6 Recurrences

```
Algorithm 2 mergesort (list \(L\) )
    \(1: S \leftarrow \operatorname{size}(L)\)
    2: if \(s \leq 1\) return \(L\)
    3: \(L_{1} \leftarrow L\left[1 \cdots\left\lfloor\frac{s}{2}\right\rfloor\right]\)
    4: \(L_{2} \leftarrow L\left[\left\lceil\frac{s}{2}\right\rceil \cdots n\right]\)
    5: mergesort \(\left(L_{1}\right)\)
    6: mergesort \(\left(L_{2}\right)\)
    7: \(L \leftarrow \operatorname{merge}\left(L_{1}, L_{2}\right)\)
    8: return \(L\)
```

This algorithm requires

$$
T(n) \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+\mathcal{O}(n)
$$

comparisons when $n>1$ and 0 comparisons when $n \leq 1$.

Recurrences

How do we bring the expression for the number of comparisons (\approx running time) into a closed form?

For this we need to solve the recurrence.

EADS

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.
2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.
3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O}-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Assume that instead we had

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(\frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& =d n \log n
\end{aligned}
$$

if we choose $d \geq c$.
Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

6.1 Guessing+Induction

Guess: $T(n) \leq d n \log n$.

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 16 \\ b & \text { otw. }\end{cases}
$$

Proof. (by induction)

- base case $(2 \leq n<16)$: true if we choose $d \geq b$.
- induction step $2 \ldots n-1 \rightarrow n$:

Suppose statem. is true for $n^{\prime} \in\{2, \ldots, n-1\}$, and $n \geq 16$. We prove it for n :

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(\frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& =d n \log n
\end{aligned}
$$

Hence, statement is true if we choose $d \geq c$.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?
If we do not do this we instead consider the following recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 16 \\ b & \text { otherwise }\end{cases}
$$

Note that we can do this as for constant-sized inputs the running time is always some constant (b in the above case).

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

$$
\begin{aligned}
T(n) & \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n \\
& \leq 2\left(d\left\lceil\frac{n}{2}\right\rceil \log \left\lceil\frac{n}{2}\right\rceil\right)+c n \\
\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2}+1 & \leq 2(d(n / 2+1) \log (n / 2+1))+c n \\
\frac{n}{2}+1 \leq \frac{9}{16} n & \leq d n \log \left(\frac{9}{16} n\right)+2 d \log n+c n
\end{aligned}
$$

$$
\log \frac{9}{16} n=\log n+(\log 9-4)=d n \log n+(\log 9-4) d n+2 d \log n+c n
$$

$$
\begin{aligned}
\log n \leq \frac{n}{4} & =d n \log n+(\log 9-3.5) d n+c n \\
& \leq d n \log n-0.33 d n+c n \\
& \leq d n \log n
\end{aligned}
$$

for a suitable choice of d.

6.2 Master Theorem

Lemma 4

Let $a \geq 1, b \geq 1$ and $\epsilon>0$ denote constants. Consider the recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1.
If $f(n)=\mathcal{O}\left(n^{\log _{b}(a)-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2.
If $f(n)=\Theta\left(n^{\log _{b}(a)} \log ^{k} n\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
Case 3.
If $f(n)=\Omega\left(n^{\log _{b}(a)+\epsilon}\right)$ and for sufficiently large n
$a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ then $T(n)=\Theta(f(n))$.

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form b^{ℓ}, and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1 .

