,t)-preflow is a function $f: E \mapsto \mathbb{R}^+$ that satisfies

- 1. For each edge e
- $0 \le f(e) \le c(e)$
- (capacity constraints)
- 2. For each $v \in V \setminus \{s, t\}$
 - $\sum_{e \in \text{ann}(e)} f(e) < \sum_{e \in \text{ann}(e)} f(e)$

Definition 64

An (s,t)-preflow is a function $f:E\mapsto \mathbb{R}^+$ that satisfies

1. For each edge e

$$0 \leq f(e) \leq c(e) \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) \le \sum_{e \in \text{into}(v)} f(e) .$$

Definition 64

An (s,t)-preflow is a function $f:E\mapsto \mathbb{R}^+$ that satisfies

1. For each edge e

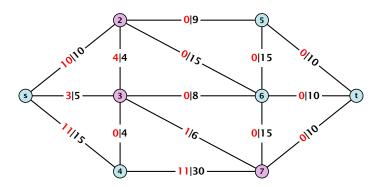
$$0 \le f(e) \le c(e)$$
.

(capacity constraints)

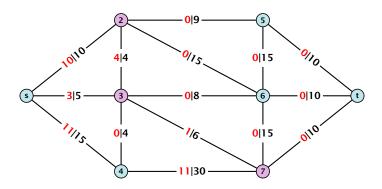
2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \text{out}(v)} f(e) \leq \sum_{e \in \text{into}(v)} f(e) .$$

Example 65



Example 65



A node that has $\sum_{e \in \operatorname{out}(v)} f(e) < \sum_{e \in \operatorname{into}(v)} f(e)$ is called an active node.

Definition:

A labelling is a function $\ell: V \to \mathbb{N}$. It is valid for preflow f if

• $\ell(u) \leq \ell(v) + 1$ for all edges in the residual graph G_f (only non-zero capacity edges!!!)

Definition:

A labelling is a function $\ell: V \to \mathbb{N}$. It is valid for preflow f if

- $\ell(u) \leq \ell(v) + 1$ for all edges in the residual graph G_f (only non-zero capacity edges!!!)
- $\blacktriangleright \ell(s) = n$

Definition:

A labelling is a function $\ell: V \to \mathbb{N}$. It is valid for preflow f if

- $\ell(u) \leq \ell(v) + 1$ for all edges in the residual graph G_f (only non-zero capacity edges!!!)
- $\blacktriangleright \ell(s) = n$
- $\ell(t) = 0$

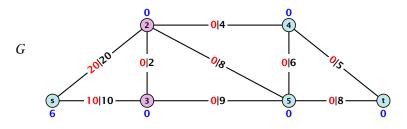
Definition:

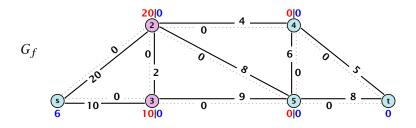
A labelling is a function $\ell: V \to \mathbb{N}$. It is valid for preflow f if

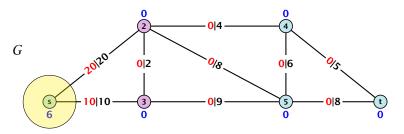
- $\ell(u) \leq \ell(v) + 1$ for all edges in the residual graph G_f (only non-zero capacity edges!!!)
- $\blacktriangleright \ell(s) = n$
- $\ell(t) = 0$

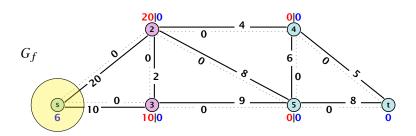
Intuition:

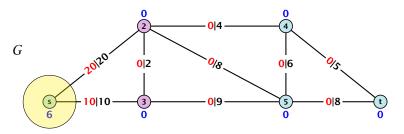
The labelling can be viewed as a height function. Whenever the height from node u to node v decreases by more than 1 (i.e., it goes very steep downhill from u to v), the corresponding edge must be saturated.

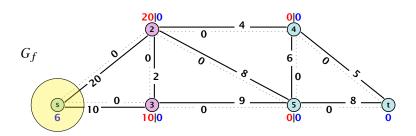












Lemma 66

A preflow that has a valid labelling saturates a cut.

Lemma 66

A preflow that has a valid labelling saturates a cut.

Proof:

▶ There are n nodes but n + 1 different labels from 0, ..., n.

Lemma 66

A preflow that has a valid labelling saturates a cut.

- ▶ There are n nodes but n + 1 different labels from 0, ..., n.
- ▶ There must exist a label $d \in \{0, ..., n\}$ such that none of the nodes carries this label.

Lemma 66

A preflow that has a valid labelling saturates a cut.

- ▶ There are n nodes but n + 1 different labels from 0, ..., n.
- ▶ There must exist a label $d \in \{0, ..., n\}$ such that none of the nodes carries this label.
- ▶ Let $A = \{v \in V \mid \ell(v) > d\}$ and $B = \{v \in V \mid \ell(v) < d\}$.

Lemma 66

A preflow that has a valid labelling saturates a cut.

- ▶ There are n nodes but n + 1 different labels from 0, ..., n.
- ▶ There must exist a label $d \in \{0, ..., n\}$ such that none of the nodes carries this label.
- ▶ Let $A = \{v \in V \mid \ell(v) > d\}$ and $B = \{v \in V \mid \ell(v) < d\}$.
- ▶ We have $s \in A$ and $t \in B$ and there is no edge from A to B in the residual graph G_f ; this means that (A,B) is a saturated cut.

Lemma 66

A preflow that has a valid labelling saturates a cut.

Proof:

- ▶ There are n nodes but n + 1 different labels from 0, ..., n.
- ▶ There must exist a label $d \in \{0, ..., n\}$ such that none of the nodes carries this label.
- ▶ Let $A = \{v \in V \mid \ell(v) > d\}$ and $B = \{v \in V \mid \ell(v) < d\}$.
- ▶ We have $s \in A$ and $t \in B$ and there is no edge from A to B in the residual graph G_f ; this means that (A,B) is a saturated cut.

Lemma 67

A flow that has a valid labelling is a maximum flow.

Idea:

start with some preflow and some valid labelling

Idea:

- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling

Idea:

- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling
- stop when you have a flow (i.e., no more active nodes)

An arc (u,v) with $c_f(u,v)>0$ in the residual graph is admissable if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow $f(u) = \sum_{e \in \text{into}(u)} f(e) - \sum_{e \in \text{out}(u)} f(e)$ and suppose e = (u, v) is an admissable arc with residual capacity $c_f(e)$.

- saturating push: $\min\{f(u),c_f(e)\}=c_f(e)$
- tile arc e is deleted itolii tile residual grapiili
- non-saturating push: $\min\{f(u),c_f(e)\}=f(u)$
 - the node u becomes inactive

An arc (u,v) with $c_f(u,v)>0$ in the residual graph is admissable if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow

$$f(u) = \sum_{e \in \operatorname{into}(u)} f(e) - \sum_{e \in \operatorname{out}(u)} f(e)$$
 and suppose $e = (u, v)$ is an admissable arc with residual capacity $c_f(e)$.

- * saturating push: $\min\{f(u),c_f(e)\}=c_f(e)$
- the arc e is deleted from the residual graph
- non-saturating posits $\min\{f(u),c_f(e)\}=f(u)$

An arc (u,v) with $c_f(u,v)>0$ in the residual graph is admissable if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node \boldsymbol{u} with excess flow

 $f(u) = \sum_{e \in \text{into}(u)} f(e) - \sum_{e \in \text{out}(u)} f(e)$ and suppose e = (u, v) is an admissable arc with residual capacity $c_f(e)$.

An arc (u,v) with $c_f(u,v)>0$ in the residual graph is admissable if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow

 $f(u) = \sum_{e \in \text{into}(u)} f(e) - \sum_{e \in \text{out}(u)} f(e)$ and suppose e = (u, v) is an admissable arc with residual capacity $c_f(e)$.

An arc (u,v) with $c_f(u,v)>0$ in the residual graph is admissable if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow $f(u) = \sum_{e \in \operatorname{into}(u)} f(e) - \sum_{e \in \operatorname{out}(u)} f(e)$ and suppose e = (u, v) is an admissable arc with residual capacity $c_f(e)$.

- ▶ saturating push: $min\{f(u), c_f(e)\} = c_f(e)$ the arc e is deleted from the residual graph
- non-saturating push: $\min\{f(u), c_f(e)\} = f(u)$ the node u becomes inactive

An arc (u,v) with $c_f(u,v)>0$ in the residual graph is admissable if $\ell(u)=\ell(v)+1$ (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow $f(u) = \sum_{e \in \operatorname{into}(u)} f(e) - \sum_{e \in \operatorname{out}(u)} f(e)$ and suppose e = (u, v) is an admissable arc with residual capacity $c_f(e)$.

- ▶ saturating push: $min\{f(u), c_f(e)\} = c_f(e)$ the arc e is deleted from the residual graph
- ► non-saturating push: $min\{f(u), c_f(e)\} = f(u)$ the node u becomes inactive

EADS

The relabel operation

Consider an active node \boldsymbol{u} that does not have an outgoing admissable arc.

The relabel operation

Consider an active node u that does not have an outgoing admissable arc.

Increasing the label of u by 1 results in a valid labelling.

The relabel operation

Consider an active node u that does not have an outgoing admissable arc.

Increasing the label of u by 1 results in a valid labelling.

► Edges (w, u) incoming to u still fulfill their constraint $\ell(w) \le \ell(u) + 1$.

The relabel operation

Consider an active node u that does not have an outgoing admissable arc.

Increasing the label of u by 1 results in a valid labelling.

- ▶ Edges (w,u) incoming to u still fulfill their constraint $\ell(w) \le \ell(u) + 1$.
- ▶ An outgoing edge (u, w) had $\ell(u) < \ell(w) + 1$ before since it was not admissable. Now: $\ell(u) \le \ell(w) + 1$.

Intuition:

We want to send flow downwards, since the source has a height/label of n and the target a height/label of 0. If we see an active node u with an admissible arc we push the flow at u towards the other end-point that has a lower height/label. If we do not have an admissible arc but excess flow into u it should roughly mean that the level/height/label of u should rise. (If we consider the flow to be water than this would be natural).

Note that the above intuition is very incorrect as the labels are integral, i.e., they cannot really be seen as the height of a node.


```
Algorithm 47 maxflow(G, s, t, c)

1: find initial preflow f

2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f, c)

5: else

6: relabel(u)

7: return f
```



```
Algorithm 47 \max flow(G, s, t, c)

1: find initial preflow f

2: while there is active node u do

3: if there is admiss. arc e out of u then

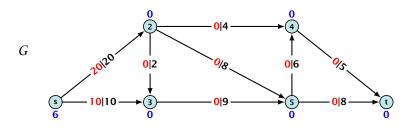
4: push(G, e, f, c)

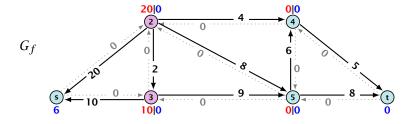
5: else

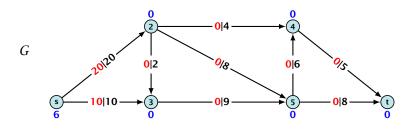
6: relabel(u)

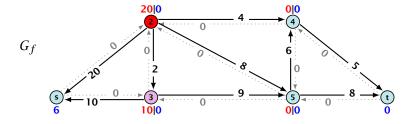
7: return f
```

In the following example we always stick to the same active node \boldsymbol{u} until it becomes inactive but this is not required.



