19 Bipartite Matching via Flows

- Input: undirected, bipartite graph $G=\left(L \uplus R \uplus\{s, t\}, E^{\prime}\right)$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

G

G^{\prime}

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

G

G^{\prime}

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

19 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.

