
Preflows

Definition 64
An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
e∈out(v)

f(e)≤
∑

e∈into(v)
f(e) .

EADS

c© Ernst Mayr, Harald Räcke 437

Preflows

Example 65

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

0|9

0|15

0|4

0|8

11|30

1|6

0|15

0|15

0|10

0|10

0|10

A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an active

node.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 438

Preflows

Definition:

A labelling is a function ` : V → N. It is valid for preflow f if

ñ `(u) ≤ `(v)+ 1 for all edges in the residual graph Gf (only

non-zero capacity edges!!!)

ñ `(s) = n
ñ `(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 439

Preflows

G

Gf

s

2

3

4

5 t

s

2

3

4

5 t

6 0

0 0

0 0

6 0

20|0

10|0

0|0

0|0

20|20 0|8

0|8

0|2

0|910|10

0|6 0|5

0|4

0

20
8

0

8
0

2

0

9
0

0
10

6

0 5
0

4
0

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 440

Preflows

Lemma 66
A preflow that has a valid labelling saturates a cut.

Proof:

ñ There are n nodes but n+ 1 different labels from 0, . . . , n.

ñ There must exist a label d ∈ {0, . . . , n} such that none of the

nodes carries this label.

ñ Let A = {v ∈ V | `(v) > d} and B = {v ∈ V | `(v) < d}.
ñ We have s ∈ A and t ∈ B and there is no edge from A to B in

the residual graph Gf ; this means that (A, B) is a saturated

cut.

Lemma 67
A flow that has a valid labelling is a maximum flow.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 441

Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation
constraints in which case we can conclude that we have a maximum flow.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 442

Changing a Preflow

An arc (u,v) with cf (u,v) > 0 in the residual graph is

admissable if `(u) = `(v)+ 1 (i.e., it goes downwards w.r.t.

labelling `).

The push operation

Consider an active node u with excess flow

f(u) =
∑
e∈into(u) f(e)−

∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissable arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

ñ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

ñ non-saturating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 443

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissable arc.

Increasing the label of u by 1 results in a valid labelling.

ñ Edges (w,u) incoming to u still fulfill their constraint

`(w) ≤ `(u)+ 1.

ñ An outgoing edge (u,w) had `(u) < `(w)+ 1 before since

it was not admissable. Now: `(u) ≤ `(w)+ 1.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 444

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water than this would be natural).

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 445

Push Relabel Algorithms

Algorithm 47 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 446

Preflow Push Algorithm

relabel push push push relabel 6

times non-saturated push relabel

push relabel 6 times non-saturated

push relabel non-saturated push

relabel push relabel push relabel 6

times non-saturated push push

relabel 7 times push relabel

non-saturated push non-saturated

push non-saturated push

non-saturated push

G

Gf

s

2

3

4

5 t

s

2

3

4

5 t

6 0

017 0189

017 0128

6 0

20|020|116|18|16|16|70|73|77|70|7

10|012|012|13|13|70|71|70|7

0|04|04|10|16|15|15|81|81|90|9

0|08|017|017|19|19|23|23|80|81|80|8

20|20
14|20
7|20 0|88|85|8

0|88|8

0|22|2

0|99|98|910|107|106|10

0|66|65|6 0|54|55|5

0|44|40|4

0

20

6

14

13

7
8

0
0

8
3

5

8
0

0
8

2

0

0

2

9
0

0
9

1
8

0
10

3
7

4
6

6

0

0

6

1

5 5
0

1
4

0
5

4
0

0
4

4
0

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 447

Analysis

Lemma 68
An active node has a path to s in the residual graph.

Proof.

ñ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

ñ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

ñ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

ñ Let f(B) =
∑
v∈B f(v) be the excess flow of all nodes in B.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 448

Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =

 0 (x,y) ∉ E

f((x,y)) (x,y) ∈ E
We have

f(B) =
∑
b∈B

f(b)

=
∑
b∈B

(∑
v∈V

f(v, b)−
∑
v∈V

f(b,v)
)

=
∑
b∈B

(∑
v∈A

f(v, b)+
∑
v∈B

f(v, b)−
∑
v∈A

f(b,v)−
∑
v∈B

f(b,v)
)

=
∑
b∈B

∑
v∈A

f(v, b)−
∑
b∈B

∑
v∈A

f(b,v)+
∑
b∈B

∑
v∈B

f(v, b)−
∑
b∈B

∑
v∈B

f(b,v)

≤ 0

∑
b∈B

∑
v∈B

f(v, b)−
∑
b∈B

∑
v∈B

f(b,v)

= 0

f(v, b)

= 0

∑
b∈B

∑
v∈A

f(v, b)

= 0

f(b,v)

≥ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 449

Analysis

Lemma 69
The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label of

the source is n.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 450

Analysis

Lemma 70
There are only O(n3) calls to discharge when using the

relabel-to-front heuristic.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label of

the source is n.

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 451

Lemma 71
The number of saturating pushes performed is at most O(mn).

Proof.