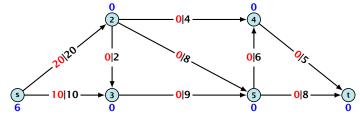


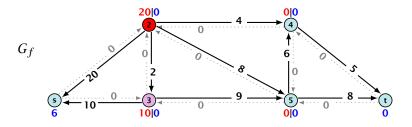


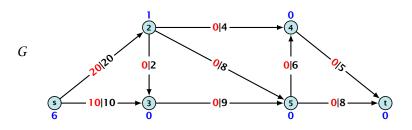


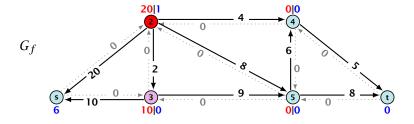
relabel

G

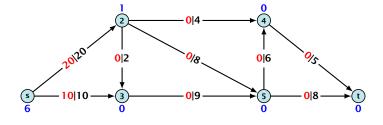


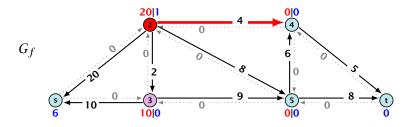


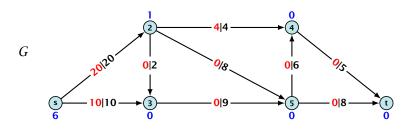


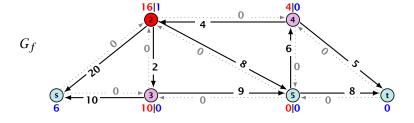


push

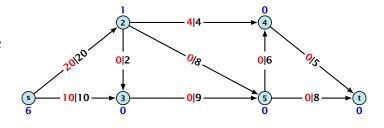


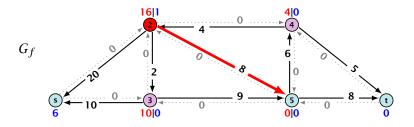


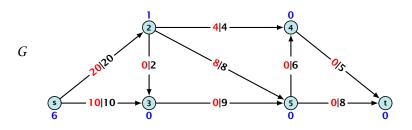


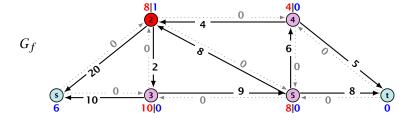


push

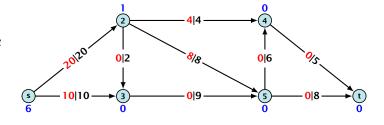


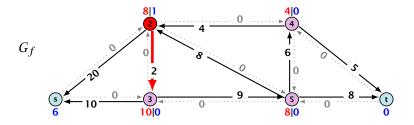


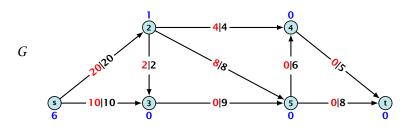


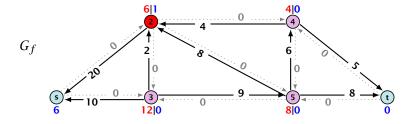


push

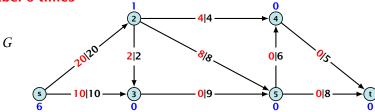


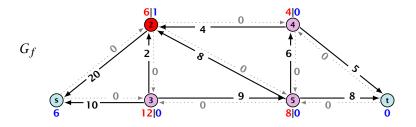


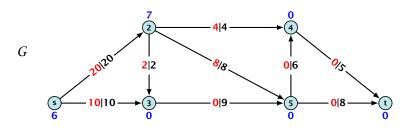


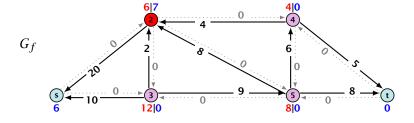


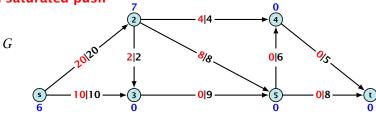
relabel 6 times

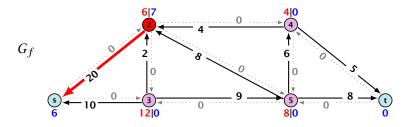


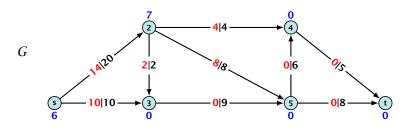


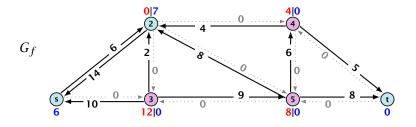


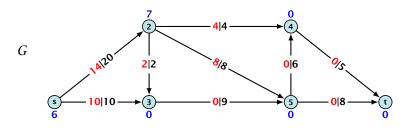


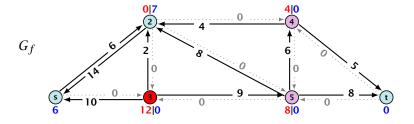




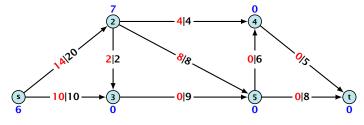


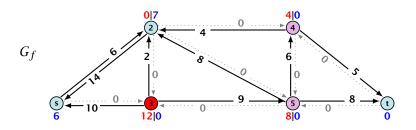


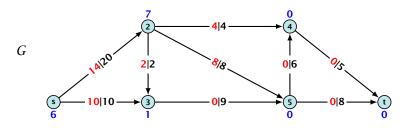


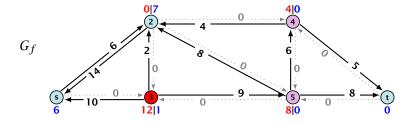


relabel

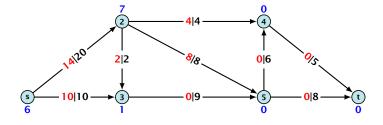


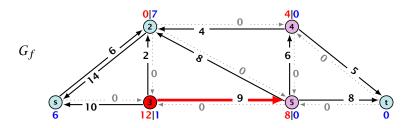


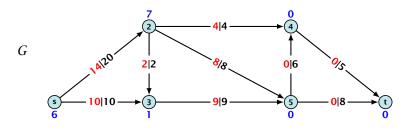


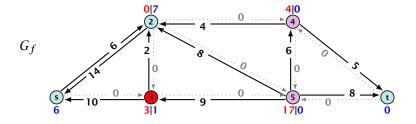


push

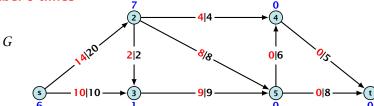


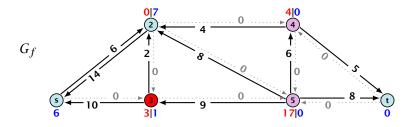


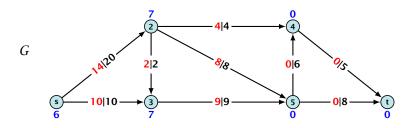


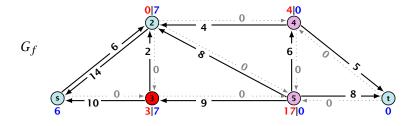


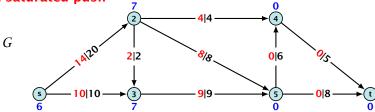
relabel 6 times

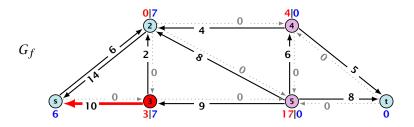


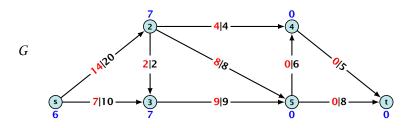


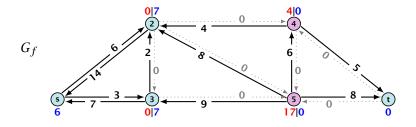


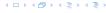


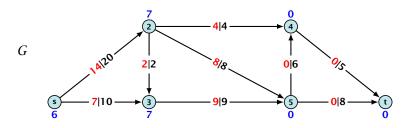


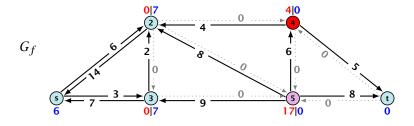




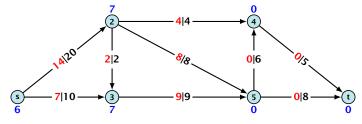


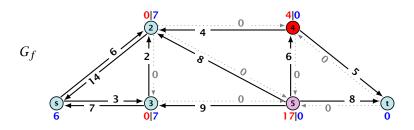


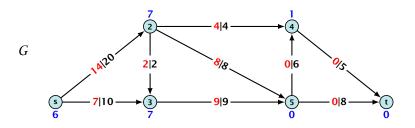


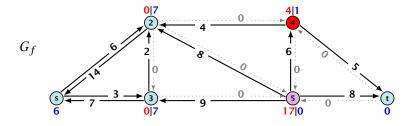


relabel

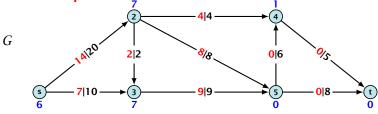


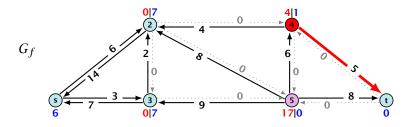


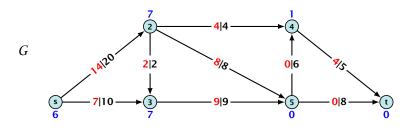


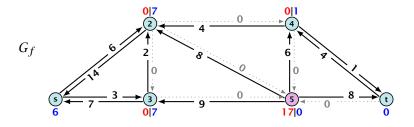


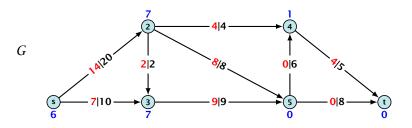
non-saturated push

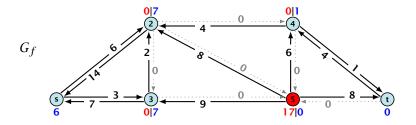






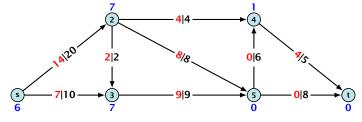


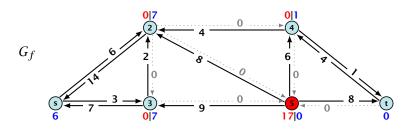


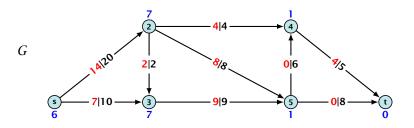


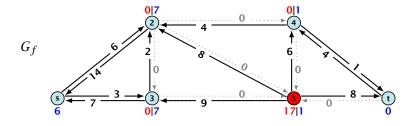
relabel

G

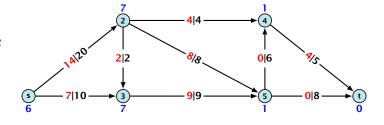


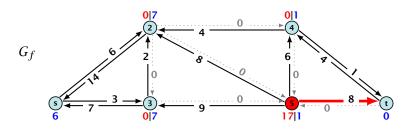


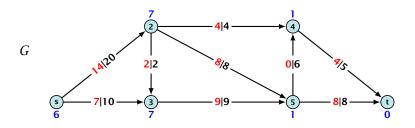


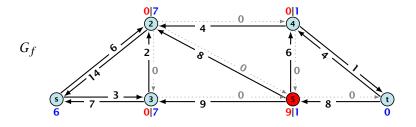


push

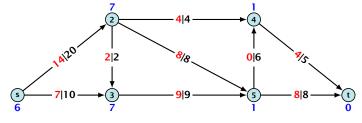


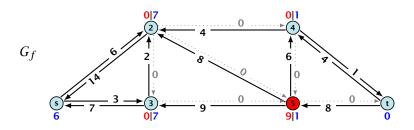


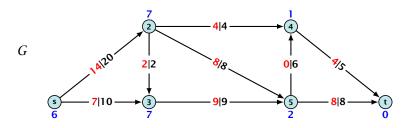


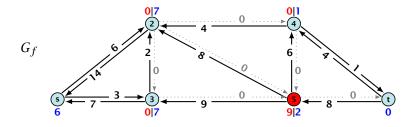


relabel

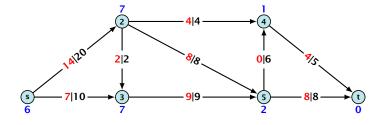


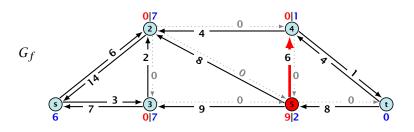


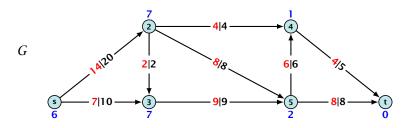


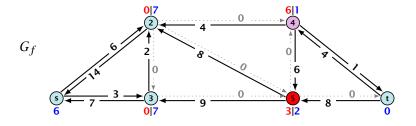


push

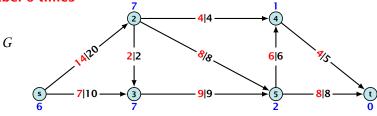


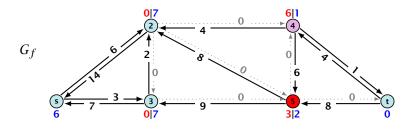


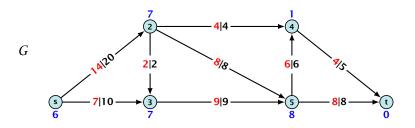


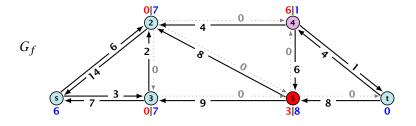


relabel 6 times

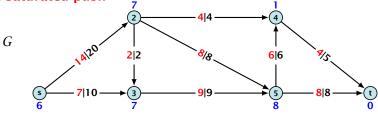


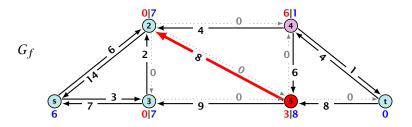


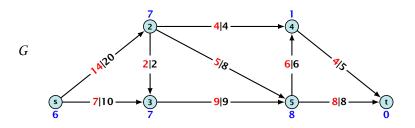


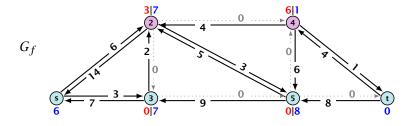


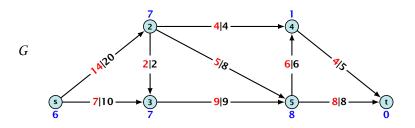
non-saturated push

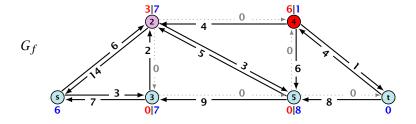




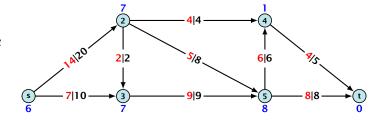


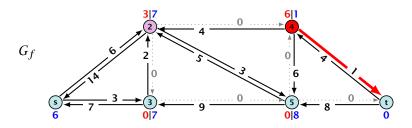


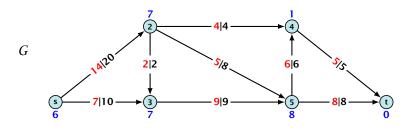


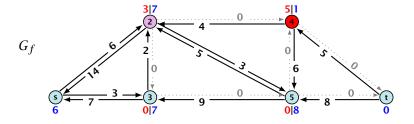


push

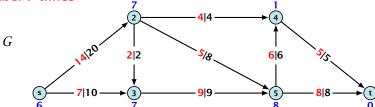


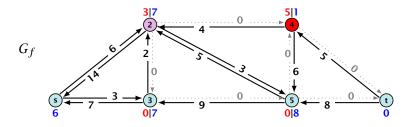


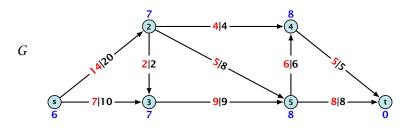


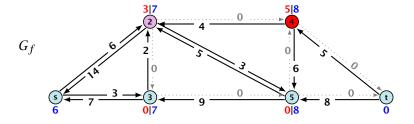


relabel 7 times

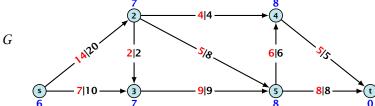


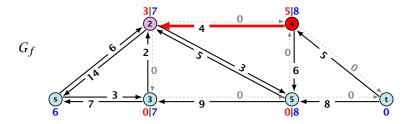


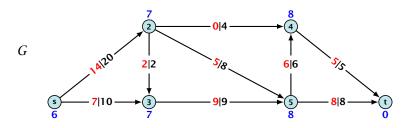


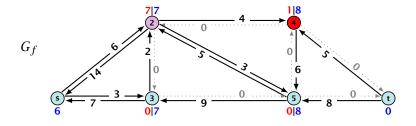


push



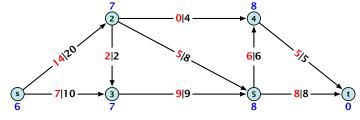


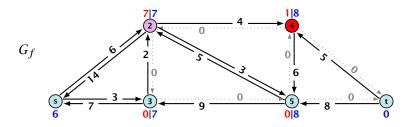


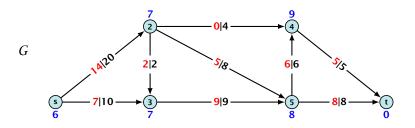


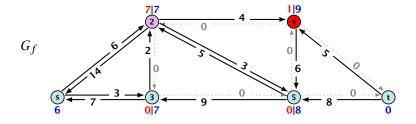
relabel

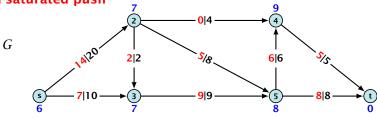
G

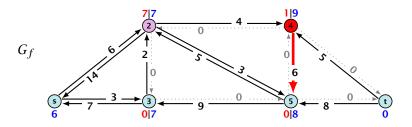


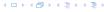


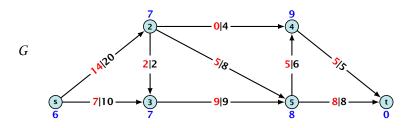


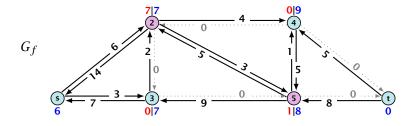


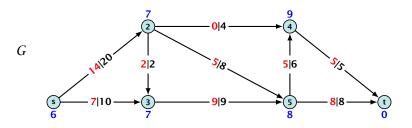


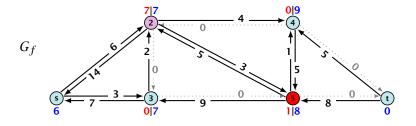




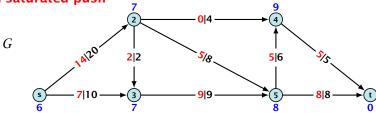


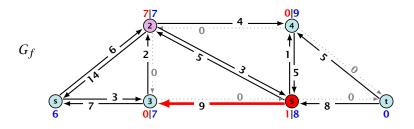


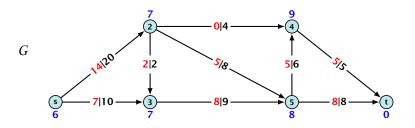


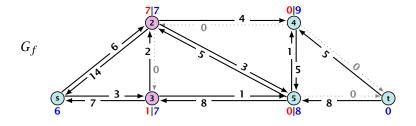


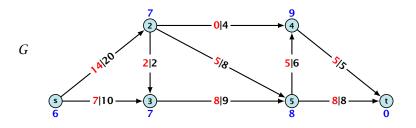
non-saturated push

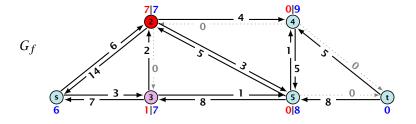


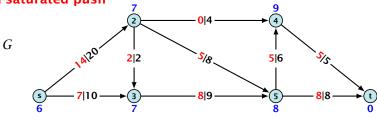


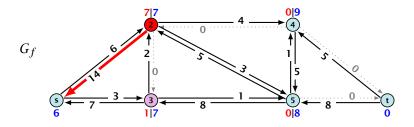




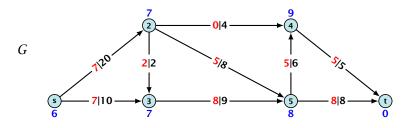


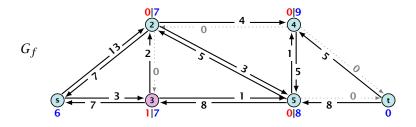


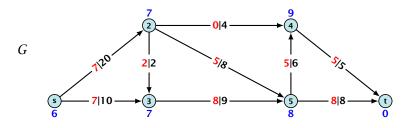


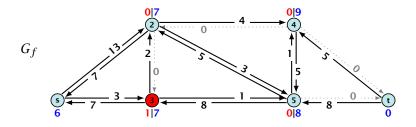




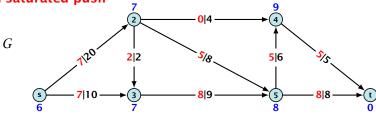


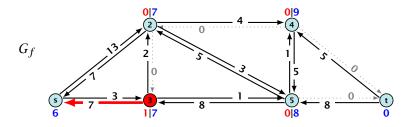


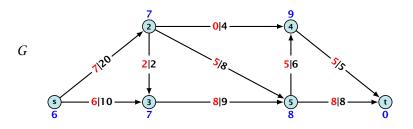


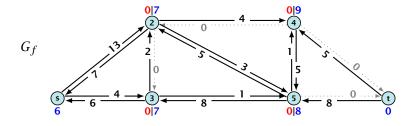


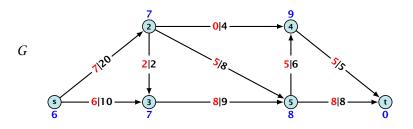
non-saturated push

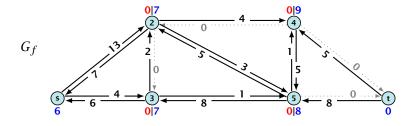












Lemma 68

An active node has a path to s in the residual graph.

Lemma 68

An active node has a path to s in the residual graph.

Proof.

Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.

Lemma 68

An active node has a path to s in the residual graph.

- Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- In the following we show that a node $b \in B$ has excess flow f(b) = 0 which gives the lemma.

Lemma 68

An active node has a path to s in the residual graph.

- Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- In the following we show that a node $b \in B$ has excess flow f(b) = 0 which gives the lemma.
- ▶ In the residual graph there are no edges into *A*, and, hence, no edges leaving *A*/entering *B* can carry any flow.

Lemma 68

An active node has a path to s in the residual graph.

- Let A denote the set of nodes that can reach s, and let B denote the remaining nodes. Note that $s \in A$.
- In the following we show that a node $b \in B$ has excess flow f(b) = 0 which gives the lemma.
- ► In the residual graph there are no edges into *A*, and, hence, no edges leaving *A*/entering *B* can carry any flow.
- ▶ Let $f(B) = \sum_{v \in B} f(v)$ be the excess flow of all nodes in B.

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$f(B) = \sum_{b \in B} f(b)$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \end{split}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \end{split}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \\ &= \sum_{b \in B} \sum_{v \in A} f(v, b) - \sum_{b \in B} \sum_{v \in A} f(b, v) + \sum_{b \in B} \sum_{v \in B} f(v, b) - \sum_{b \in B} \sum_{v \in B} f(b, v) \end{split}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$f(B) = \sum_{b \in B} f(b)$$

$$= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right)$$

$$= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right)$$

$$= \sum_{b \in B} \sum_{v \in A} f(v, b) - \sum_{b \in B} \sum_{v \in A} f(b, v) + \sum_{b \in B} \sum_{v \in B} f(v, b) - \sum_{b \in B} \sum_{v \in B} f(b, v)$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \\ &= \sum_{b \in B} \sum_{v \in A} f(v, b) - \sum_{b \in B} \sum_{v \in A} f(b, v) \end{split}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \\ &= \sum_{b \in B} \sum_{v \in A} \underbrace{f(v, b)}_{v \in A} - \sum_{b \in B} \sum_{v \in A} f(b, v) \end{split}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$f(B) = \sum_{b \in B} f(b)$$

$$= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right)$$

$$= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right)$$

$$= \sum_{b \in B} \sum_{v \in A} f(v, b) - \sum_{b \in B} \sum_{v \in A} f(b, v)$$

$$= 0$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \\ &= - \sum_{b \in B} \sum_{v \in A} f(b, v) \end{split}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$f(B) = \sum_{b \in B} f(b)$$

$$= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right)$$

$$= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right)$$

$$= -\sum_{b \in B} \sum_{v \in A} f(b, v)$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \\ &= -\sum_{b \in B} \sum_{v \in A} f(b, v) \\ &\leq 0 \end{split}$$

$$f(x,y) = \begin{cases} 0 & (x,y) \notin E \\ f((x,y)) & (x,y) \in E \end{cases}$$

We have

$$\begin{split} f(B) &= \sum_{b \in B} f(b) \\ &= \sum_{b \in B} \left(\sum_{v \in V} f(v, b) - \sum_{v \in V} f(b, v) \right) \\ &= \sum_{b \in B} \left(\sum_{v \in A} f(v, b) + \sum_{v \in B} f(v, b) - \sum_{v \in A} f(b, v) - \sum_{v \in B} f(b, v) \right) \\ &= -\sum_{b \in B} \sum_{v \in A} f(b, v) \\ &\leq 0 \end{split}$$

Hence, the excess flow f(b) must be 0 for every node $b \in B$.