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

6.2 Master Theorem

This gives

$$
T(n)=n^{\log _{b} a}+\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) .
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon} \\
b^{-i\left(\log _{b} a-\epsilon\right)=b^{\epsilon i}\left(b^{\left.\log _{b} a\right)^{-i}=b^{\epsilon i} a^{-i}}\right.} & =c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i} \\
\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1} & =c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right) \\
& =c n^{\log _{b} a-\epsilon}\left(n^{\epsilon}-1\right) /\left(b^{\epsilon}-1\right) \\
& =\frac{c}{b^{\epsilon}-1} n^{\log _{b} a}\left(n^{\epsilon}-1\right) /\left(n^{\epsilon}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq\left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log _{b}(a)} \quad \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a}\right) .
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\mathcal{O}\left(n^{\log _{b} a} \log _{b} n\right) \quad \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log n\right)
$$

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\Omega\left(n^{\log _{b} a} \log _{b} n\right) \quad \Rightarrow T(n)=\Omega\left(n^{\log _{b} a} \log n\right)
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k}} \\
& =c n^{\log _{b} a \sum_{i=0}^{\ell-1}(\ell-i)^{k}} \\
& =c n^{\log _{b} a} \sum_{i=1}^{\ell} i^{k} \approx \frac{1}{k} \ell^{k+1} \\
& \approx \frac{c}{k} n^{\log _{b} a} a \ell^{k+1} \Rightarrow \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log ^{k+1} n\right) .
\end{aligned}
$$

Case 3. Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& =\sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right) \\
q<1: \sum_{i=0}^{n} q^{i}=\frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} & \leq \frac{1}{1-c} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq \mathcal{O}(f(n)) \quad \Rightarrow T(n)=\Theta(f(n)) .
$$

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

$$
\begin{array}{rrrrrrrrrr}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
& 1_{0} & 0_{0} & 0 & 0 & 1_{0} & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

This gives that two n-bit integers can be added in time $\mathcal{O}(n)$.

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $B(m \leq n)$.

- This is also nown as the "school method" for multiplying integers.
- Note that the intermediate num-' bers that are generated can have ! at most $m+n \leq 2 n$ bits.

Time requirement:

- Computing intermediate results: $\mathcal{O}(\mathrm{nm})$.
- Adding m numbers of length $\leq 2 n: \mathcal{O}((m+n) m)=\mathcal{O}(n m)$.

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length $n=2^{k}$, for some k.

B_{1}	B_{0}

Then it holds that

$$
A=A_{1} \cdot 2^{\frac{n}{2}}+A_{0} \text { and } B=B_{1} \cdot 2^{\frac{n}{2}}+B_{0}
$$

Hence,

$$
A \cdot B=A_{1} B_{1} \cdot 2^{n}+\left(A_{1} B_{0}+A_{0} B_{1}\right) \cdot 2^{\frac{n}{2}}+A_{0} \cdot B_{0}
$$

Example: Multiplying Two Integers

$$
\begin{array}{|l|l}
\hline \text { Algorithm } 3 \text { mult }(A, B) & \\
\hline \text { 1: if }|A|=|B|=1 \text { then } & \mathcal{O}(1) \\
\text { 2: return } a_{0} \cdot b_{0} & \mathcal{O}(1) \\
\text { 3: split } A \text { into } A_{0} \text { and } A_{1} & \mathcal{O}(n) \\
\text { 4: split } B \text { into } B_{0} \text { and } B_{1} & \mathcal{O}(n) \\
\text { 5: } Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right) & T\left(\frac{n}{2}\right) \\
\text { 6: } Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right) & 2 T\left(\frac{n}{2}\right)+\mathcal{O}(n) \\
\text { 7: } Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right) & T\left(\frac{n}{2}\right) \\
\text { 8: return } Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0} & \mathcal{O}(n) \\
\hline
\end{array}
$$

We get the following recurrence:

$$
T(n)=4 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

In our case $a=4, b=2$, and $f(n)=\Theta(n)$. Hence, we are in
Case 1 , since $n=\mathcal{O}\left(n^{2-\epsilon}\right)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$.
We get a running time of $\mathcal{O}\left(n^{2}\right)$ for our algorithm.
\Rightarrow Not better then the "school method".