ñ Suppose that we just made a saturating push along (u,v).
ñ Hence, the edge (u,v) is deleted from the residual graph.

ñ For the edge to appear again, a push from v to u is required.

ñ Currently, `(u) = `(v)+ 1, as we only make pushes along

admissable edges.

ñ For a push from v to u the edge (v,u) must become

admissable. The label of v must increase by at least 2.

ñ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 452

Lemma 72
The number of non-saturating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f) =
∑

active nodesv `(v)
ñ A saturating push increases Φ by at most 2n.

ñ A relabel increases Φ by at most 1.

ñ A non-saturating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#non-saturating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 453

Analysis

There is an implementation of the generic push relabel algorithm

with running time O(n2m).

For every node maintain a list of admissable edges starting at that

node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
ñ check for all outgoing edges if they become admissable

ñ check for all incoming edges if they become non-admissable

EADS 13.1 Generic Push Relabel

c© Ernst Mayr, Harald Räcke 454

13.2 Relabel to front

For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in the

residual graph Gf). Then we use the discharge-operation:

Algorithm 48 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissable then push(u,v)
8: else u.current-neighbour ← v.next-in-list

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 455

13.2 Relabel to front

Lemma 73
If v = null in line 3, then there is no outgoing admissable edge

from u.

The lemma holds because push- and relabel-operations on nodes

different from u cannot make edges outgoing from u admissable.

This shows that discharge(u) is correct, and that we can perform

a relabel in line 4.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 456

13.2 Relabel to front

Algorithm 49 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← `(u)
8: discharge(u)
9: if `(u) > old-height then

10: move u to the front of L
11: u← u.next

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 457

13.2 Relabel to front

Lemma 74 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissable edges; this means for an admissable edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 458

Proof:

ñ Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissable, which means that any
ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

ñ Maintenance:
1. ñ Pushes do no create any new admissable edges. Therefore,

not relabeling u leaves L topologically sorted.
ñ After relabeling, u cannot have admissable incoming edges

as such an edge (x,u) would have had a difference
`(x)− `(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissable edges leaving u that were generated by the
relabeling.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 459

13.2 Relabel to front

Proof:

ñ Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u′ (u in the next iteration) will be the current u;
the discharge(u) operation only terminates when u is not
active anymore.

For the case that we do a relabel, observe that the only way a
predecessor could be active is that we push flow to it via an
admissable arc. However, all admissable arc point to
successors of u.

Note that the invariant for u = null means that we have a preflow

with a valid labelling that does not have active nodes. This means

we have a maximum flow.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 460

13.2 Relabel to front

Lemma 75
There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 461

13.2 Relabel to front

Lemma 76
The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 462

13.2 Relabel to front

Note that by definition a saturing push operation

(min{cf (e), f (u)} = cf (e)) can at the same time be a

non-saturating push operation (min{cf (e), f (u)} = f(u)).

Lemma 77
The cost for all saturating push-operations that are not also

non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 463

13.2 Relabel to front

Lemma 78
The cost for all non-saturating push-operations is only O(n3).

A non-saturating push-operation takes constant time and ends the

current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 79
The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).

EADS 13.2 Relabel to front

c© Ernst Mayr, Harald Räcke 464

13.3 Highest label

Algorithm 50 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)

EADS 13.3 Highest label

c© Ernst Mayr, Harald Räcke 465

13.3 Highest label

Lemma 80
When using highest label the number of non-saturating pushes is

only O(n3).

After a non-saturating push from u a relabel is required to make a

currently non-active node x, with `(x) ≥ `(u) active again (note

that this includes u).

Hence, after n non-saturating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most

n(#relabels + 1) = O(n3).

EADS 13.3 Highest label

c© Ernst Mayr, Harald Räcke 466

13.3 Highest label

Since a discharge-operation is terminated by a non-saturating

push this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of relabel-to-front.

Question:

How do we find the next node for a discharge operation?

EADS 13.3 Highest label

c© Ernst Mayr, Harald Räcke 467

13.3 Highest label

Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists k− 1, . . . ,0, (in that order) until you find a

non-empty list.

Unless the last (non-saturating) push was to s or t the list k− 1

must be non-empty (i.e., the search takes constant time).

EADS 13.3 Highest label

c© Ernst Mayr, Harald Räcke 468

13.3 Highest label

Hence, the total time required for searching for active nodes is at

most

O(n3)+n(#non-saturating-pushes-to-s-or-t)

Lemma 81
The number of non-saturating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 82
The push-relabel algorithm with the rule highest-label takes time

O(n3).

EADS 13.3 Highest label

c© Ernst Mayr, Harald Räcke 469

13.3 Highest label

Proof of the Lemma.

ñ We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

ñ After a node v (which must have `(v) = n+ 1) made a

non-saturating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before v
can become active again.

ñ This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most once,

v can make at most n pushes to the source.

ñ As this holds for every node the total number of pushes to

the source is at most O(n2).

EADS 13.3 Highest label

c© Ernst Mayr, Harald Räcke 470

	Push Relabel Algorithms
	Generic Push Relabel
	Relabel to front
	Highest label