Lemma 69

The label of a node cannot become larger than 2n-1.

Proof.

Mhen increasing the label at a node u there exists a path from u to s of length at most n-1. Along each edge of the path the height/label can at most drop by 1, and the label of the source is n.

Lemma 70

There are only $\mathcal{O}(n^3)$ calls to discharge when using the relabel-to-front heuristic.

Proof.

▶ When increasing the label at a node u there exists a path from u to s of length at most n-1. Along each edge of the path the height/label can at most drop by 1, and the label of the source is n.

The number of saturating pushes performed is at most O(mn).

The number of saturating pushes performed is at most O(mn).

Proof.

▶ Suppose that we just made a saturating push along (u, v).

The number of saturating pushes performed is at most O(mn).

- ▶ Suppose that we just made a saturating push along (u, v).
- ▶ Hence, the edge (u, v) is deleted from the residual graph.

The number of saturating pushes performed is at most O(mn).

- Suppose that we just made a saturating push along (u, v).
- ▶ Hence, the edge (u, v) is deleted from the residual graph.
- \blacktriangleright For the edge to appear again, a push from v to u is required.

The number of saturating pushes performed is at most O(mn).

- Suppose that we just made a saturating push along (u, v).
- ▶ Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.
- ► Currently, $\ell(u) = \ell(v) + 1$, as we only make pushes along admissable edges.

The number of saturating pushes performed is at most O(mn).

- Suppose that we just made a saturating push along (u, v).
- ▶ Hence, the edge (u, v) is deleted from the residual graph.
- For the edge to appear again, a push from v to u is required.
- ► Currently, $\ell(u) = \ell(v) + 1$, as we only make pushes along admissable edges.
- For a push from v to u the edge (v, u) must become admissable. The label of v must increase by at least 2.

The number of saturating pushes performed is at most O(mn).

- Suppose that we just made a saturating push along (u, v).
- ▶ Hence, the edge (u, v) is deleted from the residual graph.
- ▶ For the edge to appear again, a push from *v* to *u* is required.
- ► Currently, $\ell(u) = \ell(v) + 1$, as we only make pushes along admissable edges.
- For a push from v to u the edge (v, u) must become admissable. The label of v must increase by at least 2.
- Since the label of v is at most 2n-1, there are at most n pushes along (u,v).

The number of non-saturating pushes performed is at most $O(n^2m)$.

The number of non-saturating pushes performed is at most $\mathcal{O}(n^2m)$.

Proof.

▶ Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$

The number of non-saturating pushes performed is at most $\mathcal{O}(n^2m)$.

Proof.

- ▶ Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$
- A saturating push increases Φ by at most 2n.

The number of non-saturating pushes performed is at most $\mathcal{O}(n^2m)$.

Proof.

- ▶ Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$
- A saturating push increases Φ by at most 2n.
- A relabel increases Φ by at most 1.

The number of non-saturating pushes performed is at most $\mathcal{O}(n^2m)$.

Proof.

- ▶ Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$
- A saturating push increases Φ by at most 2n.
- A relabel increases Φ by at most 1.
- A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.

The number of non-saturating pushes performed is at most $\mathcal{O}(n^2m)$.

Proof.

- ▶ Define a potential function $\Phi(f) = \sum_{\text{active nodes } v} \ell(v)$
- A saturating push increases Φ by at most 2n.
- A relabel increases Φ by at most 1.
- A non-saturating push decreases Φ by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.
- Hence,

#non-saturating_pushes \leq #relabels + $2n \cdot$ #saturating_pushes $\leq \mathcal{O}(n^2m)$.

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

check whether \(u \) becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

» check for all outgoing edges if they become admissable

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

» check for all outgoing edges if they become admissable

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- check whether edge (v, u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time O(n)

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- lacktriangle check whether edge (v,u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time O(n)

check for all outgoing edges if they become admissable

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- lacktriangle check whether edge (v,u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time $\mathcal{O}(n)$

There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- lacktriangle check whether edge (v,u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time O(n)

- check for all outgoing edges if they become admissable
- check for all incoming edges if they become non-admissable



There is an implementation of the generic push relabel algorithm with running time $\mathcal{O}(n^2m)$.

For every node maintain a list of admissable edges starting at that node. Further maintain a list of active nodes.

A push along an edge (u, v) can be performed in constant time

- lacktriangle check whether edge (v,u) needs to be added to G_f
- check whether (u, v) needs to be deleted (saturating push)
- check whether u becomes inactive and has to be deleted from the set of active nodes

A relabel at a node u can be performed in time O(n)

- check for all outgoing edges if they become admissable
- check for all incoming edges if they become non-admissable

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph G_f). Then we use the discharge-operation:

```
Algorithm 48 discharge(u)
 1: while u is active do
        v \leftarrow u.current-neighbour
2:
        if v = \text{null then}
3:
              relabel(u)
4:
              u.current-neighbour ← u.neighbour-list-head
5:
         else
6.
              if (u, v) admissable then push(u, v)
7:
              else u.current-neighbour \leftarrow v.next-in-list
 8:
```


Lemma 73

If v = null in line 3, then there is no outgoing admissable edge from u.

The lemma holds because push- and relabel-operations on nodes different from \boldsymbol{u} cannot make edges outgoing from \boldsymbol{u} admissable.

This shows that discharge(u) is correct, and that we can perform a relabel in line 4.

Algorithm 49 relabel-to-front(G, s, t)

- 1: initialize preflow
- 2: initialize node list L containing $V \setminus \{s, t\}$ in any order
- 3: **foreach** $u \in V \setminus \{s, t\}$ **do**
- 4: $u.current-neighbour \leftarrow u.neighbour-list-head$
- 5: *u* ← *L*.head
- 6: while $u \neq \text{null do}$
- 7: $old\text{-}height \leftarrow \ell(u)$
- 8: discharge(u)
- 9: **if** $\ell(u) > old\text{-}height$ **then**
- 10: move u to the front of L
- 11: $u \leftarrow u.next$

Lemma 74 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant holds.

- 1. The sequence L is topologically sorted w.r.t. the set of admissable edges; this means for an admissable edge (x,y) the node x appears before y in sequence L.
- 2. No node before u in the list L is active.

Proof:

Initialization:

- 1. In the beginning s has label $n \ge 2$, and all other nodes have label 0. Hence, no edge is admissable, which means that any ordering L is permitted.
- 2. We start with u being the head of the list; hence no node before u can be active

Maintenance:

- Pushes do no create any new admissable edges. Therefore, not relabeling u leaves L topologically sorted.
 - After relabeling, u cannot have admissable incoming edges as such an edge (x, u) would have had a difference $\ell(x) \ell(u) \ge 2$ before the re-labeling (such edges do not exist in the residual graph).

Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissable edges leaving u that were generated by the relabeling.

Proof:

- Maintenance:
 - 2. If we do a relabel there is nothing to prove because the only node before u' (u in the next iteration) will be the current u; the discharge(u) operation only terminates when u is not active anymore.

For the case that we do a relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissable arc. However, all admissable arc point to successors of u.

Note that the invariant for u = null means that we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

Lemma 75

There are at most $O(n^3)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have u = null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#relabels + 1) = O(n^3)$.

Lemma 76

The cost for all relabel-operations is only $O(n^2)$.

A relabel-operation at a node is constant time (increasing the label and resetting u.current-neighbour). In total we have $\mathcal{O}(n^2)$ relabel-operations.

Note that by definition a saturing push operation $(\min\{c_f(e),f(u)\}=c_f(e))$ can at the same time be a non-saturating push operation $(\min\{c_f(e),f(u)\}=f(u))$.

Lemma 77

The cost for all saturating push-operations that are **not** also non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most $\mathcal{O}(n)$ times (upper bound on number of relabels) and the neighbour-list has only degree(u) + 1 many entries (+1 for null-entry).

Lemma 78

The cost for all non-saturating push-operations is only $O(n^3)$.

A non-saturating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}(n^3)$ such operations.

Theorem 79

The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}(n^3)$.

Algorithm 50 highest-label (G, s, t)

- 1: initialize preflow
- 2: foreach $u \in V \setminus \{s, t\}$ do
- 3: $u.current-neighbour \leftarrow u.neighbour-list-head$
- 4: **while** \exists active node u **do**
- select active node u with highest label
- 6: $\operatorname{discharge}(u)$

Lemma 80

When using highest label the number of non-saturating pushes is only $\mathcal{O}(n^3)$.

After a non-saturating push from u a relabel is required to make a currently non-active node x, with $\ell(x) \ge \ell(u)$ active again (note that this includes u).

Hence, after n non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#relabels + 1) = O(n^3)$.

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $\mathcal{O}(n^3)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of relabel-to-front.

Question:

How do we find the next node for a discharge operation?

Maintain lists L_i , $i \in \{0, ..., 2n\}$, where list L_i contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $k-1,\ldots,0$, (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list k-1 must be non-empty (i.e., the search takes constant time).

Hence, the total time required for searching for active nodes is at most

$$O(n^3) + n(\#non\text{-}saturating\text{-}pushes\text{-}to\text{-}s\text{-}or\text{-}t)$$

Lemma 81

The number of non-saturating pushes to s or t is at most $O(n^2)$.

With this lemma we get

Theorem 82

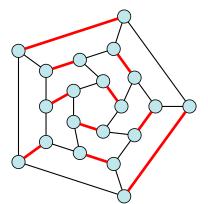
The push-relabel algorithm with the rule highest-label takes time $\mathcal{O}(n^3)$.

Proof of the Lemma.

- ▶ We only show that the number of pushes to the source is at most $\mathcal{O}(n^2)$. A similar argument holds for the target.
- After a node v (which must have $\ell(v) = n+1$) made a non-saturating push to the source there needs to be another node whose label is increased from $\leq n+1$ to n+2 before v can become active again.
- This happens for every push that v makes to the source. Since, every node can pass the threshold n + 2 at most once, v can make at most n pushes to the source.
- As this holds for every node the total number of pushes to the source is at most $\mathcal{O}(n^2)$.

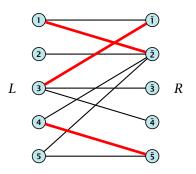
Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



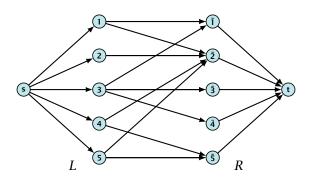
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Maxflow Formulation

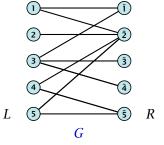
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- ▶ Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.

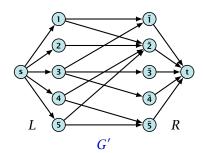


Proof

Max cardinality matching in $G \leq \text{value of maxflow in } G'$

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

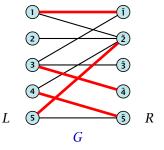


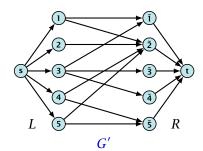


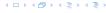
Proof

Max cardinality matching in $G \leq \text{value of maxflow in } G'$

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



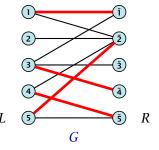


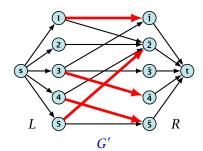


Proof

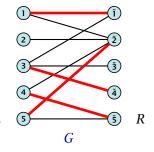
Max cardinality matching in $G \leq \text{value of maxflow in } G'$

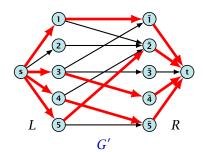
- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



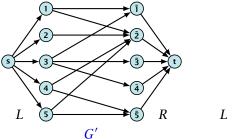


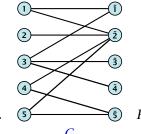
- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



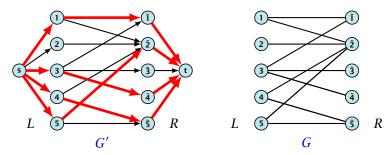


- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.



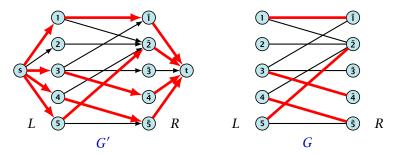


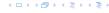
- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.



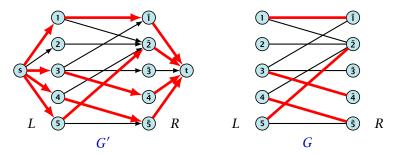


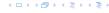
- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.





- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.





14.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	-	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	-	0
Montreal	77	82	1	2	0	-

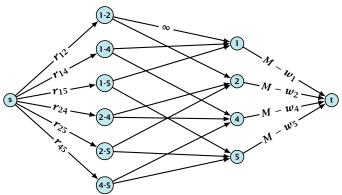
Which team can end the season with most wins?

- ► Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

Formal definition of the problem:

- ▶ Given a set S of teams, and one specific team $z \in S$.
- ▶ Team x has already won w_x games.
- ▶ Team x still has to play team y, r_{xy} times.
- ▶ Does team z still have a chance to finish with the most number of wins.

Flow networks for z = 3. M is number of wins Team 3 can still obtain.



Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$
 wins of teams in T

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Theorem 83

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i,j \in S \setminus \{z\}, i < j} r_{i,j}$.

Proof (←)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- ▶ If for a node x-y not both team nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(S, V \setminus S)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

► This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- ► The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- ▶ This is less than $M w_{\chi}$ because of capacity constraints.
- ► Hence, we found a set of results for the remaining games, such that no team obtains more than *M* wins in total.
- Hence, team z is not eliminated.

Project Selection

Project selection problem:

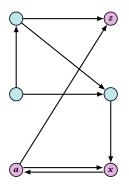
- Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- ▶ Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ▶ A subset *A* of projects is feasible if the prerequisites of every project in *A* also belong to *A*.

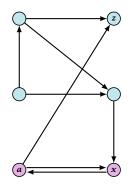
Goal: Find a feasible set of projects that maximizes the profit.

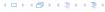
Project Selection

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.



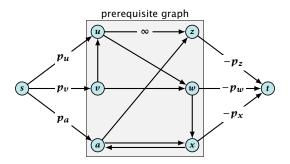




Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- ► Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.

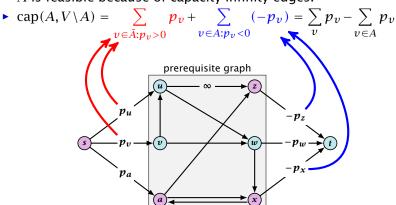


Theorem 84

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

► *A* is feasible because of capacity infinity edges.



min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E: 0 \le f(e) \le u(e)$

$$\forall v \in V: \ f(v) = b(v)$$

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E: \quad 0 \leq f(e) \leq u(e) \\ & \quad \forall v \in V: \quad f(v) = b(v) \end{aligned}$$

- G = (V, E) is an oriented graph.
- ▶ $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- ▶ $c: E \to \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E: \quad 0 \leq f(e) \leq u(e) \\ & \quad \forall v \in V: \quad f(v) = b(v) \end{aligned}$$

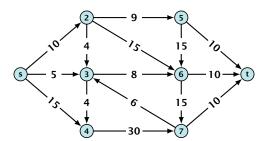
- G = (V, E) is an oriented graph.
- ▶ $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- ▶ $c: E \to \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E: \quad 0 \leq f(e) \leq u(e) \\ & \quad \forall v \in V: \quad f(v) = b(v) \end{aligned}$$

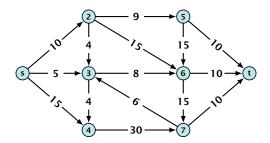
- G = (V, E) is an oriented graph.
- ▶ $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- ▶ $c: E \to \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E: \quad 0 \leq f(e) \leq u(e) \\ & \quad \forall v \in V: \quad f(v) = b(v) \end{aligned}$$

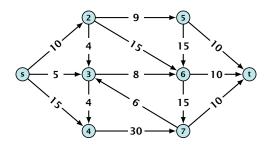
- G = (V, E) is an oriented graph.
- ▶ $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$ is the capacity function.
- ▶ $c: E \to \mathbb{R}$ is the cost function (note that c(e) may be negative).
- ▶ $b: V \to \mathbb{R}$, $\sum_{v \in V} b(v) = 0$ is a demand function.



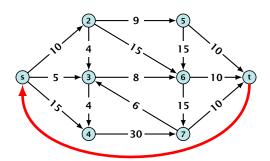




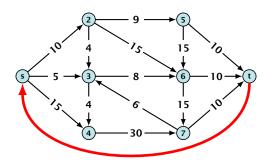
• Given a flow network for a standard maxflow problem.



- Given a flow network for a standard maxflow problem.
- ► Set b(v) = 0 for every node. Keep the capacity function u for all edges. Set the cost c(e) for every edge to 0.



- Given a flow network for a standard maxflow problem.
- Set b(v) = 0 for every node. Keep the capacity function u for all edges. Set the cost c(e) for every edge to 0.
- ▶ Add an edge from t to s with infinite capacity and cost -1.



- Given a flow network for a standard maxflow problem.
- Set b(v) = 0 for every node. Keep the capacity function u for all edges. Set the cost c(e) for every edge to 0.
- ▶ Add an edge from t to s with infinite capacity and cost -1.
- ► Then, $val(f^*) = -cost(f_{min})$, where f^* is a maxflow, and f_{min} is a mincost-flow.

- Given a flow network for a standard maxflow problem, and a value k.
- Set b(v) = 0 for every node apart from s or t. Set b(s) = -k and b(t) = k.
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value k if and only if the mincost-flow problem is feasible.

- Given a flow network for a standard maxflow problem, and a value k.
- ▶ Set b(v) = 0 for every node apart from s or t. Set b(s) = -k and b(t) = k.
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value k if and only if the mincost-flow problem is feasible.

