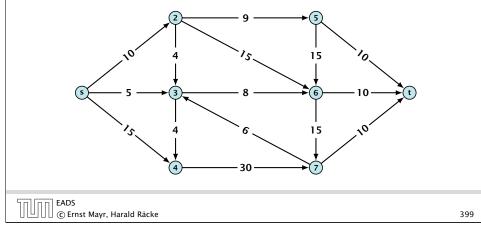
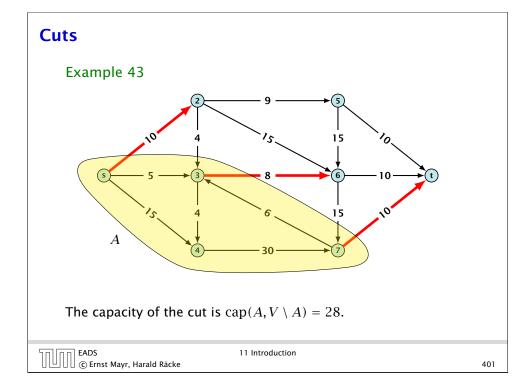
11 Introduction

Flow Network

- directed graph G = (V, E); edge capacities c(e)
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;





Cuts

Definition 41

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \setminus A$.

Definition 42 The capacity of a cut *A* is defined as

 $\operatorname{cap}(A, V \setminus A) := \sum_{e \in \operatorname{out}(A)} c(e)$,

where out(A) denotes the set of edges of the form $A \times V \setminus A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (*s*, *t*)-cut with minimum capacity.

11 Introduction

EADS © Ernst Mayr, Harald Räcke

400

Flows

Definition 44

An (s, t)-flow is a function $f : E \mapsto \mathbb{R}^+$ that satisfies

1. For each edge *e*

 $0 \leq f(e) \leq c(e)$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{e \in \operatorname{out}(v)} f(e) = \sum_{e \in \operatorname{into}(v)} f(e) \ .$$

(flow conservation constraints)

EADS © Ernst Mayr, Harald Räcke

11 Introduction

Flows

Definition 45 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(s)} f(e)$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

UUUC Ernst Mayr, Harald Räcke	403

Let
$$f$$
 a flow, and let $A \subseteq V$ be an (s, t) -cut. Then the net-flow
across the cut is equal to the amount of flow leaving s , i.e.,
 $val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$.

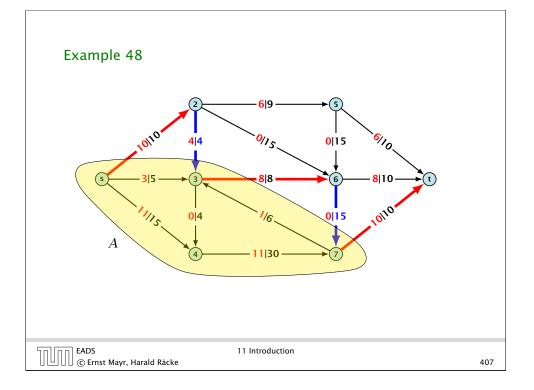
Flows

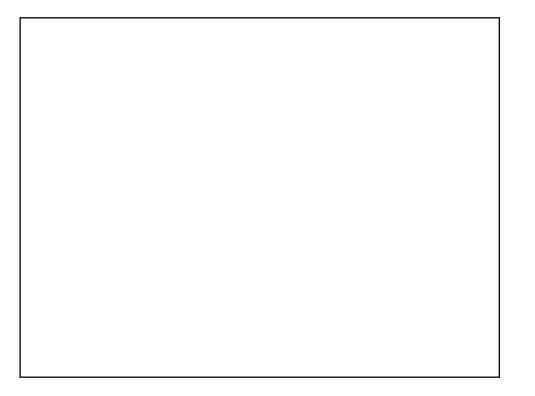
Example 46 69 ⁶/10 ·0/15 0|15 88 8|10 10/10-115 <mark>0</mark>|15 04 16. 11|30 The value of the flow is val(f) = 24. EADS © Ernst Mayr, Harald Räcke EADS 11 Introduction 404

Proof. $val(f) = \sum_{e \in out(s)} f(e) = \mathbf{0}$ $= \sum_{e \in out(s)} f(e) + \sum_{v \in A \setminus \{s\}} \left(\sum_{e \in out(v)} f(e) - \sum_{e \in in(v)} f(e) \right)$ $= \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

405





Corollary 49

Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

 $\operatorname{val}(f) = \operatorname{cap}(A, V \setminus A).$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f' with larger value. Then

$$\begin{array}{l} \operatorname{cap}(A,V\setminus A) < \operatorname{val}(f') \\ &= \sum_{e \in \operatorname{out}(A)} f'(e) - \sum_{e \in \operatorname{into}(A)} f'(e) \\ &\leq \sum_{e \in \operatorname{out}(A)} f'(e) \\ &\leq \operatorname{cap}(A,V\setminus A) \end{array} \end{array}$$

