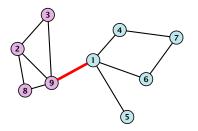
16 Global Mincut

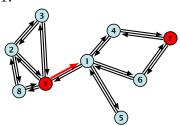
Given an undirected, capacitated graph G = (V, E, c) find a partition of V into two non-empty sets $S, V \setminus S$ s.t. the capacity of edges between both sets is minimized.



16 Global Mincut

We can solve this problem using standard maxflow/mincut.

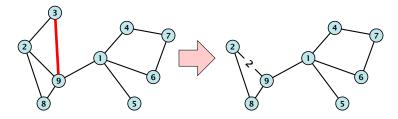
- ► Construct a directed graph G' = (V, E') that has edges (u, v) and (v, u) for every edge $\{u, v\} \in E$.
- Fix an arbitrary node $s \in V$ as source. Compute a minimum s-t cut for all possible choices $t \in V$, $t \neq s$. (Time: $O(n^4)$)
- ▶ Let $(S, V \setminus S)$ be a minimum global mincut. The above algorithm will output a cut of capacity $cap(S, V \setminus S)$ whenever $|\{s,t\} \cap S| = 1$.



Edge Contractions

- Given a graph G = (V, E) and an edge $e = \{u, v\}$.
- ▶ The graph G/e is obtained by "identifying" u and v to form a new node.
- Resulting parallel edges are replaced by a single edge, whose capacity equals the sum of capacities of the parallel edges.

Example 88



Edge-contractions do no decrease the size of the mincut.

Edge Contractions

We can perform an edge-contraction in time O(n).

Randomized Mincut Algorithm

Algorithm 52 KargerMincut(G = (V, E, c))

- 1: **for** $i = 1 \rightarrow n 2$ **do**
- 2: choose $e \in E$ randomly with probability c(e)/C(E)
- 3: $G \leftarrow G/e$
- 4: **return** only cut in *G*
- Let G_t denote the graph after the (n-t)-th iteration, when t nodes are left.
- ▶ Note that the final graph G_2 only contains a single edge.
- ► The cut in *G*² corresponds to a cut in the original graph *G* with the same capacity.
- What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

What is the probability that this algorithm returns a mincut?

What is the probability that a given mincut A is still possible after round i?

▶ It is still possible to obtain cut A in the end if so far no edge in $(A, V \setminus A)$ has been contracted.

What is the probability that we select an edge from A in iteration i?

- Let $min = cap(A, V \setminus A)$ denote the capacity of a mincut.
- Let cap(v) be capacity of edges incident to vertex $v \in V_{n-i+1}$.
- ▶ Clearly, $cap(v) \ge min$.
- Summing cap(v) over all edges gives

$$2c(E) = 2\sum_{e \in E} c(e) = \sum_{v \in V} \operatorname{cap}(v) \ge (n - i + 1) \cdot \min$$

► Hence, the probability of choosing an edge from the cut is at most $\min /c(E) \le 2/(n-i+1)$.

```
n-i+1 is the number of nodes in graph G_{n-i+1}=(V_{n-i+1},E_{n-i+1}), the graph at the start of iteration i.
```

The probability that we do not choose an edge from the cut in iteration i is

$$1 - \frac{2}{n-i+1} = \frac{n-i-1}{n-i+1} \ .$$

The probability that the cut is alive after iteration n-t (after which t nodes are left) is

$$\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} = \frac{t(t-1)}{n(n-1)} .$$

Choosing t=2 gives that with probability $1/\binom{n}{2}$ the algorithm computes a mincut.

Repeating the algorithm $c \ln n \binom{n}{2}$ times gives that the probability that we are never successful is

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le \left(e^{-1/\binom{n}{2}}\right)^{\binom{n}{2}c\ln n} \le n^{-c} ,$$

where we used $1 - x \le e^{-x}$.

Theorem 89

The randomized mincut algorithm computes an optimal cut with high probability. The total running time is $O(n^4 \log n)$.

Improved Algorithm

Algorithm 53 RecursiveMincut(G = (V, E, c))

1: **for** $i = 1 \rightarrow n - n/\sqrt{2}$ **do**

2: choose $e \in E$ randomly with probability c(e)/C(E)

3: $G \leftarrow G/e$

4: **if** |V| = 2 **return** cut-value;

5: *cuta* ← RecursiveMincut(G);

6: *cutb* ← RecursiveMincut(G);

7: **return** min{*cuta*, *cutb*}

Running time:

- $T(n) = 2T(\frac{n}{\sqrt{2}}) + \mathcal{O}(n^2)$
- ► This gives $T(n) = \mathcal{O}(n^2 \log n)$.

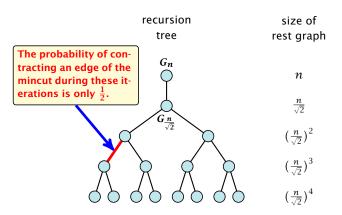
Note that the above implementation only works for very special values of n.

The probability of contracting an edge from the mincut during one iteration through the for-loop is only

$$\frac{t(t-1)}{n(n-1)} \approx \frac{t^2}{n^2} = \frac{1}{2}$$
,

as
$$t = \frac{n}{\sqrt{2}}$$
.

For the following analysis we ignore the slight error and assume that this probability is at most $\frac{1}{2}$.



We can estimate the success probability by using the following game on the recursion tree. Delete every edge with probability $\frac{1}{2}$. If in the end you have a path from the root to at least one leaf node you are successful.

Let for an edge e in the recursion tree, h(e) denote the height (distance to leaf level) of the parent-node of e (end-point that is higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of e to a descendant leaf, after we randomly deleted edges. Note that an edge can only be alive if it hasn't been deleted.

Lemma 90

The probability that an edge e is alive is at least $\frac{1}{h(e)+1}$.

Proof.

- An edge e with h(e) = 1 is alive if and only if it is not deleted. Hence, it is alive with proability at least $\frac{1}{2}$.
- Let p_d be the probability that an edge e with h(e) = d is alive. For d > 1 this happens for edge $e = \{c, p\}$ if it is not deleted **and** if one of the child-edges connecting to c is alive.
- This happens with probability

$$p_d = \frac{1}{2} \Big(2p_{d-1} - p_{d-1}^2 \Big) \quad \boxed{\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]}$$

$$= p_{d-1} - \frac{p_{d-1}^2}{2}$$

$$x - x^2/2 \text{ is monotonically} \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

$$x - x^2/2$$
 is monotonically increasing for $x \in [0, 1]$

$$\frac{x-x^2/2 \text{ is monotonically increasing for } x \in [0,1]} \ge \frac{1}{d} - \frac{1}{2d^2} \ge \frac{1}{d} - \frac{1}{d(d+1)} = \frac{1}{d+1} \ .$$

16 Global Mincut

Lemma 91

One run of the algorithm can be performed in time $\mathcal{O}(n^2 \log n)$ and has a success probability of $\Omega(\frac{1}{\log n})$.

Doing $\Theta(\log^2 n)$ runs gives that the algorithm succeeds with high probability. The total running time is $\mathcal{O}(n^2 \log^3 n)$.