- Given a flow network for a standard maxflow problem, and a value k.
- ▶ Set b(v) = 0 for every node apart from s or t. Set b(s) = -k and b(t) = k.
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value k if and only if the mincost-flow problem is feasible.

- Given a flow network for a standard maxflow problem, and a value k.
- ▶ Set b(v) = 0 for every node apart from s or t. Set b(s) = -k and b(t) = k.
- Set edge-costs to zero, and keep the capacities.
- ► There exists a maxflow of value *k* if and only if the mincost-flow problem is feasible.

Generalization

Our model:

min
$$\sum_{e} c(e) f(e)$$

s.t. $\forall e \in E: 0 \le f(e) \le u(e)$
 $\forall v \in V: f(v) = b(v)$

where
$$b: V \to \mathbb{R}$$
, $\sum_{v} b(v) = 0$; $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$; $c: E \to \mathbb{R}$;

A more general model?

$$\begin{array}{ll} \min & \sum_e c(e) f(e) \\ \text{s.t.} & \forall e \in E: \ \ell(e) \leq f(e) \leq u(e) \\ & \forall v \in V: \ a(v) \leq f(v) \leq b(v) \end{array}$$

where $a: V \to \mathbb{R}, b: V \to \mathbb{R}; \ell: E \to \mathbb{R} \cup \{-\infty\}, u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$:

Generalization

Our model:

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E: \quad 0 \leq f(e) \leq u(e) \\ & \quad \forall v \in V: \quad f(v) = b(v) \end{aligned}$$

where
$$b: V \to \mathbb{R}$$
, $\sum_{v} b(v) = 0$; $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$; $c: E \to \mathbb{R}$;

A more general model?

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E: \ \ell(e) \leq f(e) \leq u(e) \\ & \quad \forall v \in V: \ a(v) \leq f(v) \leq b(v) \end{aligned}$$

where $a: V \to \mathbb{R}$, $b: V \to \mathbb{R}$; $\ell: E \to \mathbb{R} \cup \{-\infty\}$, $u: E \to \mathbb{R} \cup \{\infty\}$ $c: E \to \mathbb{R}$;

min
$$\sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E$$
: $\ell(e) \le f(e) \le u(e)$

$$\forall v \in V: \ a(v) \leq f(v) \leq b(v)$$

We can assume that a(v) = b(v):

$$\begin{aligned} & \min \quad \sum_{e} c(e) f(e) \\ & \text{s.t.} \quad \forall e \in E : \ \ell(e) \leq f(e) \leq u(e) \end{aligned}$$

$$\forall v \in V: \ a(v) \leq f(v) \leq b(v)$$

We can assume that a(v) = b(v):

$$\min \ \sum_e c(e) f(e)$$

s.t.
$$\forall e \in E$$
: $\ell(e) \le f(e) \le u(e)$

$$\forall v \in V: \ a(v) \leq f(v) \leq b(v)$$

We can assume that a(v) = b(v):

Add new node r

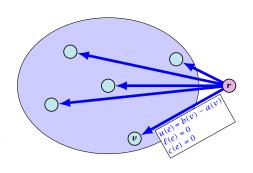
Add edge (r, v) for all $v \in V$.

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$

Set $b(r) = \sum_{v \in V} b(v)$.



$$\min \ \sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E : \ell(e) \le f(e) \le u(e)$$

$$\forall v \in V: \ a(v) \le f(v) \le b(v)$$

We can assume that a(v) = b(v):

Add new node r.

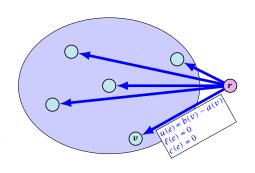
Add edge (r, v) for all $v \in V$.

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$

Set $b(r) = \sum_{v \in V} b(v)$.



$$\min \ \sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E$$
: $\ell(e) \le f(e) \le u(e)$

$$\forall v \in V: \ a(v) \le f(v) \le b(v)$$

We can assume that a(v) = b(v):

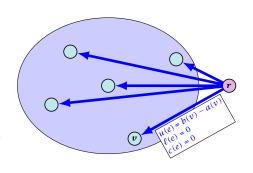
Add new node r.

 $\text{Add edge } (r,v) \text{ for all } v \in V.$

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$



$$\min \ \sum_e c(e) f(e)$$

s.t.
$$\forall e \in E$$
: $\ell(e) \le f(e) \le u(e)$

$$\forall v \in V : \ a(v) \le f(v) \le b(v)$$

We can assume that a(v) = b(v):

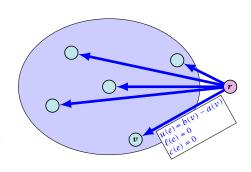
Add new node r.

 $\text{Add edge } (r,v) \text{ for all } v \in V.$

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$



$$\min \ \sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E$$
: $\ell(e) \le f(e) \le u(e)$

$$\forall v \in V: \ a(v) \le f(v) \le b(v)$$

We can assume that a(v) = b(v):

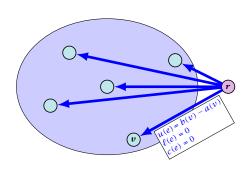
Add new node r.

 $\text{Add edge } (r,v) \text{ for all } v \in V.$

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$.



min
$$\sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E : \ell(e) \le f(e) \le u(e)$$

$$\forall v \in V : \ a(v) \le f(v) \le b(v)$$

We can assume that a(v) = b(v):

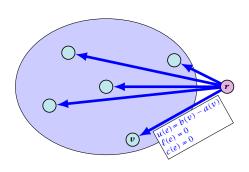
Add new node r.

 $\text{Add edge } (r,v) \text{ for all } v \in V.$

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$.



min
$$\sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E : \ell(e) \le f(e) \le u(e)$$

$$\forall v \in V : \ a(v) \le f(v) \le b(v)$$

We can assume that a(v) = b(v):

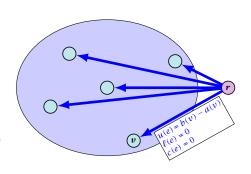
Add new node r.

 $\text{Add edge } (r,v) \text{ for all } v \in V.$

Set $\ell(e) = c(e) = 0$ for these edges.

Set u(e) = b(v) - a(v) for edge (r, v).

Set a(v) = b(v) for all $v \in V$.

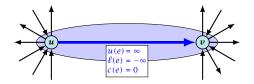


min
$$\sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E$$
: $\ell(e) \le f(e) \le u(e)$

$$\forall v \in V: \ f(v) = b(v)$$

We can assume that either $\ell(e) \neq -\infty$ or $u(e) \neq \infty$:



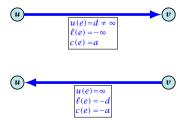
If c(e) = 0 we can simply contract the edge/identify nodes u and v

$$\min \ \sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E$$
: $\ell(e) \le f(e) \le u(e)$

$$\forall v \in V: \ f(v) = b(v)$$

We can assume that $\ell(e) \neq -\infty$:



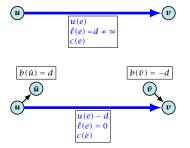
Replace the edge by an edge in opposite direction.

$$\min \ \sum_{e} c(e) f(e)$$

s.t.
$$\forall e \in E : \ell(e) \le f(e) \le u(e)$$

$$\forall v \in V : f(v) = b(v)$$

We can assume that $\ell(e) = 0$:



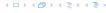
The added edges have infinite capacity and cost c(e)/2.

- She needs to supply r_i napkins on N successive days.
- \triangleright She can buy new napkins at p cents each
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- ► Minimize cost.

- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfil demand.
- ▶ Minimize cost.



- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

Residual Graph

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity z and a cost of -c((u,v)).

Residual Graph

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity z and a cost of -c((u,v)).

A circulation in a graph G=(V,E) is a function $f:E\to\mathbb{R}^+$ that has an excess flow f(v)=0 for every node $v\in V$ (G may be a directed graph instead of just an oriented graph).

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of G.

A circulation in a graph G=(V,E) is a function $f:E\to\mathbb{R}^+$ that has an excess flow f(v)=0 for every node $v\in V$ (G may be a directed graph instead of just an oriented graph).

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of G.

Lemma 85

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

Lemma 85

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

 \Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

```
Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost
```

← Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible circulation with negative cost.

Lemma 85

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

 \Rightarrow Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f+g is a feasible flow with cost $\cos(f)+\cos(g)<\cos(f)$. Hence, f is not minimum cost.

 \Leftarrow Let f be a non-mincost flow, and let f^* be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Lemma 85

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f+g is a feasible flow with cost $\cos(f)+\cos(g)<\cos(f)$. Hence, f is not minimum cost.

← Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph.

Lemma 85

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f+g is a feasible flow with cost cost(f)+cost(g)< cost(f). Hence, f is not minimum cost.

 \leftarrow Let f be a non-mincost flow, and let f^* be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c: E \to \mathbb{R}$.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost
- Repeat.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost
- Repeat.

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost
- Repeat.

Lemma 86

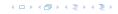
A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

Lemma 86

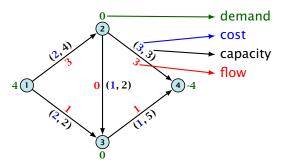
A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

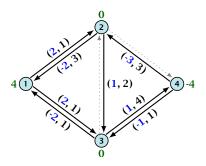
- Suppose that we have a negative cost circulation.
- Find directed path only using edges that have non-zero flow.
- If this path has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.

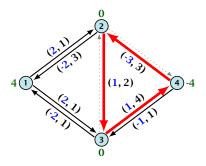


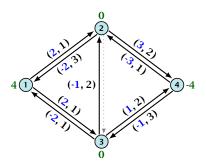
Algorithm 51 CycleCanceling(G = (V, E), c, u, b)

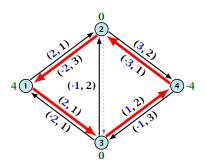
- 1: establish a feasible flow f in G
- 2: while G_f contains negative cycle do
- 3: use Bellman-Ford to find a negative circuit Z
- 4: $\delta \leftarrow \min\{u_f(e) \mid e \in Z\}$
- 5: augment δ units along Z and update G_f



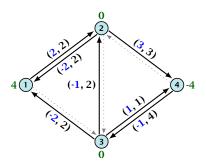








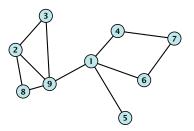
15 Mincost Flow

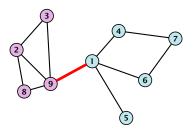


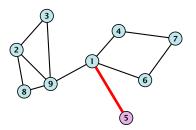
15 Mincost Flow

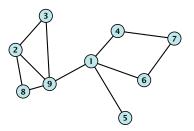
Lemma 87

The improving cycle algorithm runs in time $O(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \le C$ and $|u(e)| \le U$.







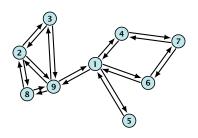


We can solve this problem using standard maxflow/mincut.



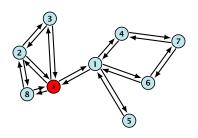
We can solve this problem using standard maxflow/mincut.

► Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.



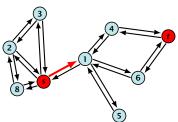
We can solve this problem using standard maxflow/mincut.

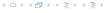
- ► Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- Fix an arbitrary node $s \in V$ as source. Compute a minimum s-t cut for all possible choices $t \in V$, $t \neq s$. (Time: $O(n^4)$)



We can solve this problem using standard maxflow/mincut.

- ► Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- Fix an arbitrary node $s \in V$ as source. Compute a minimum s-t cut for all possible choices $t \in V$, $t \neq s$. (Time: $\mathcal{O}(n^4)$)
- Let $(S, V \setminus S)$ be a minimum global mincut. The above algorithm will output a cut of capacity $cap(S, V \setminus S)$ whenever $|\{s,t\} \cap S| = 1$.





- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88

- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88

- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

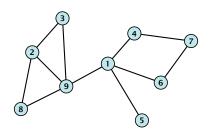
Example 88

- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88

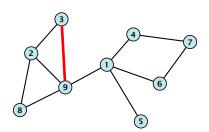
- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88



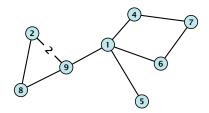
- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88



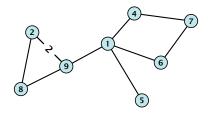
- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88



- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88



We can perform an edge-contraction in time O(n).

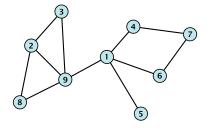
- 1: **for** $i = 1 \rightarrow n 2$ **do**
- 2: choose $e \in E$ randomly with probability c(e)/C(E)
- 3: $G \leftarrow G/e$
- 4: **return** only cut in *G*

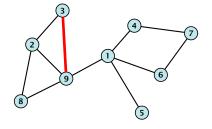
- 1: **for** $i = 1 \rightarrow n 2$ **do**
- 2: choose $e \in E$ randomly with probability c(e)/C(E)
- 3: $G \leftarrow G/e$
- 4: **return** only cut in *G*
- Let G_t denote the graph after the (n-t)-th iteration, when t nodes are left.

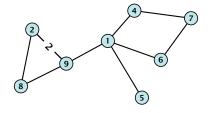
- 1: **for** $i = 1 \rightarrow n 2$ **do**
- 2: choose $e \in E$ randomly with probability c(e)/C(E)
- 3: $G \leftarrow G/e$
- 4: **return** only cut in *G*
- Let G_t denote the graph after the (n-t)-th iteration, when t nodes are left.
- ▶ Note that the final graph G_2 only contains a single edge.

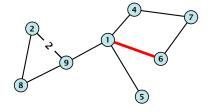
- 1: **for** $i = 1 \rightarrow n 2$ **do**
- 2: choose $e \in E$ randomly with probability c(e)/C(E)
- 3: $G \leftarrow G/e$
- 4: **return** only cut in *G*
- Let G_t denote the graph after the (n-t)-th iteration, when t nodes are left.
- ▶ Note that the final graph G_2 only contains a single edge.
- ► The cut in *G*² corresponds to a cut in the original graph *G* with the same capacity.

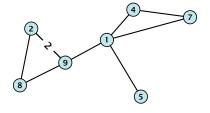
- 1: **for** $i = 1 \rightarrow n 2$ **do**
- 2: choose $e \in E$ randomly with probability c(e)/C(E)
- 3: $G \leftarrow G/e$
- 4: **return** only cut in G
- Let G_t denote the graph after the (n-t)-th iteration, when t nodes are left.
- ▶ Note that the final graph G_2 only contains a single edge.
- ► The cut in G₂ corresponds to a cut in the original graph G with the same capacity.
- What is the probability that this algorithm returns a mincut?

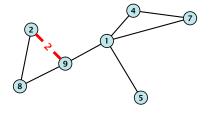


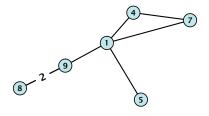


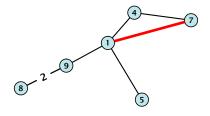


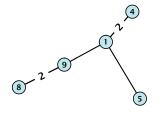


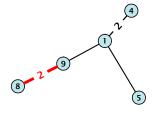


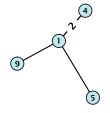


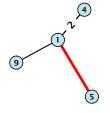


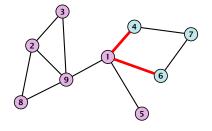


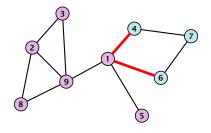












What is the probability that this algorithm returns a mincut?

What is the probability that a given mincut A is still possible after round i?

▶ It is still possible to obtain cut A in the end if so far no edge in $(A, V \setminus A)$ has been contracted.

What is the probability that we select an edge from A in iteration i?

- Let $\min = \operatorname{cap}(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ► Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

What is the probability that we select an edge from A in iteration i?

- Let $min = cap(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ► Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

What is the probability that we select an edge from A in iteration i?

- Let $min = cap(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ► Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

What is the probability that we select an edge from A in iteration i?

- Let $min = cap(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ▶ Clearly, $cap(v) \ge min$.
- ightharpoonup Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

What is the probability that we select an edge from A in iteration i?

- Let $min = cap(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ▶ Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

What is the probability that we select an edge from A in iteration i?

- Let $min = cap(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ▶ Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

The probability that we do not choose an edge from the cut in iteration i is

$$1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1} \ .$$

The probability that the cut is alive after iteration n-t (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)} .$$

Choosing t=2 gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.

The probability that we do not choose an edge from the cut in iteration i is

$$1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1} \ .$$

The probability that the cut is alive after iteration n-t (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)} .$$

Choosing t=2 gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.

The probability that we do not choose an edge from the cut in iteration i is

$$1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1} \ .$$

The probability that the cut is alive after iteration n-t (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)} .$$

Choosing t=2 gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 89

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1-\frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \leq \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \leq n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 89

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 89

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 89

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 89

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 89

Improved Algorithm

```
Algorithm 53 RecursiveMincut(G = (V, E, c))

1: for i = 1 \rightarrow n - n/\sqrt{2} do

2: choose e \in E randomly with probability c(e)/C(E)

3: G \leftarrow G/e

4: if |V| = 2 return cut-value;

5: cuta \leftarrow \text{RecursiveMincut}(G);

6: cutb \leftarrow \text{RecursiveMincut}(G);
```

Running time

7: **return** min{*cuta*, *cutb*}

Improved Algorithm

Algorithm 53 RecursiveMincut(G = (V, E, c))

1: **for** $i = 1 \to n - n/\sqrt{2}$ **do**

2: choose $e \in E$ randomly with probability c(e)/C(E)

3: $G \leftarrow G/e$

4: **if** |V| = 2 **return** cut-value;

5: cuta ← RecursiveMincut(G);

6: *cutb* ← RecursiveMincut(G);

7: **return** min{*cuta*, *cutb*}

Running time:

$$T(n) = 2T(\frac{n}{\sqrt{2}}) + \mathcal{O}(n^2)$$

▶ This gives $T(n) = \mathcal{O}(n^2 \log n)$.

