There are different types of complexity bounds:

- best-case complexity:

$$
C_{\mathrm{bc}}(n):=\min \{C(x)| | x \mid=n\}
$$

Usually easy to analyze, but not very meaningful.

- worst-case complexity:

$$
C_{\mathrm{wc}}(n):=\max \{C(x)| | x \mid=n\}
$$

Usually moderately easy to analyze; sometimes too pessimistic.

- average case complexity:

$$
C_{\mathrm{avg}}(n):=\frac{1}{\left|I_{n}\right|} \sum_{|x|=n} C(x)
$$

more general: probability measure $\mu$

$$
C_{\mathrm{avg}}(n):=\sum_{x \in I_{n}} \mu(x) \cdot C(x)
$$

$C(x){ }_{x}^{\text {cost of instance }}$ ${ }_{x}$
$x \mid$ input length of instance $x$ set of instances $I_{n}$ of length $n$

## 5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymtotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of $n$. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

There are different types of complexity bounds:

- amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

- randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input $x$. Then take the worst-case over all $x$ with $|x|=n$.

## Asymptotic Notation

## Formal Definition

Let $f$ denote functions from $\mathbb{N}$ to $\mathbb{R}^{+}$.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than $f$ )
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than $f$ )
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as $f$ )
- $o(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow slower than $f$ )
- $\omega(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow faster than $f$ )


## Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). $f$ and $g$ are functions from $\mathbb{N}$ to $\mathbb{R}^{+}$.

- $g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in \Omega(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty$
- $g \in \Theta(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in o(f): \quad \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$
- $g \in \omega(f): \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty$


## tions.

- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.


## Asymptotic Notation

## Abuse of notation

4. People write $\mathcal{O}(f(n))=\mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

## Asymptotic Notation

## Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.
3. People write e.g. $h(n)=f(n)+o(g(n))$ when they mean that there exists a function $z: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto z(n), z \in o(g)$ such that $h(n) \leq f(n)+z(n)$.
4. In this context $f(n)$ does not mean the function $f$ evaluated at $n$, but instead it is a shorthand for the function itself (leaving out domain and codomain and This is particularly useful if you do not want to ignore constant factors. For ex- ${ }^{-1}$ ample the median of $n$ elements can be determined using $\frac{3}{2} n+o(n)$ compar- -1 only giving the rule of correspondence isons. of the function)

1 © Ernst Mayr, Harald Räcke
5 Asymptotic Notation

## Asymptotic Notation

## Lemma 3

Let $f, g$ be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for $g$ ). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant $c$
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(\max \{f(n), g(n)\})$

The expressions also hold for $\Omega$. Note that this means that $f(n)+g(n) \in \Theta(\max \{f(n), g(n)\})$.

## Asymptotic Notation

## Comments

- Do not use asymptotic notation within induction proofs.
- For any constants $a, b$ we have $\log _{a} n=\Theta\left(\log _{b} n\right)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- In general $\log n=\log _{2} n$, i.e., we use 2 as the default base for the logarithm.


## Recurrences

How do we bring the expression for the number of comparisons ( $\approx$ running time) into a closed form?

For this we need to solve the recurrence.

## 6 Recurrences

```
Algorithm 2 mergesort(list \(L\) )
    1: \(s \leftarrow \operatorname{size}(L)\)
    2: if \(s \leq 1\) return \(L\)
    3: \(L_{1} \leftarrow L\left[1 \cdots\left\lfloor\frac{s}{2}\right\rfloor\right]\)
    4: \(L_{2} \leftarrow L\left[\left\lceil\frac{s}{2}\right\rceil \cdots n\right]\)
    5: mergesort \(\left(L_{1}\right)\)
    6: mergesort \(\left(L_{2}\right)\)
    7: \(L \leftarrow \operatorname{merge}\left(L_{1}, L_{2}\right)\)
    8: return \(L\)
```

This algorithm requires

$$
T(n) \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+\mathcal{O}(n)
$$

comparisons when $n>1$ and 0 comparisons when $n \leq 1$.
1 EADS
© Ernst Mayr, Harald Räcke
6 Recurrences

## Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

## 2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.
3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