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}^{=Z_{2}}-\overbrace{A_{0} B_{0}}^{=Z_{0}}
\end{aligned}
$$

Hence,

$$
\begin{array}{|l|l}
\hline \text { Algorithm } 4 \text { mult }(A, B) & \\
\hline \text { 1: if }|A|=|B|=1 \text { then } & \mathcal{O}(1) \\
\text { 2: return } a_{0} \cdot b_{0} & \mathcal{O}(1) \tag{1}\\
\text { 3: split } A \text { into } A_{0} \text { and } A_{1} & \mathcal{O}(n) \\
\text { 4: split } B \text { into } B_{0} \text { and } B_{1} & \mathcal{O}(n) \\
\text { 5: } Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right) & T\left(\frac{n}{2}\right) \\
\text { 6: } Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right) & 2 T\left(\frac{n}{2}\right)+\mathcal{O}(n) \\
\text { 7: } Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0} & T\left(\frac{n}{2}\right) \\
\text { 8: return } Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0} & \mathcal{O}(n) \\
\hline
\end{array}
$$

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n)=3 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.59}\right)$.

A huge improvement over the "school method".

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.
- If $f(n)=0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

6.3 The Characteristic Polynomial

Observations:

- The solution $T[0], T[1], T[2], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[0], \ldots, T[k-1]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

The Homogenous Case

The solution space

$$
S=\{T=T[0], T[1], T[2], \ldots \mid T \text { fulfills recurrence relation }\}
$$

is a vector space. This means that if $T_{1}, T_{2} \in S$, then also $\alpha T_{1}+\beta T_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?
We guess that the solution is of the form $\lambda^{n}, \lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$
c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \cdot \lambda^{n-2}+\cdots+c_{k} \cdot \lambda^{n-k}=0
$$

for all $n \geq k$.

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

This means that if λ_{i} is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_{i}^{n}$ is a solution to the recurrence relation.

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n}
$$

is a solution for arbitrary values α_{i}.

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n} .
$$

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{gathered}
\alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
\alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2] \\
\vdots \\
\alpha_{1} \cdot \lambda_{1}^{k}+\alpha_{2} \cdot \lambda_{2}^{k}+\cdots+\alpha_{k} \cdot \lambda_{k}^{k}=T[k]
\end{gathered}
$$

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k}^{2} \\
& & \vdots & \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right)=\left(\begin{array}{c}
T[1] \\
T[2] \\
\vdots \\
T[k]
\end{array}\right)
$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

The Homogenous Case

Proof (cont.).
This we show by induction:

- base case $(k=1)$:

A vector $\left(\lambda_{i}\right), \lambda_{i} \neq 0$ is linearly independent.

- induction step $(k \rightarrow k+1)$: assume for contradiction that there exist α_{i} 's with

$$
\alpha_{1}\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{1}^{k-1} \\
\lambda_{1}^{k}
\end{array}\right)+\cdots+\alpha_{k}\left(\begin{array}{c}
\lambda_{k} \\
\vdots \\
\lambda_{k}^{k-1} \\
\lambda_{k}^{k}
\end{array}\right)=0
$$

and not all $\alpha_{i}=0$. Then all $\boldsymbol{\alpha}_{\boldsymbol{i}} \neq \mathbf{0}$!

The Homogeneous Case

This means that

$$
\sum_{i=1}^{k} \alpha_{i} v_{i}=0 \text { and } \sum_{i=1}^{k} \lambda_{i} \alpha_{i} v_{i}=0
$$

Hence,

$$
\sum_{i=1}^{k-1} \alpha_{i} v_{i}+\alpha_{k} v_{k}=0 \text { and }-\frac{1}{\lambda_{k}} \sum_{i=1}^{k-1} \lambda_{i} \alpha_{i} v_{i}=\alpha_{k} v_{k}
$$

The Homogeneous Case

This gives that

$$
\sum_{i=1}^{k-1}\left(1-\frac{\lambda_{i}}{\lambda_{k}}\right) \alpha_{i} v_{i}=0 .
$$

This is a contradiction as the v_{i} 's are linearly independent because of induction hypothesis.