Improved Algorithm

Algorithm 53 RecursiveMincut(G = (V, E, c))

1: **for** $i = 1 \to n - n/\sqrt{2}$ **do**

2: choose $e \in E$ randomly with probability c(e)/C(E)

3: $G \leftarrow G/e$

4: **if** |V| = 2 **return** cut-value;

5: cuta ← RecursiveMincut(G);

6: *cutb* ← RecursiveMincut(G);

7: **return** min{*cuta*, *cutb*}

Running time:

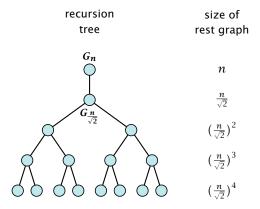
- $T(n) = 2T(\frac{n}{\sqrt{2}}) + \mathcal{O}(n^2)$
- ▶ This gives $T(n) = \mathcal{O}(n^2 \log n)$.

The probability of contracting an edge from the mincut during one iteration through the for-loop is only

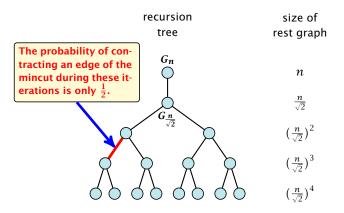
$$\frac{t(t-1)}{n(n-1)} \approx \frac{t^2}{n^2} = \frac{1}{2}$$
,

as
$$t = \frac{n}{\sqrt{2}}$$
.

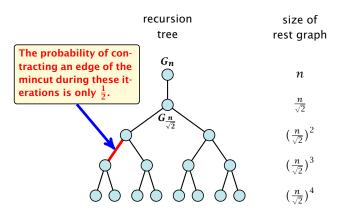
For the following analysis we ignore the slight error and assume that this probability is at most $\frac{1}{2}$.



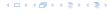
We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.



We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.



We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.



Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge *e* alive if there exists a path from the parent-node of *e* to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 90

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.

Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge *e* alive if there exists a path from the parent-node of *e* to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 90

The probability that an edge e is alive is at least $rac{1}{h(e)+1}$

Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 90

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.

Proof.

▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.

Proof.

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.

Proof.

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

Proof.

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

 p_d

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$p_d = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^2 \right)$$

- ► An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$p_d = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^2 \right) \left[\frac{\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]}{\Pr[A \vee B]}$$

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$p_{d} = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^{2} \right) \left[\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B] \right]$$

$$= p_{d-1} - \frac{p_{d-1}^{2}}{2}$$

Proof.

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$\begin{aligned} p_d &= \frac{1}{2} \Big(2 p_{d-1} - p_{d-1}^2 \Big) \ \, \Big[\Pr[A \vee B] &= \Pr[A] + \Pr[B] - \Pr[A \wedge B] \\ &= p_{d-1} - \frac{p_{d-1}^2}{2} \end{aligned}$$

 $x - x^2/2$ is monotonically increasing for $x \in [0, 1]$

- ► An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$p_d = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^2 \right) \quad \boxed{\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]}$$

$$= p_{d-1} - \frac{p_{d-1}^2}{2}$$

$$= \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$$

$$|x-x^2/2|$$
 is monotonically increasing for $x \in [0,1]$ $\geq \frac{1}{d} - \frac{1}{2d^2}$

- ▶ An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$\begin{aligned} p_d &= \frac{1}{2} \Big(2 p_{d-1} - p_{d-1}^2 \Big) \quad \boxed{\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]} \\ &= p_{d-1} - \frac{p_{d-1}^2}{2} \\ \frac{x - x^2/2 \text{ is monotonically increasing for } x \in [0,1]}{2} \geq \frac{1}{d} - \frac{1}{2d^2} \geq \frac{1}{d} - \frac{1}{d(d+1)} \end{aligned}$$

- An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$p_d = \frac{1}{2} \left(2p_{d-1} - p_{d-1}^2 \right) \quad \boxed{\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]}$$

$$= p_{d-1} - \frac{p_{d-1}^2}{2}$$

$$x - x^2/2 \text{ is monotonically} \qquad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2}$$

16 Global Mincut

Lemma 91

One run of the algorithm can be performed in time $\mathcal{O}(n^2 \log n)$ and has a success probability of $\Omega(\frac{1}{\log n})$.

Doing $\Theta(\log^2 n)$ runs gives that the algorithm succeeds with high probability. The total running time is $O(n^2 \log^3 n)$.

16 Global Mincut

Lemma 91

One run of the algorithm can be performed in time $O(n^2 \log n)$ and has a success probability of $\Omega(\frac{1}{\log n})$.

Doing $\Theta(\log^2 n)$ runs gives that the algorithm succeeds with high probability. The total running time is $O(n^2 \log^3 n)$.

17 Gomory Hu Trees

Given an undirected, weighted graph G = (V, E, c) a cut-tree T = (V, F, w) is a tree with edge-set F and capacities w that fulfills the following properties.

- 1. Equivalent Flow Tree: For any pair of vertices $s, t \in V$, f(s,t) in G is equal to $f_T(s,t)$.
- 2. **Cut Property:** A minimum *s-t* cut in *T* is also a minimum cut in *G*.

Here, f(s,t) is the value of a maximum s-t flow in G, and $f_T(s,t)$ is the corresponding value in T.

The algorithm maintains a partition of V, (sets $S_1, ..., S_t$), and a spanning tree T on the vertex set $\{S_1, ..., S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

In the end this gives a tree on the vertex set
$$V_{\cdot}$$

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

- ▶ In each such split-operation it chooses a set S_i with $|S_i| \ge 2$ and splits this set into two non-empty parts X and Y.
- \triangleright S_i is then removed from T and replaced by X and Y.
- ▶ *X* and *Y* are connected by an edge, and the edges that before the split were incident to *S_i* are attached to either *X* or *Y*.

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

- ▶ In each such split-operation it chooses a set S_i with $|S_i| \ge 2$ and splits this set into two non-empty parts X and Y.
- S_i is then removed from T and replaced by X and Y.
- ▶ *X* and *Y* are connected by an edge, and the edges that before the split were incident to *S_i* are attached to either *X* or *Y*.

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

- ▶ In each such split-operation it chooses a set S_i with $|S_i| \ge 2$ and splits this set into two non-empty parts X and Y.
- S_i is then removed from T and replaced by X and Y.
- ➤ X and Y are connected by an edge, and the edges that before the split were incident to S_i are attached to either X or Y.

The algorithm maintains a partition of V, (sets S_1, \ldots, S_t), and a spanning tree T on the vertex set $\{S_1, \ldots, S_t\}$.

Initially, there exists only the set $S_1 = V$.

Then the algorithm performs n-1 split-operations:

- ▶ In each such split-operation it chooses a set S_i with $|S_i| \ge 2$ and splits this set into two non-empty parts X and Y.
- S_i is then removed from T and replaced by X and Y.
- X and Y are connected by an edge, and the edges that before the split were incident to S_i are attached to either X or Y.

- ▶ Select S_i that contains at least two nodes a and b.
- Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- Consider the graph H obtained from G by contracting these connected components into single nodes.
- Compute a minimum a-b cut in H. Let A, and B denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_X\}$ by $\{S_i^a, S_X\}$ if $S_X \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

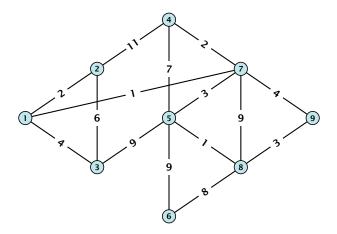
- ▶ Select S_i that contains at least two nodes a and b.
- ▶ Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- Consider the graph H obtained from G by contracting these connected components into single nodes.
- Compute a minimum a-b cut in H. Let A, and B denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_X\}$ by $\{S_i^a, S_X\}$ if $S_X \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

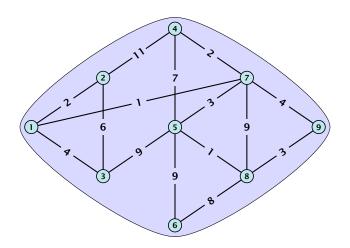
- ▶ Select S_i that contains at least two nodes a and b.
- ▶ Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- Consider the graph H obtained from G by contracting these connected components into single nodes.
- Compute a minimum a-b cut in H. Let A, and B denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap E$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_X\}$ by $\{S_i^a, S_X\}$ if $S_X \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

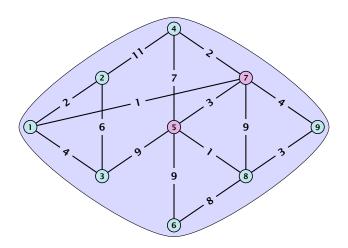
- ▶ Select S_i that contains at least two nodes a and b.
- ▶ Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- Consider the graph H obtained from G by contracting these connected components into single nodes.
- ► Compute a minimum *a-b* cut in *H*. Let *A*, and *B* denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_X\}$ by $\{S_i^a, S_X\}$ if $S_X \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

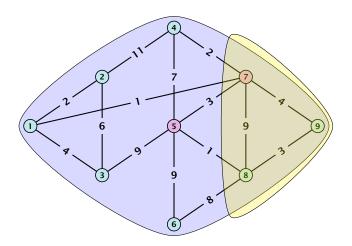
- ▶ Select S_i that contains at least two nodes a and b.
- ▶ Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- Consider the graph H obtained from G by contracting these connected components into single nodes.
- Compute a minimum a-b cut in H. Let A, and B denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_X\}$ by $\{S_i^a, S_X\}$ if $S_X \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

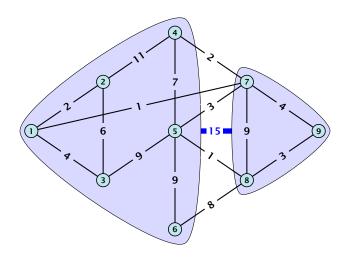
- ▶ Select S_i that contains at least two nodes a and b.
- ▶ Compute the connected components of the forest obtained from the current tree T after deleting S_i . Each of these components corresponds to a set of vertices from V.
- Consider the graph H obtained from G by contracting these connected components into single nodes.
- Compute a minimum a-b cut in H. Let A, and B denote the two sides of this cut.
- ▶ Split S_i in T into two sets/nodes $S_i^a = S_i \cap A$ and $S_i^b = S_i \cap B$ and add edge $\{S_i^a, S_i^b\}$ with capacity $f_H(a, b)$.
- ▶ Replace an edge $\{S_i, S_X\}$ by $\{S_i^a, S_X\}$ if $S_X \subset A$ and by $\{S_i^b, S_X\}$ if $S_X \subset B$.

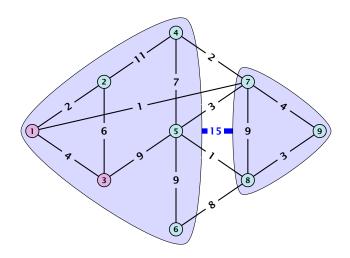


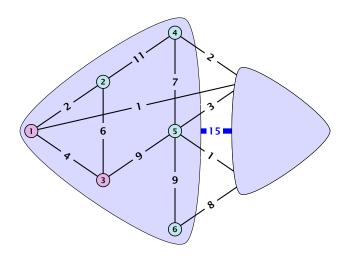


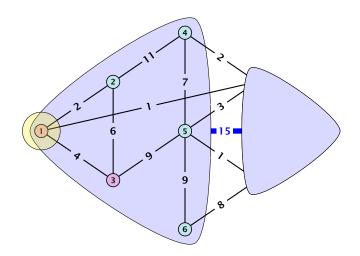


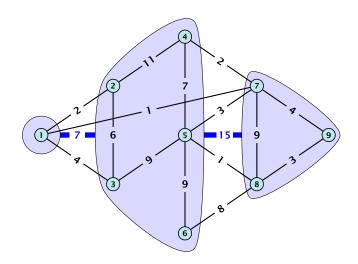


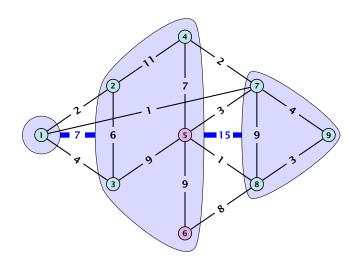


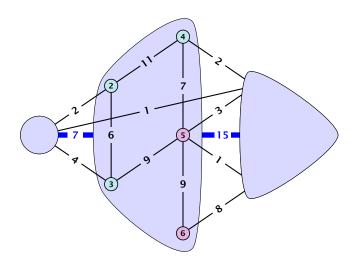


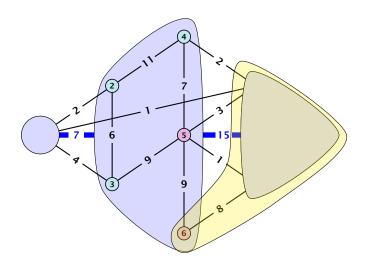


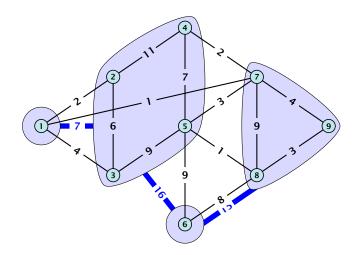


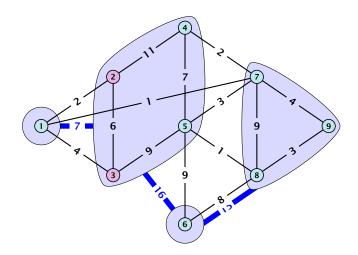


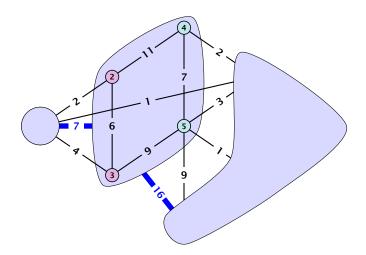


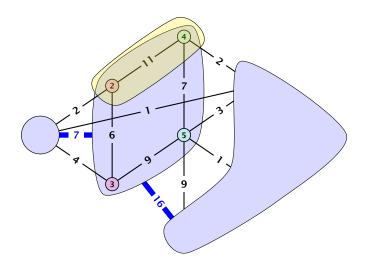


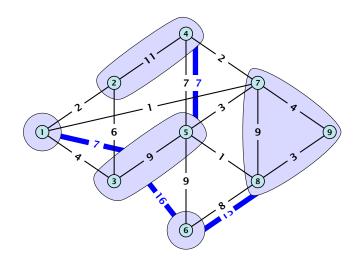


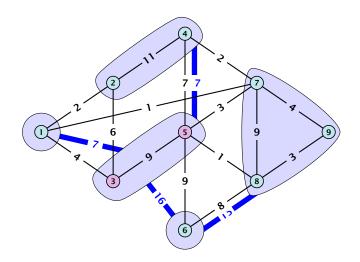


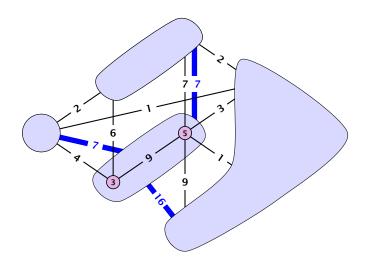


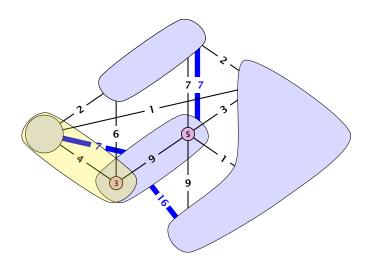


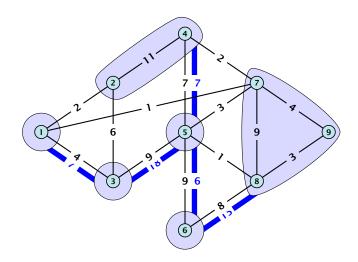


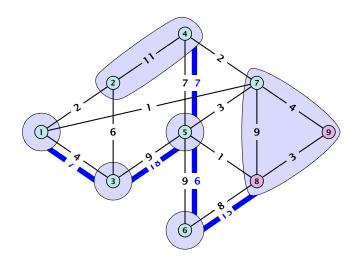


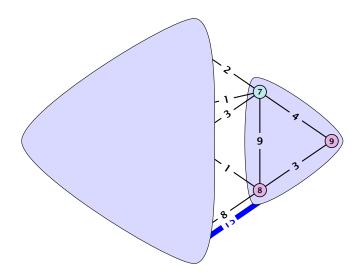


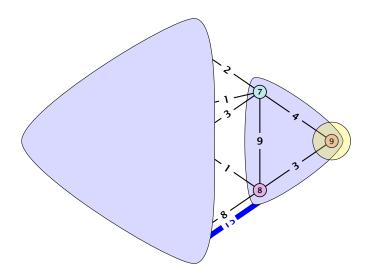


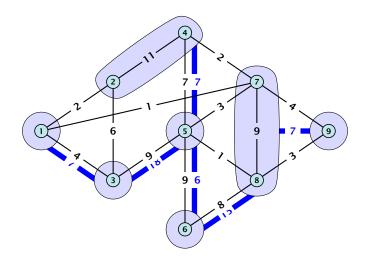


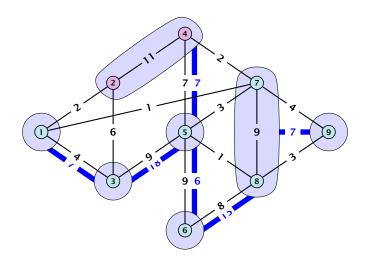


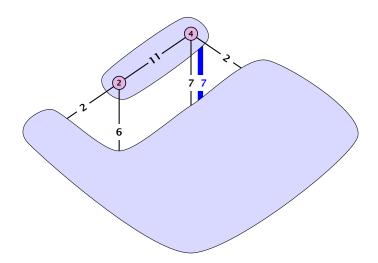


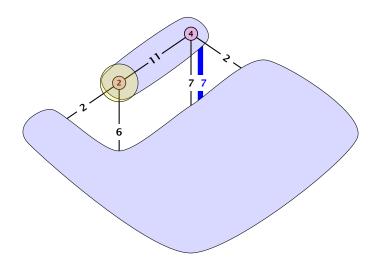


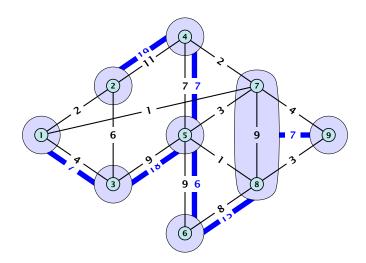


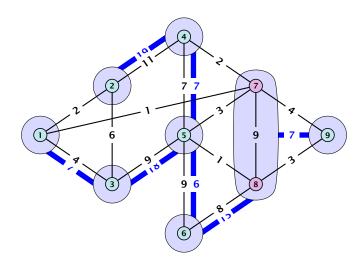


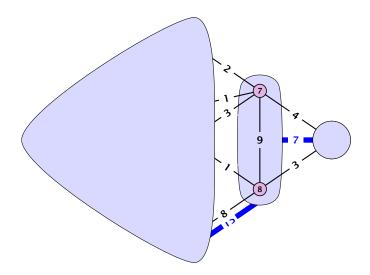


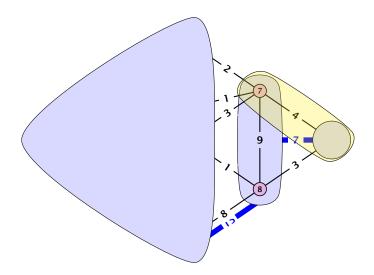


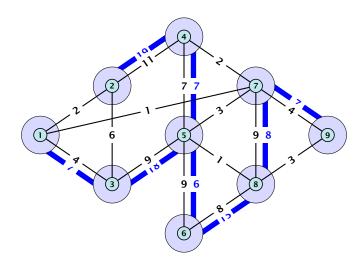


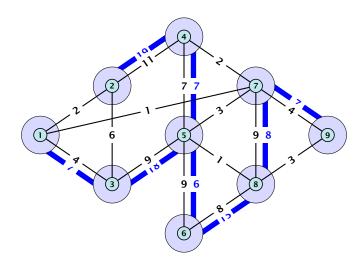












Analysis

Lemma 92

For nodes $s, t, x \in V$ we have $f(s, t) \ge \min\{f(s, x), f(x, t)\}$

Analysis

Lemma 92

For nodes $s, t, x \in V$ we have $f(s, t) \ge \min\{f(s, x), f(x, t)\}$

Lemma 93

For nodes $s, t, x_1, \dots, x_k \in V$ we have

$$f(s,t) \ge \min\{f(s,x_1), f(x_1,x_2), \dots, f(x_{k-1},x_k), f(x_k,t)\}$$

イロトイポトイラトイラ)

Let S be some minimum r-s cut for some nodes $r, s \in V$ ($s \in S$), and let $v, w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof:

We may assume w.l.o.g. $s \in X$

First case $r \in X$.

