Matchings

Matching

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- Input: undirected, bipartite graph $G=(L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- Input: undirected, bipartite graph $G=(L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- A matching M is perfect if it is of cardinality $|M|=|V| / 2$.
- For a bipartite graph $G=(L \uplus R, E)$ this means $|M|=|L|=|R|=n$.

19 Bipartite Matching via Flows

- Input: undirected, bipartite graph $G=\left(L \uplus R \uplus\{s, t\}, E^{\prime}\right)$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

19 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.

EADS

20 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 95
A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

Augmenting Paths in Action

20 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

As $\left|M^{\prime}\right|>|M|$ there is one connected component that is a path P for which both endpoints are incident to edges from $M^{\prime} . P$ is an alternating path.

20 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 96
Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M^{\prime}=M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M^{\prime}.

[^0]
20 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (k).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.
- $P_{1} \circ P_{1}^{\prime}$ is augmenting path in M (z).

How to find an augmenting path?

Construct an alternating tree.

even nodes
odd nodes

Case 1: y is free vertex not contained in T
you found alternating path

How to find an augmenting path?

Construct an alternating tree.

20 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 3: y is already contained in T as an odd vertex
ignore successor y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex
can't ignore y
does not happen in bipartite graphs

```
Algorithm 1 BiMatch( \(G\), match)
    1: for \(x \in V\) do mate \([\mathrm{x}] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(m\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \emptyset\); \(Q\). append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) if \(\exists y \in A_{x}:\) mate \([y]=0\) then
11: augment(mate, parent, \(y\) );
12: \(\quad\) aug \(\leftarrow\) true; free \(\leftarrow\) free -1 ;
13: else
14:
15:
16:
        if parent \([y]=0\) then
parent \([y] \leftarrow x\);
16: \(\quad Q\). enqueue \((y)\);
```

graph $G=\left(S \cup S^{\prime}, E\right)$;
$S=\{1, \ldots, n\} ;$
$S=\left\{1^{\prime}, \ldots, n^{\prime}\right\}$
initial matching empty
free: number of unmatched nodes in S
r : root of current tree
if r is unmatched
start tree construction
initialize empty tree
no augmen. path but unexamined leaves
free neighbour found add new node y to Q

21 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G=L \cup R, E$.
- an edge $e=(\ell, r)$ has weight $w_{e} \geq 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that $|L|=|R|=n$
- assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$

Weighted Bipartite Matching

Theorem 97 (Halls Theorem)
A bipartite graph $G=(L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L,|\Gamma(S)| \geq|S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

Halls Theorem

Proof:

\Leftarrow Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neigbhours.
\Rightarrow For the other direction we need to argue that the minimum cut in the graph G^{\prime} is at least $|L|$.

- Let S denote a minimum cut and let $L_{S} \stackrel{\text { def }}{=} L \cap S$ and $R_{S} \stackrel{\text { det }}{=} R \cap S$ denote the portion of S inside L and R, respectively.
- Clearly, all neighbours of nodes in L_{S} have to be in S, as otherwise we would cut an edge of infinite capacity.
- This gives $R_{S} \geq\left|\Gamma\left(L_{S}\right)\right|$.
- The size of the cut is $|L|-\left|L_{S}\right|+\left|R_{S}\right|$.
- Using the fact that $\left|\Gamma\left(L_{S}\right)\right| \geq L_{S}$ gives that this is at least $|L|$.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x}. Let for a node $v \in V, x_{v} \geq 0$ denote the weight of node v.

- Suppose that the node weights dominate the edge-weights in the following sense:

$$
x_{u}+x_{v} \geq w_{e} \text { for every edge } e=(u, v)
$$

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x}, i.e. edges $e=(u, v)$ for which $w_{e}=(u, v)$.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

- The weight of your matching M^{*} is

$$
\sum_{(u, v) \in M^{*}} w_{(u, v)}=\sum_{(u, v) \in M^{*}}\left(x_{u}+x_{v}\right)=\sum_{v} x_{v}
$$

- Any other matching M has

$$
\sum_{(u, v) \in M} w_{(u, v)} \leq \sum_{(u, v) \in M}\left(x_{u}+x_{v}\right) \leq \sum_{v} x_{v}
$$

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with
$|\Gamma(S)|<|S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from S to $R-\Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

Weighted Bipartite Matching

Edges not drawn have weight 0 .

$$
\delta=1 \delta=1
$$

Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between $L-S$ and $R-\Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

EADS

Analysis

How do we find S ?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at u).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $\left|V_{\text {odd }}\right|=\left|\Gamma\left(V_{\text {even }}\right)\right|<\left|V_{\text {even }}\right|$, and all odd vertices are saturated in the current matching.

Analysis

- The current matching does not have any edges from $V_{\text {odd }}$ to outside of $L \backslash V_{\text {even }}$ (edges that may possibly deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\text {even }}$ to a node outside of $V_{\text {odd }}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}\left(n^{2}\right)$ (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we otain a running time of $\mathcal{O}\left(n^{4}\right)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}\left(n^{3}\right)$.

A Fast Matching Algorithm

```
Algorithm 54 Bimatch-Hopcroft-Karp \((G)\)
    1: \(M \leftarrow \emptyset\)
    2: repeat
    3: \(\quad\) let \(\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}\) be maximal set of
    4: vertex-disjoint, shortest augmenting path w.r.t. \(M\).
    5: \(\quad M \leftarrow M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)\)
6: until \(\mathcal{P}=\emptyset\)
7: return \(M\)
```

We call one iteration of the repeat-loop a phase of the algorithm.