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least
2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

To see this consider the polynomial

$$
P(\lambda) \lambda^{n-k}=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{k} \lambda^{n-k}
$$

Since λ_{i} is a root we can write this as $Q(\lambda)\left(\lambda-\lambda_{i}\right)^{2}$. Calculating the derivative gives a polynomial that still has root λ_{i}.

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

Hence,

$$
c_{0} \underbrace{n \lambda_{i}^{n}}_{T[n]}+c_{1} \underbrace{(n-1) \lambda_{i}^{n-1}}_{T[n-1]}+\cdots+c_{k} \underbrace{(n-k) \lambda_{i}^{n-k}}_{T[n-k]}=0
$$

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})
Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

We can continue $j-1$ times.
Hence, $n^{\ell} \lambda_{i}^{n}$ is a solution for $\ell \in 0, \ldots, j-1$.

The Homogeneous Case

Lemma 6

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$
c_{0} T[n]+c_{1} T[n-1]+\cdots+c_{k} T[n-k]=0
$$

Let $\lambda_{i}, i=1, \ldots, m$ be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_{i}. Then the general solution to the recurrence is given by

$$
T[n]=\sum_{i=1}^{m} \sum_{j=0}^{\ell_{i}-1} \alpha_{i j} \cdot\left(n^{j} \lambda_{i}^{n}\right) .
$$

The full proof is omitted. We have only shown that any choice of $\alpha_{i j}$'s is a solution to the recurrence.

Example: Fibonacci Sequence

$$
\begin{aligned}
T[0] & =0 \\
T[1] & =1 \\
T[n] & =T[n-1]+T[n-2] \text { for } n \geq 2
\end{aligned}
$$

The characteristic polynomial is

$$
\lambda^{2}-\lambda-1
$$

Finding the roots, gives

$$
\lambda_{1 / 2}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+1}=\frac{1}{2}(1 \pm \sqrt{5})
$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.
$T[1]=1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Rightarrow \alpha-\beta=\frac{2}{\sqrt{5}}
$$

Example: Fibonacci Sequence

Hence, the solution is

$$
\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

The Inhomogeneous Case

Consider the recurrence relation:

$$
\begin{aligned}
& \quad c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n) \\
& \text { with } f(n) \neq 0 \text {. }
\end{aligned}
$$

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$
T(n)=T_{h}(n)+T_{p}(n),
$$

where T_{h} is any solution to the homogeneous equation, and T_{p} is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

or

$$
T[n]=2 T[n-1]-T[n-2] \quad(n \geq 2)
$$

I get a completely determined recurrence if I add $T[0]=1$ and $T[1]=2$.

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

$T[0]=1$ gives $\alpha=1$.
$T[1]=2$ gives $1+\beta=2 \Rightarrow \beta=1$.

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied $r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

Difference:

$$
T[n]-T[n-1]=T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

$$
T[n]=3 T[n-1]-3 T[n-2]+T[n-3]+2
$$

and so on...

6.4 Generating Functions

Definition 7 (Generating Function)
Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence. The corresponding

- generating function (Erzeugendenfunktion) is

$$
F(z):=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

- exponential generating function (exponentielle Erzeugendenfunktion) is

$$
F(z)=\sum_{n \geq 0} \frac{a_{n}}{n!} z^{n} .
$$

6.4 Generating Functions

Example 8

1. The generating function of the sequence $(1,0,0, \ldots)$ is

$$
F(z)=1 .
$$

2. The generating function of the sequence $(1,1,1, \ldots)$ is

$$
F(z)=\frac{1}{1-z} .
$$

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g=\sum_{n=0}^{\infty} b_{n} z^{n}$.