Let S be some minimum r-s cut for some nodes $r, s \in V$ ($s \in S$), and let $v, w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum v-w cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are v-w cuts inside S. We may assume w.l.o.g. $s \in X$.

First case $r \in X$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum v-w cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are v-w cuts inside S.

We may assume w.l.o.g. $s \in X$.

First case $r \in X$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

Second case $r \notin X$.

 $\operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \le \operatorname{cap}(S) + \operatorname{cap}(X)$

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

- $cap(X \cup S) + cap(S \cap X) \le cap(S) + cap(X).$
- $ightharpoonup \operatorname{cap}(X \cup S) \ge \operatorname{cap}(S)$ because $X \cup S$ is an r-s cut.
- ▶ This gives $cap(S \cap X) \le cap(X)$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

- $ightharpoonup \operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \le \operatorname{cap}(S) + \operatorname{cap}(X).$
- $ightharpoonup \operatorname{cap}(X \cup S) \ge \operatorname{cap}(S)$ because $X \cup S$ is an r-s cut.
- ▶ This gives $cap(S \cap X) \le cap(X)$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

First case $r \in X$.

- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

- $ightharpoonup \operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \le \operatorname{cap}(S) + \operatorname{cap}(X).$
- ▶ $cap(X \cup S) \ge cap(S)$ because $X \cup S$ is an r-s cut.
- ▶ This gives $cap(S \cap X) \le cap(X)$.

Let S be some minimum r-s cut for some nodes r, $s \in V$ ($s \in S$), and let v, $w \in S$. Then there is a minimum v-w-cut T with $T \subset S$.

Proof: Let X be a minimum $v \cdot w$ cut with $X \cap S \neq \emptyset$ and $X \cap (V \setminus S) \neq \emptyset$. Note that $S \setminus X$ and $S \cap X$ are $v \cdot w$ cuts inside S. We may assume w.l.o.g. $S \in X$.

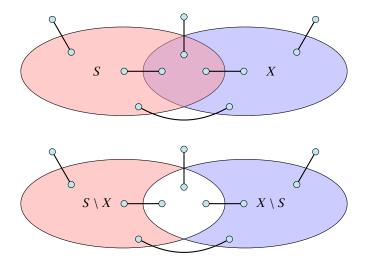
First case $r \in X$.

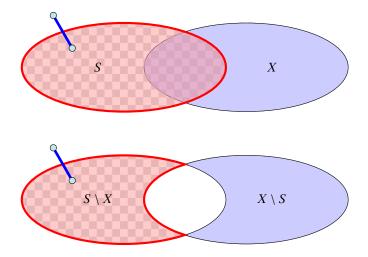
- $cap(X \setminus S) + cap(S \setminus X) \le cap(S) + cap(X).$
- ▶ $cap(X \setminus S) \ge cap(S)$ because $X \setminus S$ is an r-s cut.
- ▶ This gives $cap(S \setminus X) \le cap(X)$.

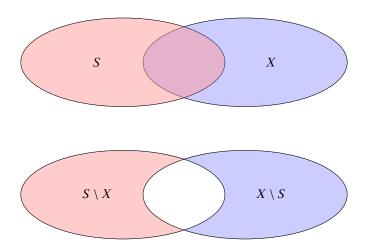
- $ightharpoonup \operatorname{cap}(X \cup S) + \operatorname{cap}(S \cap X) \le \operatorname{cap}(S) + \operatorname{cap}(X).$
- ▶ $cap(X \cup S) \ge cap(S)$ because $X \cup S$ is an r-s cut.
- ▶ This gives $cap(S \cap X) \le cap(X)$.

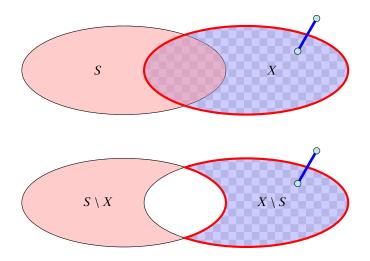
$cap(S \setminus X) + cap(X \setminus S) \le cap(S) + cap(X)$

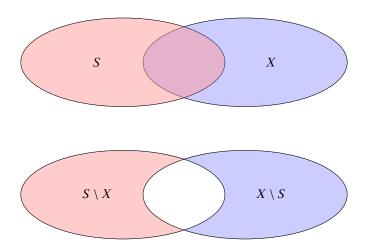


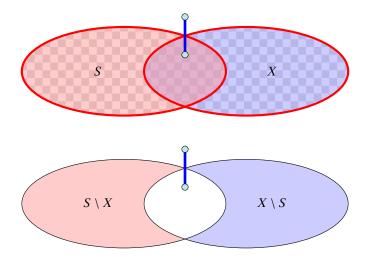


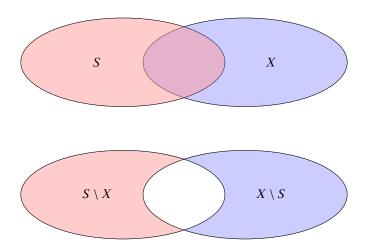


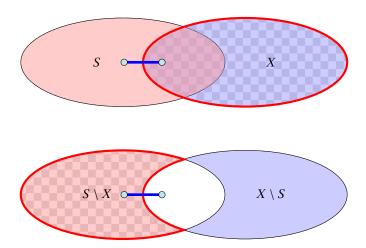


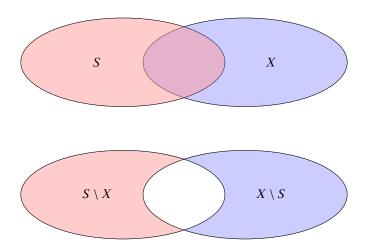


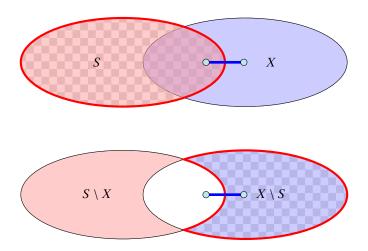


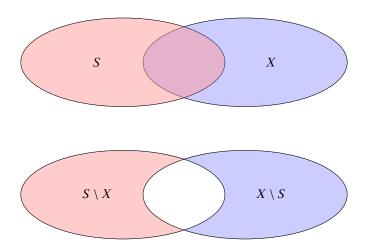


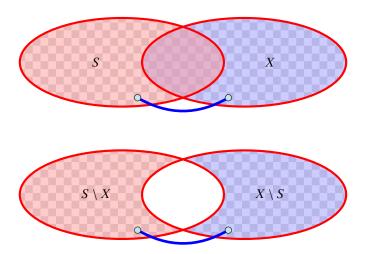


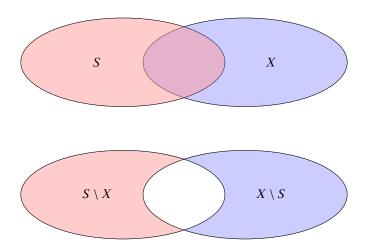


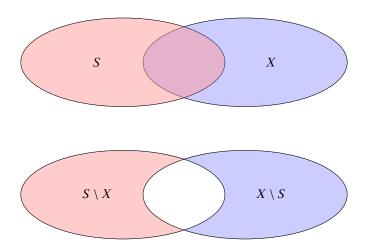


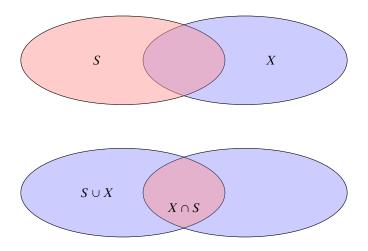


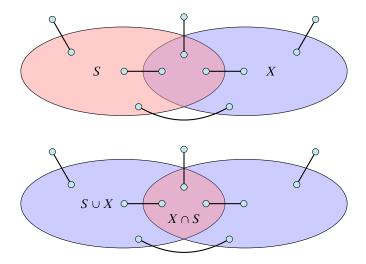


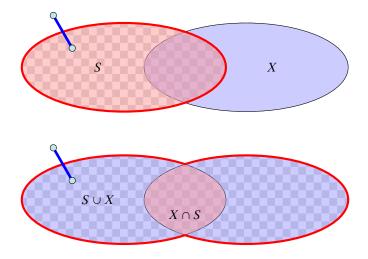


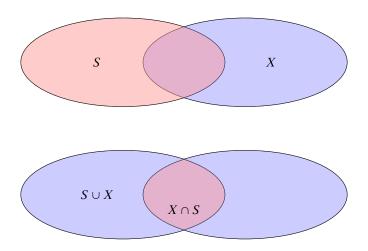


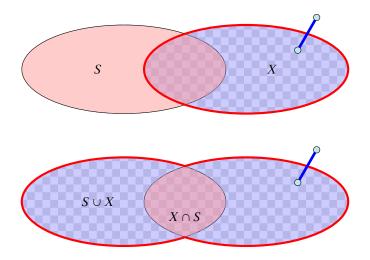


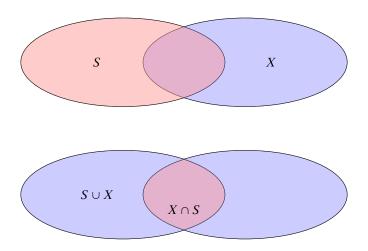


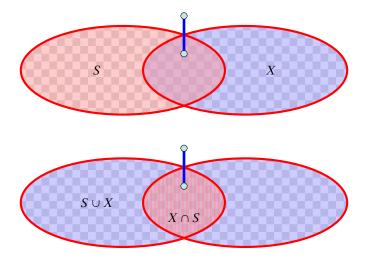


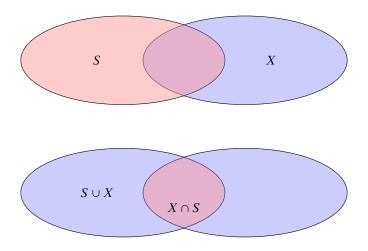


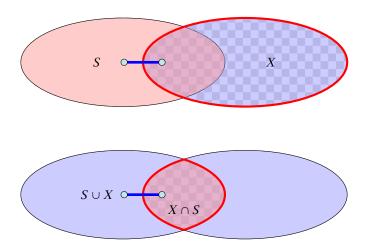


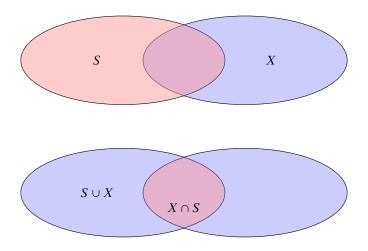


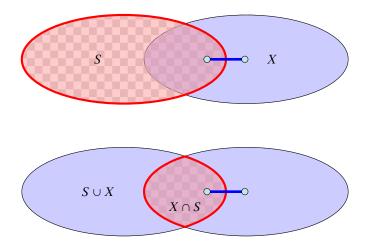


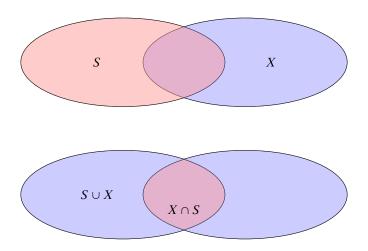


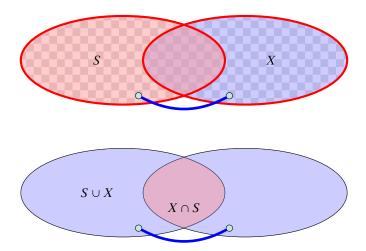


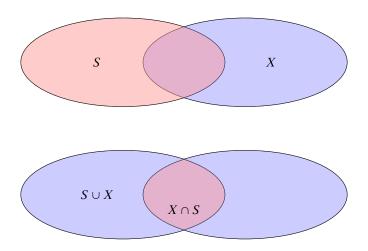


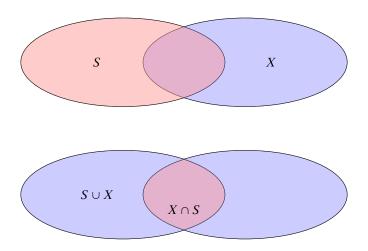












Lemma 94 tells us that if we have a graph G = (V, E) and we contract a subset $X \subset V$ that corresponds to some mincut, then the value of f(s,t) does not change for two nodes $s,t \notin X$.

We will show (later) that the connected components that we contract during a split-operation each correspond to some mincut and, hence, $f_H(s,t)=f(s,t)$, where $f_H(s,t)$ is the value of a minimum s-t mincut in graph H.

Invariant [existence of representatives]:

For any edge $\{S_i, S_j\}$ in T, there are vertices $a \in S_i$ and $b \in S_j$ such that $w(S_i, S_j) = f(a, b)$ and the cut defined by edge $\{S_i, S_j\}$ is a minimum a-b cut in G.

We first show that the invariant implies that at the end of the algorithm T is indeed a cut-tree.

Let $s = x_0, x_1, \dots, x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.

- Let $s = x_0, x_1, ..., x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- ▶ Then

$$f_T(s,t)$$

- Let $s = x_0, x_1, \dots, x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- Then

$$f_T(s,t) = \min_{i \in \{0,\dots,k-1\}} \{w(x_i,x_{i+1})\}$$

- Let $s = x_0, x_1, \dots, x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- Then

$$f_T(s,t) = \min_{i \in \{0,\dots,k-1\}} \{w(x_i, x_{i+1})\}$$
$$= \min_{i \in \{0,\dots,k-1\}} \{f(x_i, x_{i+1})\}$$

We first show that the invariant implies that at the end of the algorithm T is indeed a cut-tree.

- Let $s = x_0, x_1, \dots, x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- Then

$$\begin{split} f_T(s,t) &= \min_{i \in \{0,\dots,k-1\}} \{w(x_i,x_{i+1})\} \\ &= \min_{i \in \{0,\dots,k-1\}} \{f(x_i,x_{i+1})\} \leq f(s,t) \ . \end{split}$$

We first show that the invariant implies that at the end of the algorithm T is indeed a cut-tree.

- Let $s = x_0, x_1, ..., x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- Then

$$\begin{split} f_T(s,t) &= \min_{i \in \{0,\dots,k-1\}} \{w(x_i,x_{i+1})\} \\ &= \min_{i \in \{0,\dots,k-1\}} \{f(x_i,x_{i+1})\} \leq f(s,t) \ . \end{split}$$

Let $\{x_j, x_{j+1}\}$ be the edge with minimum weight on the path.

We first show that the invariant implies that at the end of the algorithm T is indeed a cut-tree.

- Let $s = x_0, x_1, \dots, x_{k-1}, x_k = t$ be the unique simple path from s to t in the final tree T. From the invariant we get that $f(x_i, x_{i+1}) = w(x_i, x_{i+1})$ for all j.
- Then

$$f_T(s,t) = \min_{i \in \{0,\dots,k-1\}} \{w(x_i, x_{i+1})\}$$
$$= \min_{i \in \{0,\dots,k-1\}} \{f(x_i, x_{i+1})\} \le f(s,t) .$$

- ▶ Let $\{x_j, x_{j+1}\}$ be the edge with minimum weight on the path.
- ► Since by the invariant this edge induces an s-t cut with capacity $f(x_i, x_{i+1})$ we get $f(s, t) \le f(x_i, x_{i+1}) = f_T(s, t)$.

- ► Hence, $f_T(s,t) = f(s,t)$ (flow equivalence).
- ▶ The edge $\{x_i, x_{i+1}\}$ is a mincut between s and t in T.
- ▶ By invariant, it forms a cut with capacity $f(x_j, x_{j+1})$ in G (which separates s and t).
- Since, we can send a flow of value $f(x_j, x_{j+1})$ btw. s and t, this is an s-t mincut (cut property).

- ► Hence, $f_T(s,t) = f(s,t)$ (flow equivalence).
- ▶ The edge $\{x_i, x_{i+1}\}$ is a mincut between s and t in T.
- ▶ By invariant, it forms a cut with capacity $f(x_j, x_{j+1})$ in G (which separates s and t).
- ▶ Since, we can send a flow of value $f(x_j, x_{j+1})$ btw. s and t, this is an s-t mincut (cut property).