Analysis

Lemma 98

Given a matching M and a maximal matching M^{*} there exist $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting paths.
- Consider the graph $G=\left(V, M \oplus M^{*}\right)$, and mark edges in this graph blue if they are in M and red if they are in M^{*}.
- The connected components of G are cycles and paths.
- The graph contains $k \stackrel{\text { def }}{=}\left|M^{*}\right|-|M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a blue edge. These are augmenting paths w.r.t. M.

Analysis

- Let P_{1}, \ldots, P_{k} be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\left.\ell=\left|P_{i}\right|\right)$.
- $M^{\prime} \stackrel{\text { def }}{=} M \oplus\left(P_{1} \cup \cdots \cup P_{k}\right)=M \oplus P_{1} \oplus \cdots \oplus P_{k}$.
- Let P be an augmenting path in M^{\prime}.

Lemma 99
The set $A \stackrel{\text { def }}{=} M \oplus\left(M^{\prime} \oplus P\right)=\left(P_{1} \cup \cdots \cup P_{k}\right) \oplus P$ contains at least $(k+1) \ell$ edges.

Analysis

Proof.

- The set describes exactly the symmetric difference between matchings M and $M^{\prime} \oplus P$.
- Hence, the set contains at least $k+1$ vertex-disjoint augmenting paths w.r.t. M as $\left|M^{\prime}\right|=|M|+k+1$.
- Each of these paths is of length at least ℓ.

Analysis

Lemma 100

P is of length at least $\ell+1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_{1}, \ldots, P_{k}, this follows from the maximality of the set $\left\{P_{1}, \ldots, P_{k}\right\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\left\{P_{1}, \ldots, P_{k}\right\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k \ell+|P|-1$.
- The lower bound on $|A|$ gives $(k+1) \ell \leq|A| \leq k \ell+|P|-1$, and hence $|P| \geq \ell+1$.

Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M+| \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^{*} contains $\left|M^{*}\right|-|M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell+1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis

Lemma 101
The Hopcroft-Karp algorithm requires at most $2 \sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor\sqrt{|V|}\rfloor$ the length of a shortest augmenting path must be at least $\lfloor\sqrt{|V|}\rfloor+1 \geq \sqrt{|V|}$.
- Hence, there can be at most $|V| /(\sqrt{|V|}+1) \leq \sqrt{|V|}$ additional augmentations.

Analysis

Lemma 102

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y

The cycle $w \leftrightarrow y-x \leftrightarrow w$ is called a blossom.
w is called the base of the blossom (even node!!!).
The path $u-w$ path is called the stem of the blossom.

Flowers and Blossoms

Definition 103
A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r=w$ (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Flowers and Blossoms

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2 k+1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.
3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \backslash B$ that had at least one edge to a vertex from B.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.


```
Algorithm 55 search(r, found)
    1: set }\overline{A}(i)\leftarrowA(i)\mathrm{ for all nodes }
    2: found}\leftarrow\mathrm{ false
    3: unlabel all nodes;
    4: give an even label to }r\mathrm{ and initialize list }\leftarrow{r
    5: while list # \emptyset do
    6: delete a node i from list
    7: examine(i,found)
    8: if found = true then
    9: return
```

```
Algorithm 56 examine( \(i\), found)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
```

```
Algorithm 57 contract(i,j)
    1: trace pred-indices of i and j to identify a blossom B
    2: create new node b and set }\overline{A}(b)\leftarrow\mp@subsup{\cup}{x\inB}{}\overline{A}(k
    3: label b even and add to list
    4: update }\overline{A}(j)\leftarrow\overline{A}(j)\cup{b}\mathrm{ for each }j\in\overline{A}(b
    5: form a circular doubly linked list of nodes in B
    6: delete nodes in B from the graph
```


Example: Blossom Algorithm

Assume that we have contracted a blossom B w.r.t. a matching M whose base is w. We created graph $G^{\prime}=G / B$ with pseudonode b. Let M^{\prime} be the matching in the contracted graph.

Lemma 104

If G^{\prime} contains an augmenting path p^{\prime} starting at r (or the pseudo-node containing r) w.r.t. to the matching M^{\prime} then G contains an augmenting path starting at r w.r.t. matching M.

Proof.

If p^{\prime} does not contain b it is also an augmenting path in G.

Case 1: nonempty stem

- Next suppose that the stem is nonempty.

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_{2} from w to k that ends in a matching edge.
- $P_{1} \circ(i, w) \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.
- If $k=w$ then $P_{1} \circ(i, w) \circ(w, \ell) \circ P_{3}$ is an alternating path.

Proof.

Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

- The path $r \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.

Lemma 105

If G contains an augmenting path P from r to q w.r.t. matching M then G^{\prime} contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M^{\prime}.

EADS

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.
P is of the form $P_{1} \circ(i, j) \circ P_{2}$, for some node j and (i, j) is unmatched.
$(b, j) \circ P_{2}$ is an augmenting path in the contracted network.

Case 2: non-empty stem

Let P_{3} be alternating path from r to w. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.
G^{\prime} has an augmenting path w.r.t. M_{+}^{\prime}. It must also have an augmenting path w.r.t. M^{\prime}, as both matchings have the same cardinality.

This path must go between r and q.

Example: Blossom Algorithm

[^0]: The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting I from u we don't have to check for such paths in future rounds.