- Equality: f and g are equal if $a_{n}=b_{n}$ for all n.
- Addition: $f+g:=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n}$.
- Multiplication: $f \cdot g:=\sum_{n=0}^{\infty} c_{n} z^{n}$ with $c=\sum_{p=0}^{n} a_{p} b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \rightarrow \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

What does $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$ mean in the algebraic view?
It means that the power series $1-z$ and the power series $\sum_{n=0}^{\infty} z^{n}$ are invers, i.e.,

$$
(1-z) \cdot\left(\sum_{n=0}^{\infty} z^{n}\right)=1
$$

This is well-defined.

6.4 Generating Functions

Suppose we are given the generating function

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}
$$

We can compute the derivative:

$$
\underbrace{\sum_{n \geq 1} n z^{n-1}}_{\sum_{n=0}^{\infty}(n+1) z^{n}}=\frac{1}{(1-z)^{2}}
$$

Hence, the generating function of the sequence $a_{n}=n+1$ is $1 /(1-z)^{2}$.

6.4 Generating Functions

We can repeat this

$$
\sum_{n=0}^{\infty}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

Derivative:

$$
\underbrace{\sum_{n \geq 1} n(n+1) z^{n-1}}_{\sum_{n=0}^{\infty}(n+1)(n+2) z^{n}}=\frac{2}{(1-z)^{3}}
$$

Hence, the generating function of the sequence
$a_{n}=(n+1)(n+2)$ is $\frac{2}{(1-z)^{2}}$.

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

$$
\begin{aligned}
\sum_{n \geq k} n(n-1) \ldots(n-k+1) z^{n-k} & =\sum_{n \geq 0}(n+k) \ldots(n+1) z^{n} \\
& =\frac{k!}{(1-z)^{k+1}} .
\end{aligned}
$$

Hence:

$$
\sum_{n \geq 0}\binom{n+k}{k} z^{n}=\frac{1}{(1-z)^{k+1}}
$$

The generating function of the sequence $a_{n}=\binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

6.4 Generating Functions

$$
\begin{aligned}
\sum_{n \geq 0} n z^{n} & =\sum_{n \geq 0}(n+1) z^{n}-\sum_{n \geq 0} z^{n} \\
& =\frac{1}{(1-z)^{2}}-\frac{1}{1-z} \\
& =\frac{z}{(1-z)^{2}}
\end{aligned}
$$

The generating function of the sequence $a_{n}=n$ is $\frac{z}{(1-z)^{2}}$.

6.4 Generating Functions

We know

$$
\sum_{n \geq 0} y^{n}=\frac{1}{1-y}
$$

Hence,

$$
\sum_{n \geq 0} a^{n} z^{n}=\frac{1}{1-a z}
$$

The generating function of the sequence $f_{n}=a^{n}$ is $\frac{1}{1-a z}$.

6.4 Generating Functions

Suppose we have again the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n} \\
& =1+z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} z^{n} \\
& =z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\frac{1}{1-z}
\end{aligned}
$$

6.4 Generating Functions

Solving for $A(z)$ gives

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{(1-z)^{2}}=\sum_{n \geq 0}(n+1) z^{n}
$$

Hence, $a_{n}=n+1$.

Some Generating Functions

\boldsymbol{n}-th sequence element	generating function
1	$\frac{1}{1-z}$
$n+1$	$\frac{1}{(1-z)^{2}}$
$\binom{n+k}{n}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^{2}}$
a^{n}	$\frac{1}{1-a z}$
n^{2}	$\frac{z(1+z)}{(1-z)^{3}}$
$\frac{1}{n!}$	$\frac{z(1+z)}{(1-z)^{3}}$

Some Generating Functions

\boldsymbol{n}-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$
$f_{n-k}(n \geq k) ; 0$ otw.	$z^{k} F$
$\sum_{i=0}^{n} f_{i}$	$\frac{F(z)}{1-z}$
$n f_{n}$	$z \frac{\mathrm{~d} F(z)}{\mathrm{d} z}$
$c^{n} f_{n}$	$F(c z)$

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.
5. Write $f(z)$ as a formal power series.

