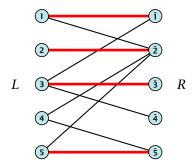

Part V

Matchings

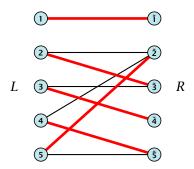
Matching

- Input: undirected graph G = (V, E).
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

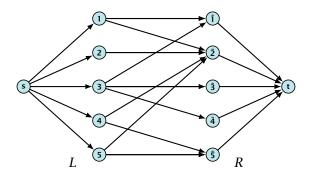
Bipartite Matching


- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

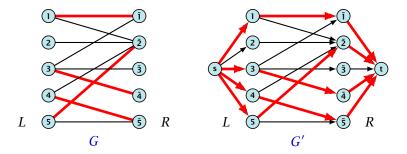

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching


- A matching *M* is perfect if it is of cardinality |M| = |V|/2.
- ► For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.

19 Bipartite Matching via Flows

- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from *L* to *R*.
- Add source *s* and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.

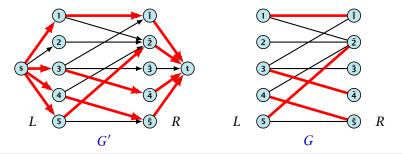


19 Bipartite Matching via Flows

Proof

Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- f is a flow and has cardinality k.



19 Bipartite Matching via Flows

Proof

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.

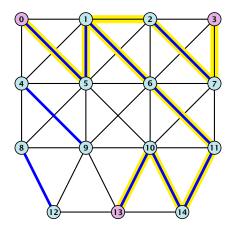
19 Bipartite Matching via Flows

19 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

Definitions.


- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 95

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

Augmenting Paths in Action

Proof.

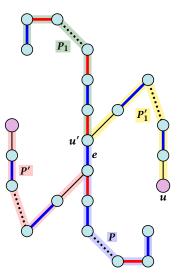
- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P.
 This gives matching M' = M ⊕ P with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality.$ $Consider the graph H with edge-set <math>M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

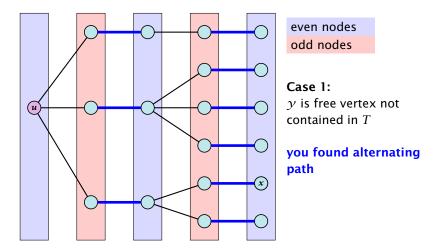
As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.


Theorem 96

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

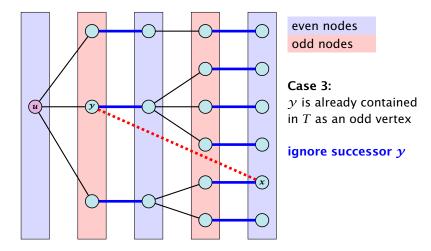

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

Proof

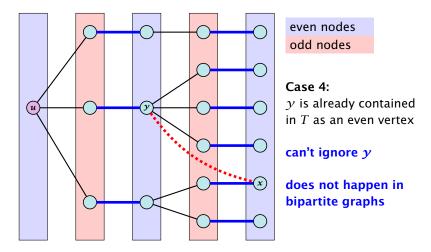
- ► Assume there is an augmenting path *P*′ w.r.t. *M*′ starting at *u*.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (ℓ).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (ℓ).



Construct an alternating tree.



Construct an alternating tree.



Construct an alternating tree.

Construct an alternating tree.

Algorithm 1 BiMatch(G, match)	grap
1: for $x \in V$ do $mate[x] \leftarrow 0$;	S =
2: $r \leftarrow 0$; free $\leftarrow n$;	S =
3: while $free \ge 1$ and $r < n$ do	initi
4: $r \leftarrow r + 1$	free
5: if $mate[r] = 0$ then	free
6: for $i = 1$ to m do $parent[i'] \leftarrow 0$	unm
7: $Q \leftarrow \emptyset; Q. \operatorname{append}(r); aug \leftarrow \operatorname{false};$	<i>r</i> : r
8: while $aug = false$ and $Q \neq \emptyset$ do	ifr
9: $x \leftarrow Q$. dequeue();	
10: if $\exists y \in A_x$: <i>mate</i> [y] = 0 then	star
11: augment(<i>mate</i> , <i>parent</i> , <i>y</i>);	initi
12: $aug \leftarrow true; free \leftarrow free - 1;$	
13: else	no a
14: if $parent[y] = 0$ then	une
15: $parent[y] \leftarrow x;$	free
16: Q. enqueue(y);	add

ph $G = (S \cup S', E);$ $\{1, ..., n\};$ $\{1', \ldots, n'\}$ ial matching empty : number of natched nodes in S oot of current tree is unmatched rt tree construction ialize empty tree

no augmen. path but

unexamined leaves

free neighbour found

add new node y to Q

21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- ► assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

Weighted Bipartite Matching

Theorem 97 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let *S* denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \ge 0$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

- ► Let H(x) denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting x, i.e. edges e = (u, v) for which w_e = (u, v).
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v .$$

• Any other matching *M* has

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) \leq \sum_v x_v .$$

21 Weighted Bipartite Matching

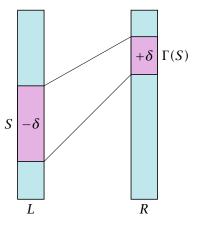
Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

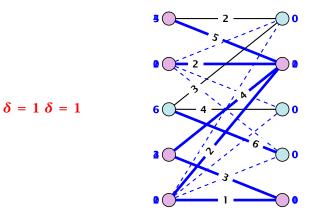
Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights


If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.


