Bipartite Matching

- A matching *M* is perfect if it is of cardinality |M| = |V|/2.
- ► For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.

Proof

Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- ► *f* is a flow and has cardinality *k*.

19 Bipartite Matching via Flows

- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from *L* to *R*.
- Add source *s* and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.

Proof

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in *L* and *R* participates in at most one edge in *M*.
- |M| = k, as the flow must use at least k middle edges.

19 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

EADS © Ernst Mayr, Harald Räcke	19 Bipartite Matching via Flows	545

20 Augmenting Paths for Matchings

Definitions.

- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 95

A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

רח] הח] EADS	20 Augmenting Paths for Matchings	
🛛 🛄 🗍 🖉 🕲 Ernst Mayr, Harald Räcke		546

20 Augmenting Paths for Matchings

Proof.

- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P.
 This gives matching M' = M ⊕ P with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.