Analysis

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M + |\frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

EADS © Ernst Mayr, Harald Räcke	22 The Hopcroft-Karp Algorithm

Analysis

Lemma 102

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

EADS © Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

575

573

Analysis

Lemma 101

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

EADS C Ernst Mayr, Harald Räcke

22 The Hopcroft-Karp Algorithm

Flowers and Blossoms

Definition 103

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

EADS 23 Maximum Matching in General Graphs © Ernst Mayr, Harald Räcke
--

Flowers and Blossoms

Properties:

- 1. A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \ge 0$.
- 2. A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- 3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

EADS

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

579

Flowers and Blossoms EADS © Ernst Mayr, Harald Räcke EADS 23 Maximum Matching in General Graphs 581

When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from G by contracting the blossom B.

- Delete all vertices in *B* (and its incident edges) from *G*.
- Add a new (pseudo-)vertex *b*. The new vertex *b* is connected to all vertices in $V \setminus B$ that had at least one edge to a vertex from B.

EADS © Ernst Mayr, Harald Räcke	23 Maximum Matching in General Graphs

٩lgo	rithm 55 search(<i>r</i> , <i>found</i>)	
1: s	et $\overline{A}(i) \leftarrow A(i)$ for all nodes i	
2: f	$ound \leftarrow false$	
3: u	nlabel all nodes;	
4: g	ive an even label to r and initialize $list \leftarrow \{r\}$	
5: V	vhile <i>list</i> ≠ Ø do	
6:	delete a node <i>i</i> from <i>list</i>	
7:	examine(<i>i</i> , <i>found</i>)	
8:	if <i>found</i> = true then	
9:	return	

EADS

1: fo	r all $j \in ar{A}(i)$ do	
2:	if j is even then contract (i, j) and return	
3:	if j is unmatched then	
4:	$q \leftarrow j;$	
5:	$\operatorname{pred}(q) \leftarrow i;$	
6:	<i>found</i> ← true;	
7:	return	
8:	if <i>j</i> is matched and unlabeled then	
9:	$\operatorname{pred}(j) \leftarrow i;$	
10:	$pred(mate(j)) \leftarrow j;$	

Example: Blossom Algorithm

 Image: Market State Sta

Assume that we have contracted a blossom B w.r.t. a matching M whose base is w. We created graph G' = G/B with pseudonode b. Let M' be the matching in the contracted graph.

Lemma 104

585

If G' contains an augmenting path p' starting at r (or the pseudo-node containing r) w.r.t. to the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Proof.

If p' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

Proof.

Case 2: empty stem

If the stem is empty then after expanding the blossom,
w = r.

- ► After the expansion *ℓ* must be incident to some node in the blossom. Let this node be *k*.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Lemma 105

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Proof.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node *j* and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

			1
	23 Maximum Matching in General Graphs		
🛛 💾 🗋 🕻 🕲 Ernst Mayr, Harald Räcke	59	93	

Case 2: non-empty stem

Let P_3 be alternating path from r to w. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