- ► Hence, $f_T(s,t) = f(s,t)$ (flow equivalence).
- ▶ The edge $\{x_j, x_{j+1}\}$ is a mincut between s and t in T.
- ▶ By invariant, it forms a cut with capacity $f(x_j, x_{j+1})$ in G (which separates s and t).
- Since, we can send a flow of value $f(x_j, x_{j+1})$ btw. s and t, this is an s-t mincut (cut property).

- ► Hence, $f_T(s,t) = f(s,t)$ (flow equivalence).
- ▶ The edge $\{x_i, x_{i+1}\}$ is a mincut between s and t in T.
- ▶ By invariant, it forms a cut with capacity $f(x_j, x_{j+1})$ in G (which separates s and t).
- ► Since, we can send a flow of value $f(x_j, x_{j+1})$ btw. s and t, this is an s-t mincut (cut property).

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts.

Therefore, contracting the connected components does not change the mincut btw. a and b due to Lemma 94.

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts

Therefore, contracting the connected components does not change the mincut btw. \boldsymbol{a} and \boldsymbol{b} due to Lemma 94.

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts

Therefore, contracting the connected components does not change the mincut btw. a and b due to Lemma 94.

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts.

Therefore, contracting the connected components does not change the mincut btw. \boldsymbol{a} and \boldsymbol{b} due to Lemma 94.

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts.

Therefore, contracting the connected components does not change the mincut btw. a and b due to Lemma 94.

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it was true before the operation.

Let S_i denote our selected cluster with nodes a and b. Because of the invariant all edges leaving $\{S_i\}$ in T correspond to some mincuts.

Therefore, contracting the connected components does not change the mincut btw. a and b due to Lemma 94.

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S^a_i$ we can keep x and s as representatives.

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S_i^a$ we can keep x and s as representatives.

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S^a_i$ we can keep x and s as representatives.

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S_i^a$ we can keep x and s as representatives.

For edges that are not incident to S_i we do not need to change representatives as the neighbouring sets do not change.

Consider an edge $\{X, S_i\}$, and suppose that before the split it used representatives $x \in X$, and $s \in S_i$. Assume that this edge is replaced by $\{X, S_i^a\}$ in the new tree (the case when it is replaced by $\{X, S_i^b\}$ is analogous).

If $s \in S_i^a$ we can keep x and s as representatives.

Because the invariant was true before the split we know that the edge $\{X,S_i\}$ induces a cut in G of capacity f(x,s). Since, x and a are on opposite sides of this cut, we know that $f(x,a) \leq f(x,s)$.

The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 94 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in G of capacity f(x, s). Since, x and a are on opposite sides of this cut, we know that $f(x, a) \le f(x, s)$.

The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 94 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in G of capacity f(x, s). Since, x and a are on opposite sides of this cut, we know that $f(x, a) \le f(x, s)$.

The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 94 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in G of capacity f(x, s). Since, x and a are on opposite sides of this cut, we know that $f(x, a) \le f(x, s)$.

The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 94 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in G of capacity f(x, s). Since, x and a are on opposite sides of this cut, we know that $f(x, a) \le f(x, s)$.

The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 94 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

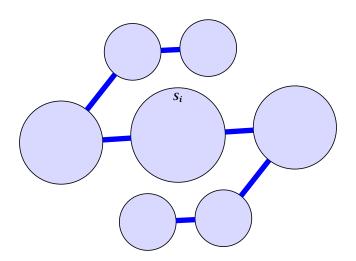
Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

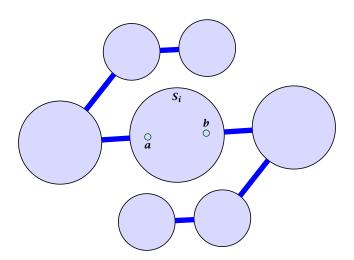
Because the invariant was true before the split we know that the edge $\{X, S_i\}$ induces a cut in G of capacity f(x, s). Since, x and a are on opposite sides of this cut, we know that $f(x, a) \le f(x, s)$.

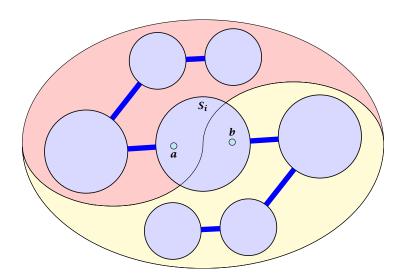
The set B forms a mincut separating a from b. Contracting all nodes in this set gives a new graph G' where the set B is represented by node v_B . Because of Lemma 94 we know that f'(x,a) = f(x,a) as $x, a \notin B$.

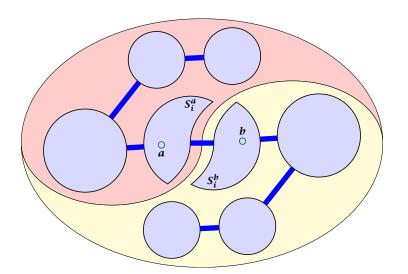
We further have $f'(x, a) \ge \min\{f'(x, v_B), f'(v_B, a)\}.$

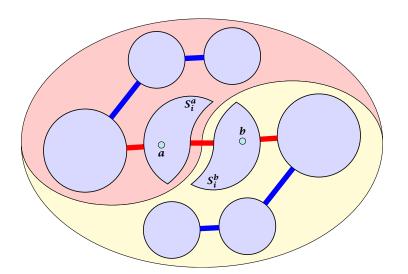
Since $s \in B$ we have $f'(v_B, x) \ge f(s, x)$.

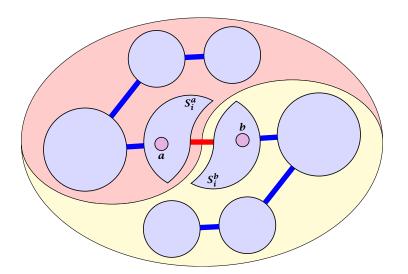


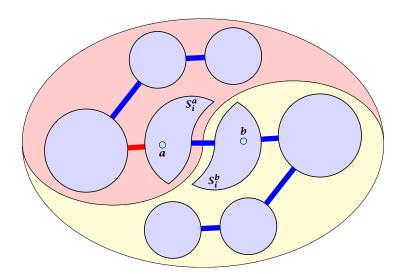


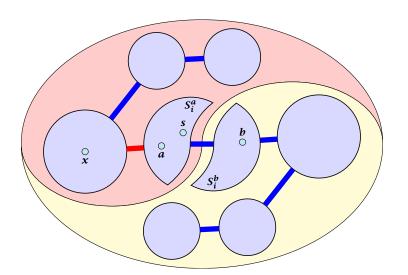


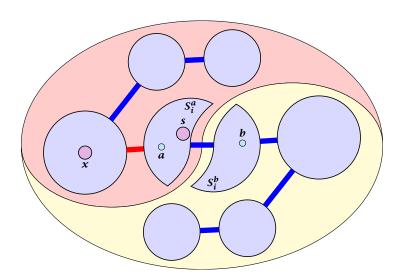


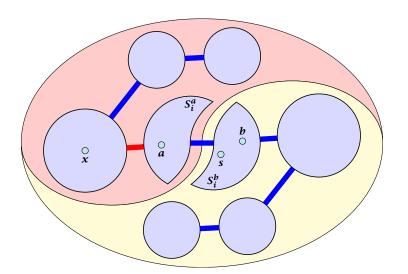


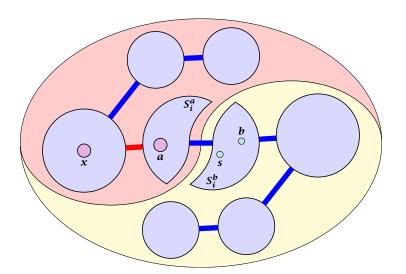










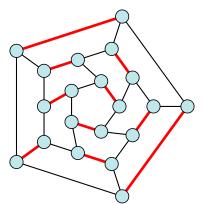


Part V

Matchings

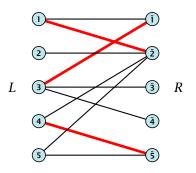
Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



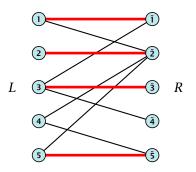
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



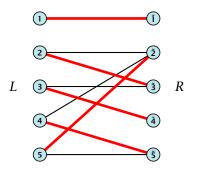
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



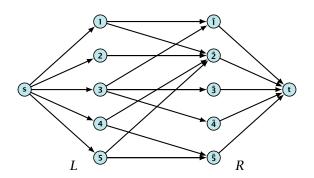
Bipartite Matching

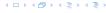
- ▶ A matching M is perfect if it is of cardinality |M| = |V|/2.
- For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.



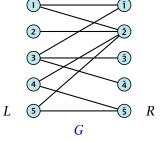
19 Bipartite Matching via Flows

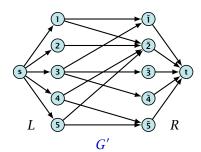
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- ▶ Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.



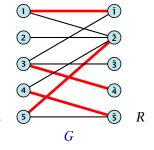


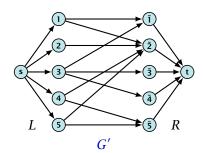
- Given a maximum matching M of cardinality k.
- ▶ Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



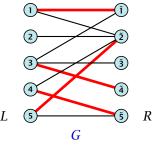


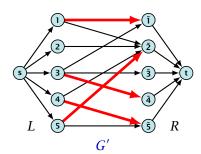
- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



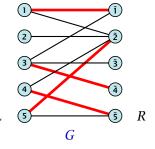


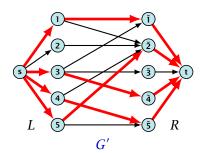
- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.



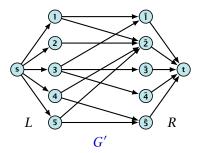


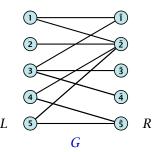
- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

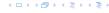




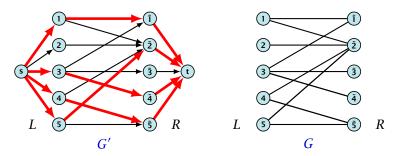
- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- ▶ |M| = k, as the flow must use at least k middle edges.



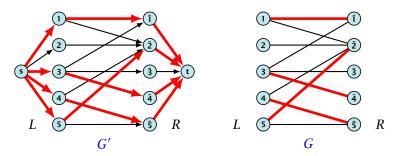




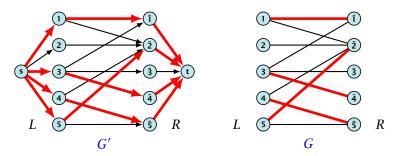
- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- ▶ |M| = k, as the flow must use at least k middle edges.



- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.



- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- ▶ Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.



19 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 95

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.



Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 95

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 95

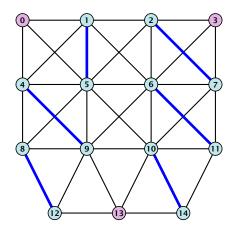
A matching M is a maximum matching if and only if there is no augmenting path w. r. t. t.

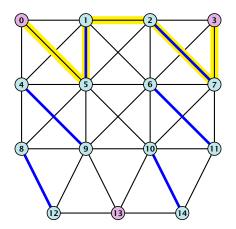
Definitions.

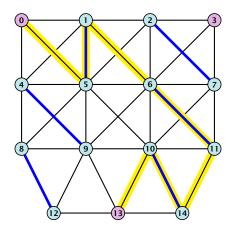
- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

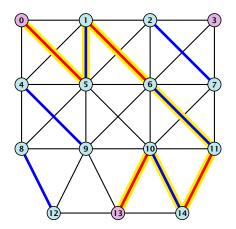
Theorem 95

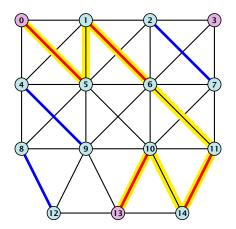
A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

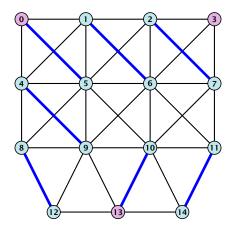












Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 96

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 96

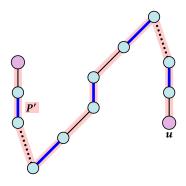
Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Proof

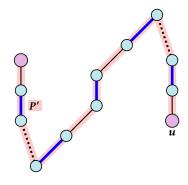
20 Augmenting Paths for Matchings

Proof

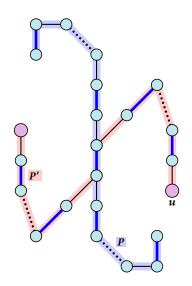
Assume there is an augmenting path P' w.r.t. M' starting at u.



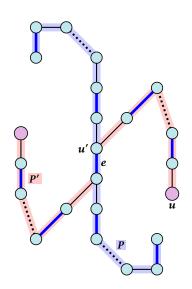
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (\$\forall 1).



- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. M(f).

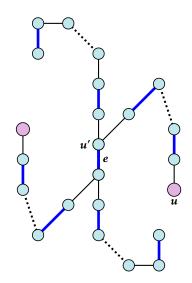


- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.

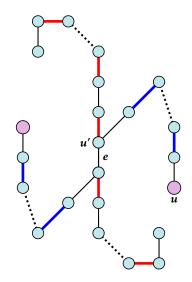




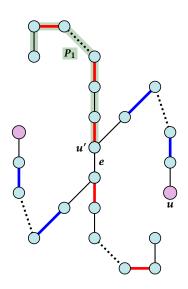
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



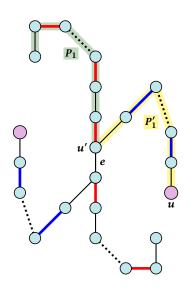
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.



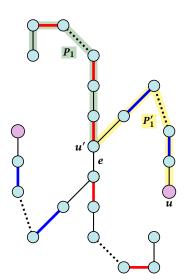
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- ▶ u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .



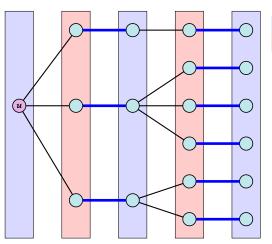
- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- ▶ u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .



- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- ▶ u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P'from u to u' with P'_1 .
- $P_1 \circ P_1'$ is augmenting path in M (3).

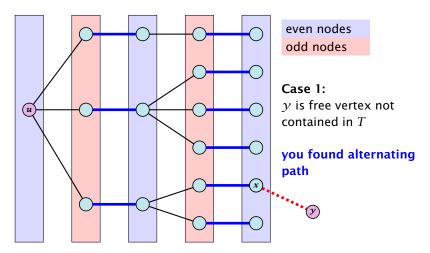


Construct an alternating tree.

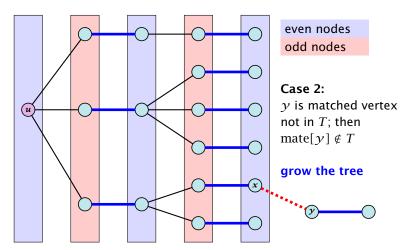


even nodes odd nodes

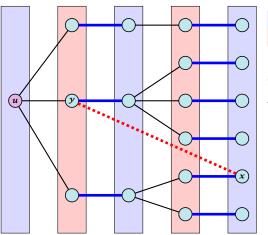
Construct an alternating tree.



Construct an alternating tree.



Construct an alternating tree.

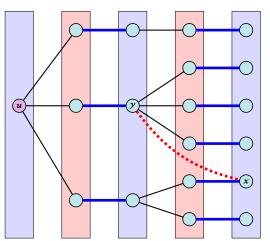


even nodes odd nodes

Case 3: *y* is already contained in *T* as an odd vertex

ignore successor y

Construct an alternating tree.



even nodes odd nodes

Case 4:

y is already contained in T as an even vertex

can't ignore y

does not happen in bipartite graphs

Algorithm 1 BiMatch(*G*, *match*)

```
1: for x \in V do mate[x] \leftarrow 0:
2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
4.
        \gamma \leftarrow \gamma + 1
 5: if mate[r] = 0 then
6:
            for i = 1 to m do parent[i'] \leftarrow 0
            Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
7:
8:
            while aug = false and Q \neq \emptyset do
9:
                x \leftarrow O. dequeue();
                if \exists y \in A_x: mate[y] = 0 then
10:
11.
                    augment(mate, parent, y);
                    aug \leftarrow true; free \leftarrow free - 1;
12:
13.
                else
14:
                    if parent[y] = 0 then
                        parent[y] \leftarrow x;
15:
16:
                        Q. enqueue(v):
```

```
graph G = (S \cup S', E);
S = \{1, \dots, n\}:
S = \{1', \dots, n'\}
initial matching empty
free: number of
unmatched nodes in S
r: root of current tree
if r is unmatched
start tree construction
initialize empty tree
no augmen, path but
unexamined leaves
free neighbour found
```

add new node ν to O

FADS

Weighted Bipartite Matching/Assignment

- ▶ Input: undirected, bipartite graph $G = L \cup R, E$.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell,r) \in V \times V$

Theorem 97 (Halls Theorem)

A bipartite graph $G=(L\cup R,E)$ has a perfect matching if and only if for all sets $S\subseteq L$, $|\Gamma(S)|\geq |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of S inside L and R, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{def}}{=} L \cap S$ and $R_S \stackrel{\text{def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ► Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{def}}{=} L \cap S$ and $R_S \stackrel{\text{def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

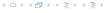
- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{\tiny def}}{=} L \cap S$ and $R_S \stackrel{\text{\tiny def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{\tiny def}}{=} L \cap S$ and $R_S \stackrel{\text{\tiny def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \stackrel{\text{def}}{=} L \cap S$ and $R_S \stackrel{\text{def}}{=} R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.



Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = (u, v)$.
- ► Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = (u, v)$.
- ► Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = (u, v)$.
- ► Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Reason:

▶ The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

Any other matching M has

$$\sum_{(u,v)\in M} w_{(u,v)} \le \sum_{(u,v)\in M} (x_u + x_v) \le \sum_{v} x_v .$$

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

What if you don't find a perfect matching?

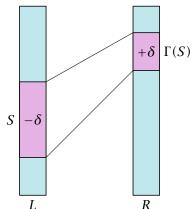
Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

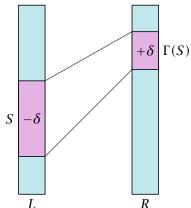
- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

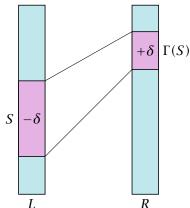
- ► Total node-weight decreases
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.



