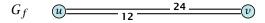

Greedy-algorithm:

- start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e_1' with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.

Definition 50

An augmenting path with respect to flow f, is a path in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 45 FordFulkerson(G = (V, E, c))

1: Initialize $f(e) \leftarrow 0$ for all edges.

2: **while** \exists augmenting path p in G_f **do**

3: augment as much flow along p as possible.

Theorem 51

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 52

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- 1. There exists a cut A, B such that val(f) = cap(A, B).
- 2. Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - ▶ Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Analysis

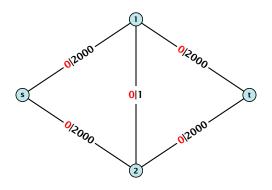
Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value $f(\emph{e})$ and every residual capacity $\emph{c}_f(\emph{e})$ remains integral troughout the algorithm.

Lemma 53

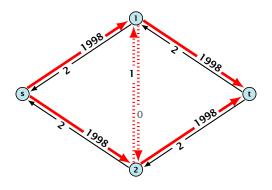

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(nmC)$.

Theorem 54

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

A bad input

Problem: The running time may not be polynomial.

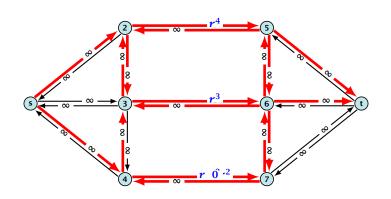


Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

A bad input

Problem: The running time may not be polynomial.



Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

A Pathological Input

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

Running time may be infinite!!!

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

=[fill=DarkGreen,draw=DarkGreen]

Overview: Shortest Augmenting Paths

Lemma 55

The length of the shortest augmenting path never decreases.

Lemma 56

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

12.2 Shortest Augmenting Paths

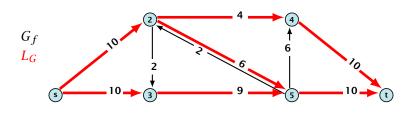
Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 57

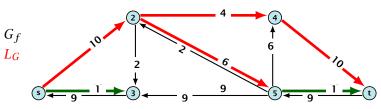
The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.


- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- O(m) augmentations for paths of exactly k < n edges.

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f .

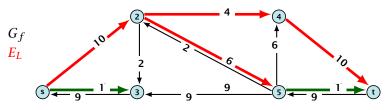
Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.


A path P is a shortest s-u path in G_f if it is a an s-u path in L_G .

First Lemma: The length of the shortest augmenting path never decreases.

- lacktriangle After an augmentation the following changes are done in G_f .
- Some edges of the chosen path may be deleted (bottleneck edges).
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.



Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that does use edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .

Theorem 58

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 59 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow.

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

Suppose that the initial distance between s and t in G_f is k.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node vthat does not have any outgoing edges.

You can delete incoming edges of v from E_L .

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

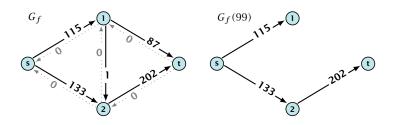
Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

How to choose augmenting paths?


- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- ▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .


```
Algorithm 46 maxflow(G, s, t, c)
1: foreach e \in E do f_e \leftarrow 0;
2: \Delta \leftarrow 2^{\lceil \log_2 C \rceil}
3: while \Delta \geq 1 do
   G_f(\Delta) \leftarrow \Delta-residual graph
4:
5: while there is augmenting path P in G_f(\Delta) do
6: f \leftarrow \operatorname{augment}(f, c, P)
7: \operatorname{update}(G_f(\Delta))
8: \Delta \leftarrow \Delta/2
9: return f
```

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Lemma 60

There are $\lceil \log C \rceil$ iterations over Δ .

Proof: obvious.

Lemma 61

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\mathrm{val}(f) + 2m\Delta$.

Proof: less obvious, but simple:

- An s-t cut in $G_f(\Delta)$ gives me an upper bound on the amount of flow that my algorithm can still add to f.
- ▶ The edges that currently have capacity at most Δ in G_f form an s-t cut with capacity at most $2m\Delta$.

Lemma 62

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $ightharpoonup \operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$
- each augmentation increases flow by Δ .

Theorem 63

We need $\mathcal{O}(m \log C)$ augmentations. The algorithm can be implemented in time $\mathcal{O}(m^2 \log C)$.