- Total node-weight decreases.
- Only edges from S to R Γ(S) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in *H*(*x*), and hence would go between *S* and Γ(*S*)) we can do this decrement for small enough δ > 0 until a new edge gets tight.

Weighted Bipartite Matching

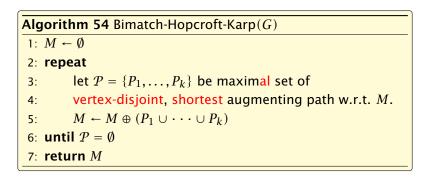
Edges not drawn have weight 0.

21 Weighted Bipartite Matching

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.



How do we find S?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at u).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- ► All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*. Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

- ► The current matching does not have any edges from V_{odd} to outside of L \ V_{even} (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- ► A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

A Fast Matching Algorithm

We call one iteration of the repeat-loop a phase of the algorithm.

Lemma 98

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- ► Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- The connected components of *G* are cycles and paths.
- ► The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- ▶ Hence, there are at least *k* components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. *M*.

- ► Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 99

The set $A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 100

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P_k*}.
- This edge is not contained in A.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M + |\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

22 The Hopcroft-Karp Algorithm

Analysis

Lemma 101

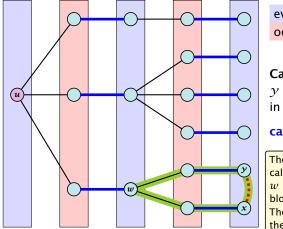
The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

Analysis

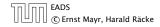
Lemma 102


One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

22 The Hopcroft-Karp Algorithm

How to find an augmenting path?

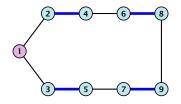
Construct an alternating tree.

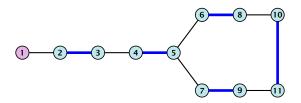

even nodes odd nodes

Case 4:

y is already contained in T as an even vertex

can't ignore y

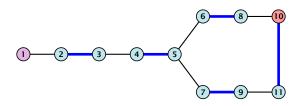

The cycle $w \leftrightarrow y - x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!). The path u-w path is called the stem of the blossom.



Definition 103

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

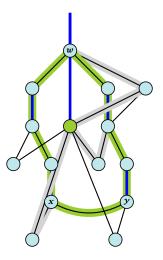


Properties:

- 1. A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \ge 0$.
- 2. A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Properties:

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

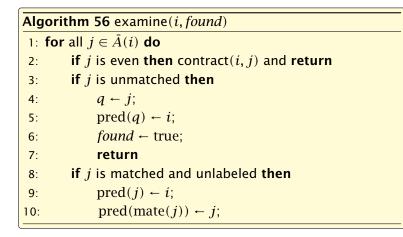


When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from *G* by contracting the blossom *B*.

- Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in V \ B that had at least one edge to a vertex from B.

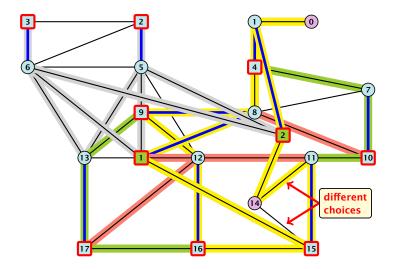
Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.



Algorithm 55 search(*r*, *found*)

- 1: set $\overline{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize $list \leftarrow \{r\}$
- 5: while $list \neq \emptyset$ do
- 6: delete a node *i* from *list*
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then**


9: return

Algorithm 57 contract(*i*, *j*)

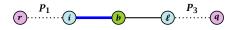
- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\overline{A}(b) \leftarrow \bigcup_{x \in B} \overline{A}(k)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular doubly linked list of nodes in B
- 6: delete nodes in *B* from the graph

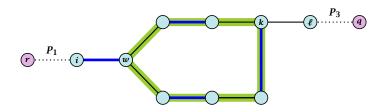
Example: Blossom Algorithm

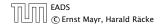
Assume that we have contracted a blossom B w.r.t. a matching M whose base is w. We created graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 104

If G' contains an augmenting path p' starting at r (or the pseudo-node containing r) w.r.t. to the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

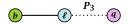


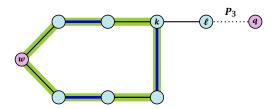

Proof.


If p' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.




- ► After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Proof.

Case 2: empty stem

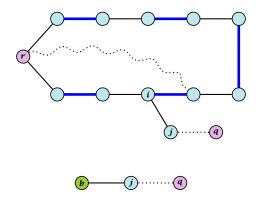
• If the stem is empty then after expanding the blossom, w = r.

• The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Lemma 105

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Proof.


- ► If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

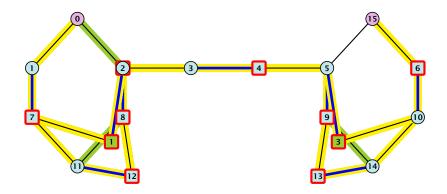
 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Case 2: non-empty stem

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.


This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

Example: Blossom Algorithm

