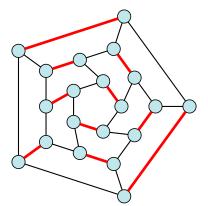
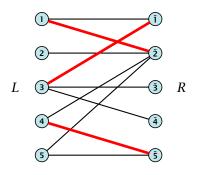
Matching

- ▶ Input: undirected graph G = (V, E).
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



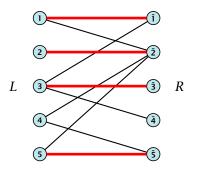
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



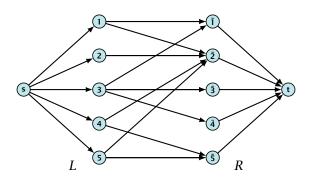
Bipartite Matching

- ▶ Input: undirected, bipartite graph $G = (L \uplus R, E)$.
- ▶ $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality



Maxflow Formulation

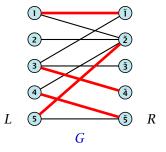
- ▶ Input: undirected, bipartite graph $G = (L \uplus R \uplus \{s, t\}, E')$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- ▶ Add *t* and connect all nodes on the right to *t*.
- All edges have unit capacity.

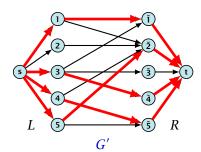


Proof

Max cardinality matching in $G \le \text{value of maxflow in } G'$

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.

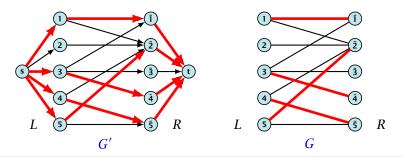




Proof

Max cardinality matching in $G \ge \text{value of maxflow in } G'$

- Let f be a maxflow in G' of value k
- ▶ Integrality theorem $\Rightarrow k$ integral; we can assume f is 0/1.
- ► Consider M= set of edges from L to R with f(e) = 1.
- \blacktriangleright Each node in L and R participates in at most one edge in M.
- ▶ |M| = k, as the flow must use at least k middle edges.



14.1 Matching

Which flow algorithm to use?

- ▶ Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.

team	wins	losses	remaining games			
i	w_i	ℓ_i	Atl	Phi	NY	Mon
Atlanta	83	71	-	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	-	0
Montreal	77	82	1	2	0	-

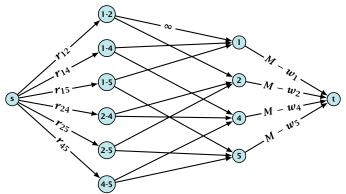
Which team can end the season with most wins?

- ► Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

Formal definition of the problem:

- ▶ Given a set S of teams, and one specific team $z \in S$.
- ▶ Team x has already won w_x games.
- ► Team x still has to play team y, r_{xy} times.
- Does team z still have a chance to finish with the most number of wins.

Flow networks for z = 3. M is number of wins Team 3 can still obtain.



Idea. Distribute the results of remaining games in such a way that no team gets too many wins.

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

$$w(T) := \sum_{i \in T} w_i, \qquad r(T) := \sum_{i,j \in T, i < j} r_{ij}$$
 wins of teams in T remaining games among teams in T

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Theorem 83

A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{ij \in S \setminus \{z\}, i < j} r_{ij}$.

Proof (⇐)

- ► Consider the mincut *A* in the flow network. Let *T* be the set of team-nodes in *A*.
- ▶ If for a node x-y not both team nodes x and y are in T, then x- $y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$r(S \setminus \{z\}) > \operatorname{cap}(S, V \setminus S)$$

$$\geq \sum_{i < j: i \notin T \lor j \notin T} r_{ij} + \sum_{i \in T} (M - w_i)$$

$$\geq r(S \setminus \{z\}) - r(T) + |T|M - w(T)$$

► This gives M < (w(T) + r(T))/|T|, i.e., z is eliminated.

Proof (⇒)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing x-y it defines how many games team x and team y should win.
- ► The flow leaving the team-node *x* can be interpreted as the additional number of wins that team *x* will obtain.
- ▶ This is less than $M w_X$ because of capacity constraints.
- ► Hence, we found a set of results for the remaining games, such that no team obtains more than *M* wins in total.
- Hence, team z is not eliminated.

Project Selection

Project selection problem:

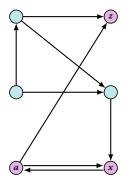
- ▶ Set P of possible projects. Project v has an associated profit p_v (can be positive or negative).
- Some projects have requirements (taking course EA2 requires course EA1).
- ▶ Dependencies are modelled in a graph. Edge (u, v) means "can't do project u without also doing project v."
- ▶ A subset A of projects is feasible if the prerequisites of every project in A also belong to A.

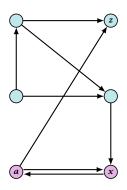
Goal: Find a feasible set of projects that maximizes the profit.

Project Selection

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.





Project Selection

Mincut formulation:

- Edges in the prerequisite graph get infinite capacity.
- Add edge (s, v) with capacity p_v for nodes v with positive profit.
- Create edge (v,t) with capacity $-p_v$ for nodes v with negative profit.



Theorem 84

A is a mincut if $A \setminus \{s\}$ is the optimal set of projects.

Proof.

A is feasible because of capacity infinity edges.

cap(A, V\A) =
$$\sum_{v \in A: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v) = \sum_v p_v - \sum_{v \in A} p_v$$

For the formula we define $p_s := 0$. Note that minimizing the capacity of the cut $(A, V \setminus A)$ corresponds to maximizing profits of projects in A.

