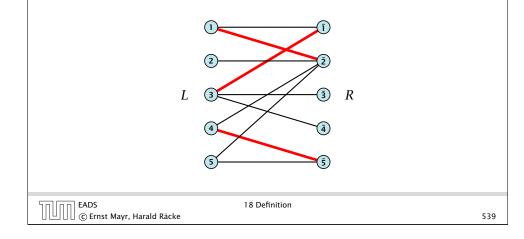


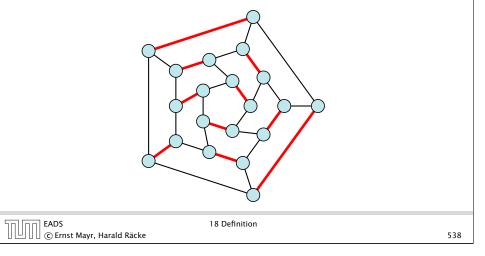
Bipartite Matching

- Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



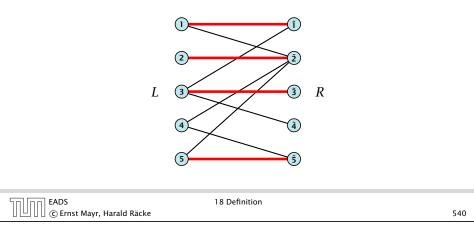
Matching

- Input: undirected graph G = (V, E).
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



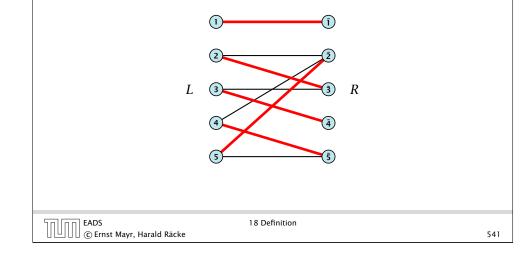
Bipartite Matching

- Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Bipartite Matching

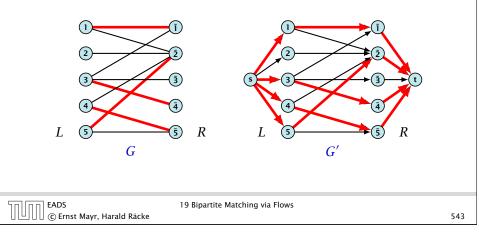
- A matching *M* is perfect if it is of cardinality |M| = |V|/2.
- ► For a bipartite graph $G = (L \uplus R, E)$ this means |M| = |L| = |R| = n.



Proof

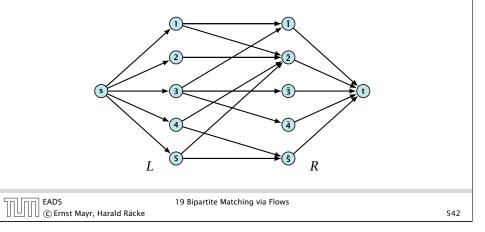
Max cardinality matching in $G \leq$ value of maxflow in G'

- Given a maximum matching *M* of cardinality *k*.
- Consider flow *f* that sends one unit along each of *k* paths.
- ► *f* is a flow and has cardinality *k*.



19 Bipartite Matching via Flows

- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from *L* to *R*.
- Add source *s* and connect it to all nodes on the left.
- Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.



Proof

Max cardinality matching in $G \ge$ value of maxflow in G'

- Let f be a maxflow in G' of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- Consider M= set of edges from L to R with f(e) = 1.
- Each node in L and R participates in at most one edge in M.
- |M| = k, as the flow must use at least k middle edges.