Techniques:

- partial fraction decomposition (Partialbruchzerlegung)
- lookup in tables

6. The coefficients of the resulting power series are the a_{n}.

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z)=a_{0}+\sum_{n \geq 1} a_{n} z^{n}
$$

2. Plug in:

$$
A(z)=1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1} \\
& =1+2 z \sum_{n \geq 0} a_{n} z^{n} \\
& =1+2 z \cdot A(z)
\end{aligned}
$$

4. Solve for $A(z)$.

$$
A(z)=\frac{1}{1-2 z}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

5. Rewrite $f(n)$ as a power series:

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{1-2 z}=\sum_{n \geq 0} 2^{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n} \\
& =1+\sum_{n \geq 1}\left(3 a_{n-1}+n\right) z^{n} \\
& =1+3 z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} n z^{n} \\
& =1+3 z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} n z^{n} \\
& =1+3 z A(z)+\frac{z^{2}}{(1-z)^{2}}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

4. Solve for $A(z)$:

$$
A(z)=1+3 z A(z)+\frac{z}{(1-z)^{2}}
$$

gives

$$
A(z)=\frac{(1-z)^{2}+z}{(1-3 z)(1-z)^{2}}=\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}} \stackrel{!}{=} \frac{A}{1-3 z}+\frac{B}{1-z}+\frac{C}{(1-z)^{2}}
$$

This leads to the following conditions:

$$
\begin{aligned}
A+B+C & =1 \\
2 A+4 B+3 C & =1 \\
A+3 B & =1
\end{aligned}
$$

which gives

$$
A=\frac{7}{4} \quad B=-\frac{1}{4} \quad C=-\frac{1}{2}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

5. Write $f(z)$ as a formal power series:

$$
\begin{aligned}
A(z) & =\frac{7}{4} \cdot \frac{1}{1-3 z}-\frac{1}{4} \cdot \frac{1}{1-z}-\frac{1}{2} \cdot \frac{1}{(1-z)^{2}} \\
& =\frac{7}{4} \cdot \sum_{n \geq 0} 3^{n} z^{n}-\frac{1}{4} \cdot \sum_{n \geq 0} z^{n}-\frac{1}{2} \cdot \sum_{n \geq 0}(n+1) z^{n} \\
& =\sum_{n \geq 0}\left(\frac{7}{4} \cdot 3^{n}-\frac{1}{4}-\frac{1}{2}(n+1)\right) z^{n}
\end{aligned}
$$

6. This means $a_{n}=\frac{7}{4} 3^{n}-\frac{1}{2} n-\frac{3}{4}$.

6.5 Transformation of the Recurrence

Example 9

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n} .
$$

Then

$$
\begin{aligned}
g_{n} & =g_{n-1}+g_{n-2} \text { for } n \geq 2 \\
g_{1} & =\log 2=1, g_{0}=0\left(f \AA \tilde{A} \text { ĆǍŠr } \log =\log _{2}\right) \\
g_{n} & =F_{n}(n \text {-th Fibonacci number }) \\
f_{n} & =2^{F_{n}}
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 10

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}
\end{aligned}
$$

Define

$$
g_{k}:=f_{2^{k}}
$$

6.5 Transformation of the Recurrence

Example 10

Then:

$$
\begin{aligned}
& g_{0}=1 \\
& g_{k}=3 g_{k-1}+2^{k}, k \geq 1
\end{aligned}
$$

We get,

$$
\begin{aligned}
g_{k} & =3^{k+1}-2^{k+1}, \text { hence } \\
f_{n} & =3 \cdot 3^{k}-2 \cdot 2^{k} \\
& =3\left(2^{\log 3}\right)^{k}-2 \cdot 2^{k} \\
& =3\left(2^{k}\right)^{\log 3}-2 \cdot 2^{k} \\
& =3 n^{\log 3}-2 n .
\end{aligned}
$$