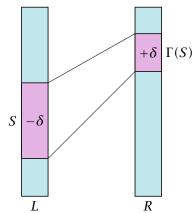
- Total node-weight decreases.
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

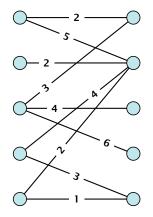


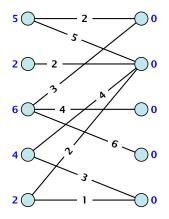
- Total node-weight decreases.
- ► Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\bar{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

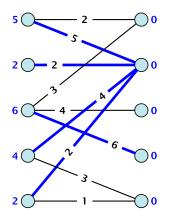


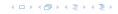
- Total node-weight decreases.
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

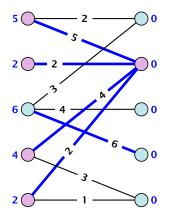


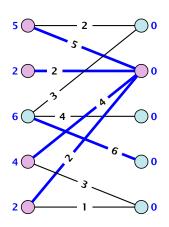


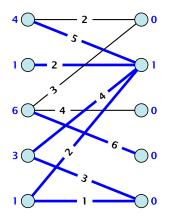


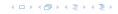


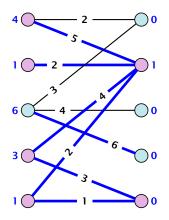


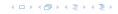


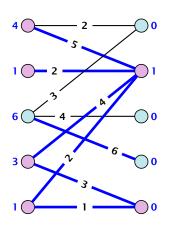


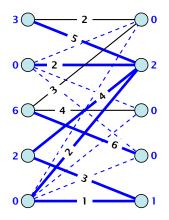


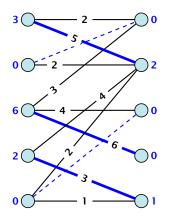


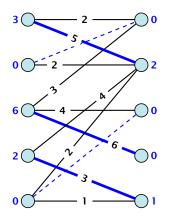












- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- ► Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- ► Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.



- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of ever nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd} . After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- ▶ In total we otain a running time of $O(n^4)$.
- ▶ A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd} . After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- ▶ An augmentation takes at most $\mathcal{O}(n)$ time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd} . After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to outside of $L \setminus V_{\rm even}$ (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- ▶ In total we otain a running time of $\mathcal{O}(n^4)$.
- ▶ A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

A Fast Matching Algorithm

Algorithm 54 Bimatch-Hopcroft-Karp(G)

```
    1: M ← Ø
    2: repeat
```

- 3: let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of
- 4: vertex-disjoint, shortest augmenting path w.r.t. M.
- 5: $M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$
- 6: until $\mathcal{P} = \emptyset$
- 7: **return** *M*

We call one iteration of the repeat-loop a phase of the algorithm.

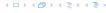
Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ▶ Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of G are cycles and paths
- ▶ The graph contains $k ext{ \(\ext{!}} |M^*| |M| \) more red edges than blue edges.$
- ▶ Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.



Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths
- ▶ The graph contains $k ext{ # } |M^*| |M|$ more red edges than blue edges.
- ► Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.

Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k ext{ \(\ext{!}} |M^*| |M| \) more red edges than blue edges.$
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.

Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ▶ The graph contains $k ext{ \leq } |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.



- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 99

The set $A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 99

The set $A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 99

The set $A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 99

The set $A \stackrel{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- **Each** of these paths is of length at least ℓ

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- **Each** of these paths is of length at least ℓ

- ▶ The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ▶ Hence, the set contains at least k+1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 100

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Lemma 100

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, ..., P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 100

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, ..., P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 100

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, ..., P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 100

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, ..., P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- ▶ This edge is not contained in *A*.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Lemma 100

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

- ▶ If P does not intersect any of the $P_1, ..., P_k$, this follows from the maximality of the set $\{P_1, ..., P_k\}$.
- ▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ▶ The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M+|\frac{|V|}{\ell+1}$.

Proof

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M+|\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Lemma 101

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \geq \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

Lemma 101

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

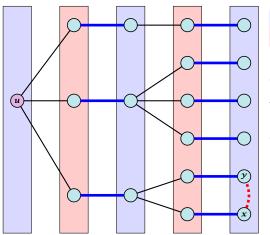
- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|}+1) \le \sqrt{|V|}$ additional augmentations.

Lemma 102

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

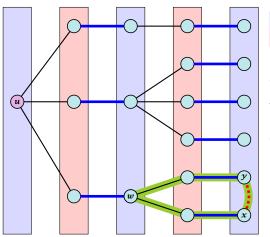
Case 4:

 \boldsymbol{y} is already contained in T as an even vertex

can't ignore y

How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

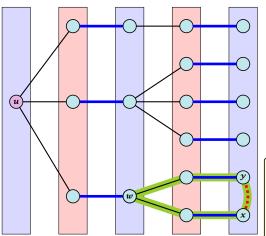
Case 4:

 \boldsymbol{y} is already contained in T as an even vertex

can't ignore y

How to find an augmenting path?

Construct an alternating tree.



even nodes odd nodes

Case 4:

y is already contained in T as an even vertex

can't ignore y

The cycle $w \leftrightarrow y - x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path u-w path is called the stem of the blossom.

Definition 103

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Definition 103

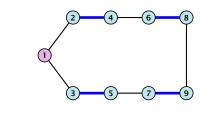
A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

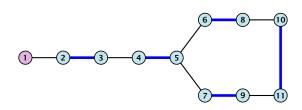
- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- ▶ A blossom is an odd length alternating cycle that starts and terminates at the terminal node *w* of a stem and has no other node in common with the stem. *w* is called the base of the blossom.

Definition 103

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- ► A blossom is an odd length alternating cycle that starts and terminates at the terminal node *w* of a stem and has no other node in common with the stem. *w* is called the base of the blossom.





- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- 2. A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at *r*).

- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- 2. A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

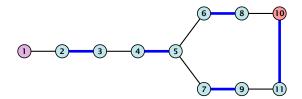
- 1. A stem spans $2\ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
- 2. A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).



- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to *x* terminates with a matched edge and the odd path with an unmatched edge.

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.





When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B

When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

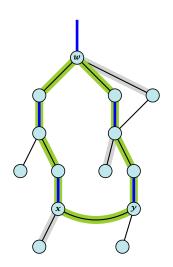
- ▶ Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

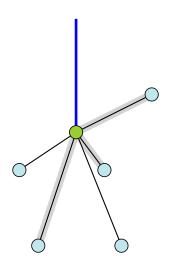
Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.



Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to h.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- ▶ Nodes that are connected in G to at least one node in B become connected to b in G'.



Algorithm 55 search(r, found)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node i from list
- 7: examine(i, found)
- 8: **if** *found* = true **then**
- 9: **return**

FADS

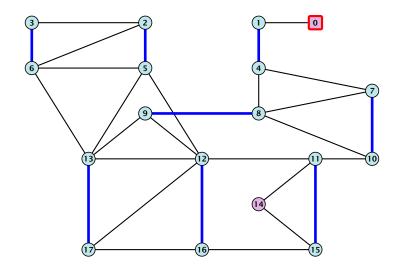
Algorithm 56 examine(*i*, *found*)

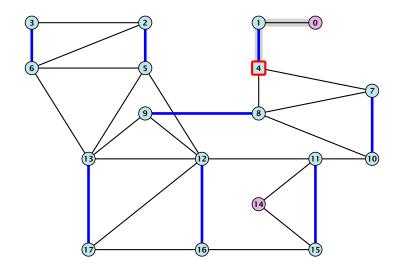
1: for all $j \in \bar{A}(i)$ do 2: if j is even then contract(i, j) and return **if** *j* is unmatched **then** 3: $q \leftarrow i$; 4: $pred(a) \leftarrow i$: 5: 6: *found* ← true: 7: return if j is matched and unlabeled then 8: $pred(j) \leftarrow i$; 9: $pred(mate(j)) \leftarrow j$; 10:

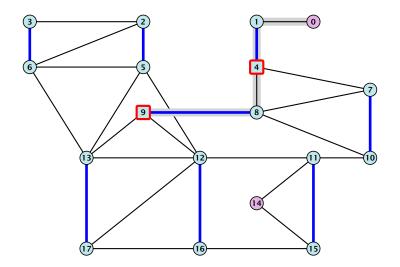
FADS

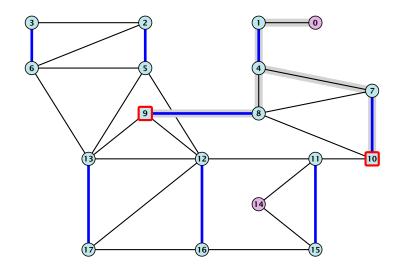
Algorithm 57 contract(i, j)

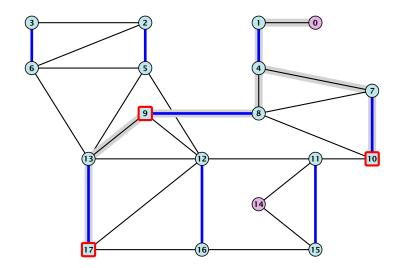
- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(k)$
- 3: label b even and add to list
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular doubly linked list of nodes in B
- 6: delete nodes in B from the graph

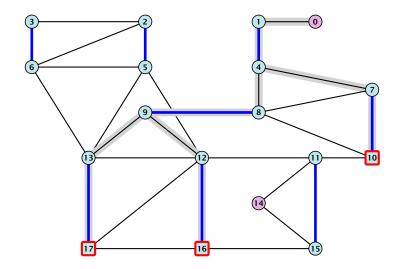


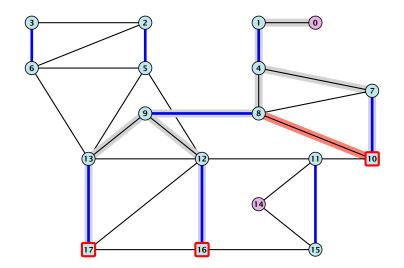


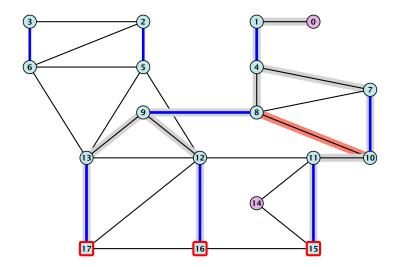


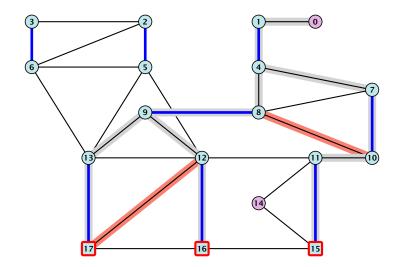


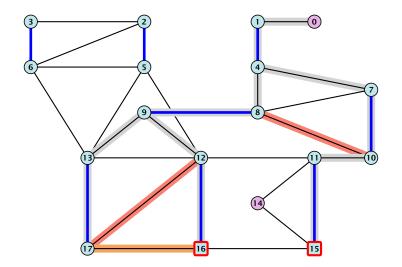


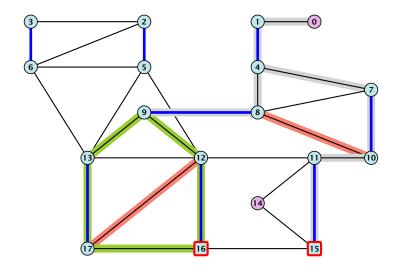


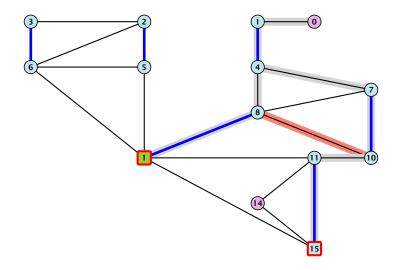


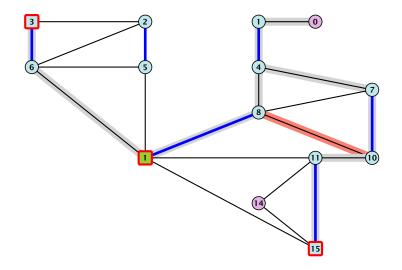


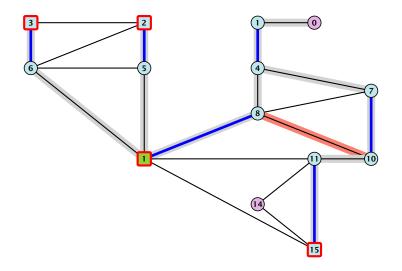


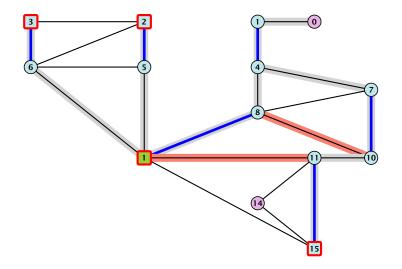


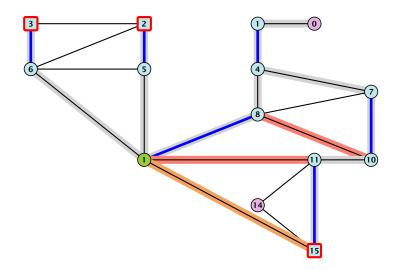


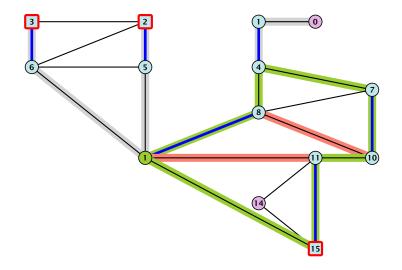


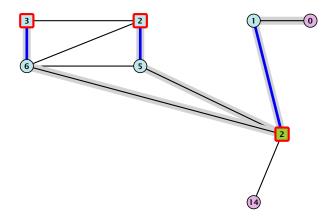


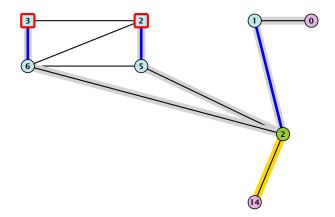


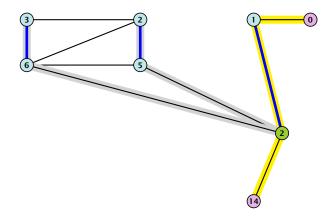


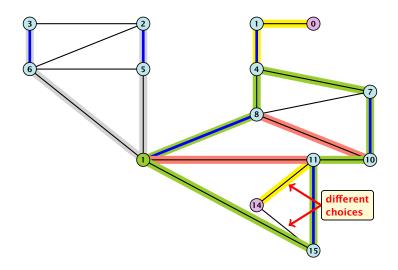


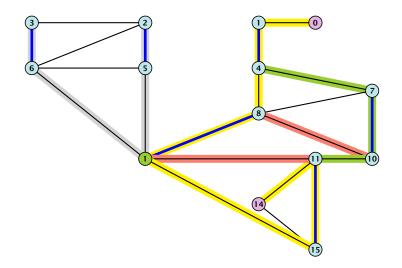


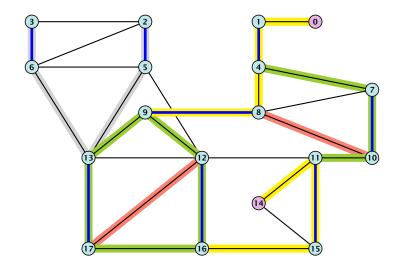


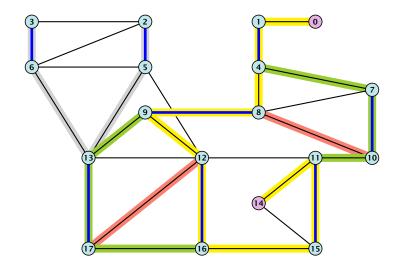


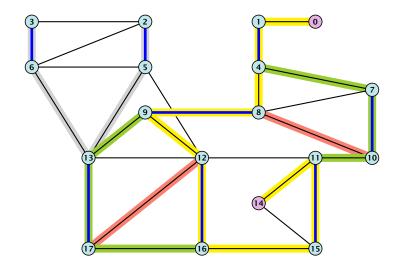












Assume that we have contracted a blossom B w.r.t. a matching Mwhose base is w. We created graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Assume that we have contracted a blossom B w.r.t. a matching Mwhose base is w. We created graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 104

If G' contains an augmenting path p' starting at γ (or the pseudo-node containing r) w.r.t. to the matching M' then Gcontains an augmenting path starting at γ w.r.t. matching M.



If p' does not contain b it is also an augmenting path in G.

If p' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

If p' does not contain b it is also an augmenting path in G.

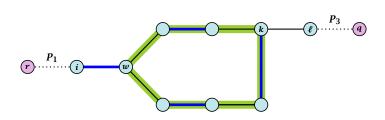
Case 1: non-empty stem

Next suppose that the stem is non-empty.

If p' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.



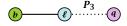
- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- ▶ If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.

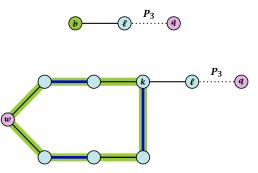
Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.



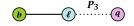
Case 2: empty stem

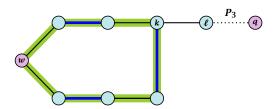
If the stem is empty then after expanding the blossom, w = r.



Case 2: empty stem

If the stem is empty then after expanding the blossom, w = r.





▶ The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Lemma 105

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- \blacktriangleright We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1\circ (i,j)\circ P_2$, for some node j and (i,j) is unmatched

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

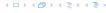
- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1\circ (i,j)\circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.



- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path \emph{P} that is part of the blossom.

P is of the form $P_1\circ (i,j)\circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1\circ (i,j)\circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network

Proof.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

 $(b,j) \circ P_2$ is an augmenting path in the contracted network.

Proof.

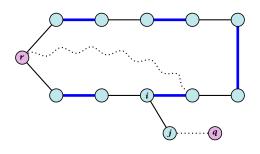
- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i,j) \circ P_2$, for some node j and (i,j) is unmatched.

 $(b,j) \circ P_2$ is an augmenting path in the contracted network.



Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+} .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+} .

For M'_{+} the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{\pm} .

For M'_{+} the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. $M_\pm.$

For M'_{+} the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_{+} the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

